Решение квадратного уравнения через половинный дискриминант

Квадратное уравнение с чётным вторым коэффициентом

Если в квадратном уравнении ax 2 + bx + c = 0 второй коэффициент b является чётным, то решение этого уравнения можно немного упростить. Дискриминант для такого уравнения можно вычислить по формуле D1 = k 2 − ac , а корни по формулам Решение квадратного уравнения через половинный дискриминанти Решение квадратного уравнения через половинный дискриминант.

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Примеры

Решим квадратное уравнение x 2 + 6x − 16 = 0 . В нём второй коэффициент является чётным. Чтобы воспользоваться формулами для чётного коэффициента, нужно сначала узнать чему равна переменная k .

Любое четное число n можно представить в виде произведения числа 2 и числа k , то есть 2k .

Например, число 10 можно представить как 2 × 5 .

В этом произведении k = 5 .

Число 12 можно представить как 2 × 6 .

В этом произведении k = 6 .

Число −14 можно представить как 2 × (−7)

В этом произведении k = −7 .

Как видим, сомножитель 2 не меняется. Меняется только сомножитель k .

В уравнении x 2 + 6x − 16 = 0 вторым коэффициентом является число 6 . Это число можно представить как 2 × 3 . В этом произведении k = 3 . Теперь можно воспользоваться формулами для чётного коэффициента.

Найдем дискриминант по формуле D1 = k 2 − ac

Теперь вычислим корни по формулам: Решение квадратного уравнения через половинный дискриминанти Решение квадратного уравнения через половинный дискриминант.

Решение квадратного уравнения через половинный дискриминант

Значит корнями уравнения x 2 + 6x − 16 = 0 являются числа 2 и −8 .

В отличие от стандартной формулы для вычисления дискриминанта ( D=b 2 − 4ac ), в формуле D1 = k 2 − ac не нужно выполнять умножение числа 4 на ac .

И в отличие от формул Решение квадратного уравнения через половинный дискриминанти Решение квадратного уравнения через половинный дискриминантформулы Решение квадратного уравнения через половинный дискриминанти Решение квадратного уравнения через половинный дискриминантне содержат в знаменателе множитель 2 что опять же освобождает нас от дополнительных вычислений.

Пример 2. Решить квадратное уравнение 5x 2 − 6x + 1=0

Второй коэффициент является чётным числом. Его можно представить в виде 2 × (−3) . То есть k = −3 . Найдём дискриминант по формуле D1 = k 2 − ac

Дискриминант больше нуля. Значит уравнение имеет два корня. Для их вычисления воспользуемся формулами Решение квадратного уравнения через половинный дискриминанти Решение квадратного уравнения через половинный дискриминант

Решение квадратного уравнения через половинный дискриминант

Пример 3. Решить квадратное уравнение x 2 − 10x − 24 = 0

Второй коэффициент является чётным числом. Его можно представить в виде 2 × (−5) . То есть k = −5 . Найдём дискриминант по формуле D1 = k 2 − ac

Дискриминант больше нуля. Значит уравнение имеет два корня. Для их вычисления воспользуемся формулами Решение квадратного уравнения через половинный дискриминанти Решение квадратного уравнения через половинный дискриминант

Решение квадратного уравнения через половинный дискриминант

Обычно для определения числа k поступают так: делят второй коэффициент на 2.

Действительно, если второй коэффициент b является чётным числом, то его можно представить как b = 2 k . Чтобы из этого равенства выразить сомножитель k , нужно произведение b разделить на сомножитель 2

Решение квадратного уравнения через половинный дискриминант

Например, в предыдущем примере для определения числа k можно было просто разделить второй коэффициент −10 на 2

Решение квадратного уравнения через половинный дискриминант

Пример 5. Решить квадратное уравнение Решение квадратного уравнения через половинный дискриминант

Коэффициент b равен Решение квадратного уравнения через половинный дискриминант. Это выражение состоит из множителя 2 и выражения Решение квадратного уравнения через половинный дискриминант. То есть оно уже представлено в виде 2k . Получается, что Решение квадратного уравнения через половинный дискриминант

Найдём дискриминант по формуле D1 = k 2 − ac

Решение квадратного уравнения через половинный дискриминант

Дискриминант больше нуля. Значит уравнение имеет два корня. Для их вычисления воспользуемся формулами Решение квадратного уравнения через половинный дискриминанти Решение квадратного уравнения через половинный дискриминант

Решение квадратного уравнения через половинный дискриминант

При вычислении корня уравнения получилась дробь, в которой содержится квадратный корень из числа 2. Квадратный корень из числа 2 извлекается только приближённо. Если выполнить это приближённое извлечение, а затем сложить результат с 2, и затем разделить числитель на знаменатель, то получится не очень красивый ответ.

В таких случаях ответ записывают, не выполняя приближённых вычислений. В нашем случае первый корень уравнения будет равен Решение квадратного уравнения через половинный дискриминант.

Вычислим второй корень уравнения:

Решение квадратного уравнения через половинный дискриминант

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Вывод формул

Давайте наглядно увидим, как появились формулы для вычисления корней квадратного уравнения с чётным вторым коэффициентом.

Рассмотрим квадратное уравнение ax 2 + bx + c = 0 . Допустим, что коэффициент b является чётным числом. Тогда его можно обозначить как 2k

Заменим в уравнении ax 2 + bx + c = 0 коэффициент b на выражение 2k

Теперь вычислим дискриминант по ранее известной формуле:

Вынесем в получившемся выражении за скобки общий множитель 4

Что можно сказать о получившемся дискриминанте? При чётном втором коэффициенте он состоит из множителя 4 и выражения k 2 − ac .

В выражении 4(k 2 − ac) множитель 4 постоянен. Значит знак дискриминанта зависит от выражения k 2 − ac . Если это выражение меньше нуля, то и D будет меньше нуля. Если это выражение больше нуля, то и D будет больше нуля. Если это выражение равно нулю, то и D будет равно нулю.

То есть выражение k 2 − ac это различитель — дискриминант. Такой дискриминант принято обозначать буквой D1

Теперь посмотрим как выводятся формулы Решение квадратного уравнения через половинный дискриминанти Решение квадратного уравнения через половинный дискриминант.

В нашем уравнении ax 2 + bx + c = 0 коэффициент b заменён на выражение 2k . Воспользуемся стандартными формулами для вычисления корней. То есть формулами Решение квадратного уравнения через половинный дискриминанти Решение квадратного уравнения через половинный дискриминант. Только вместо b будем подставлять 2k . Также на забываем, что D у нас равно выражению 4(k 2 − ac)

Решение квадратного уравнения через половинный дискриминант

Но ранее было сказано, что выражение k 2 − ac обозначается через D1 . Тогда в наших преобразованиях следует сделать и эту замену:

Решение квадратного уравнения через половинный дискриминант

Теперь вычислим квадратный корень, расположенный в числителе. Это квадратный корень из произведения — он равен произведению корней. Остальное перепишем без изменений:

Решение квадратного уравнения через половинный дискриминант

Теперь в получившемся выражении вынесем за скобки общий множитель 2

Решение квадратного уравнения через половинный дискриминант

Сократим получившуюся дробь на 2

Решение квадратного уравнения через половинный дискриминант

Аналогично вывóдится формула для вычисления второго корня:

Видео:Метод переброски в квадратных уравнениях. ЕГЭ и ОГЭ 2022 по математикеСкачать

Метод переброски в квадратных уравнениях. ЕГЭ и ОГЭ 2022 по математике

Как найти дискриминант квадратного уравнения

Решение квадратного уравнения через половинный дискриминант

О чем эта статья:

Видео:Упрощенная формула корней квадратного уравнения. ЕГЭ и ОГЭ 2022 по математикеСкачать

Упрощенная формула корней квадратного уравнения. ЕГЭ и ОГЭ 2022 по математике

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, содержащее переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим:

13 = 12 — противоречие.

Значит, х = 5 не является корнем уравнения.

Если же х = 4, то при подстановке в уравнение мы получим:

12 = 12 — верное равенство.

Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Если все коэффициенты в уравнении отличны от нуля, то уравнение называется полным.

Такое уравнение можно решить с помощью формулы дискриминанта.

Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Понятие дискриминанта

Дискриминант квадратного уравнения — это выражение, равное b 2 − 4ac. Дискриминант в переводе с латинского означает «отличающий» или «различающий» и обозначается буквой D.

Дискриминант — отличный помощник, чтобы понять, сколько в уравнении корней.

Решение квадратного уравнения через половинный дискриминант

Видео:Как решать квадратные уравнения через дискриминант. Простое объяснениеСкачать

Как решать квадратные уравнения через дискриминант. Простое объяснение

Как решать квадратные уравнения через дискриминант

Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

Определим, чему равны коэффициенты a, b, c.

Вычислим значение дискриминанта по формуле D = b2 − 4ac.

Если дискриминант D 0, то у уравнения две корня, равные

Чтобы запомнить алгоритм решения полных квадратных уравнений и с легкостью его использовать, сохраните себе шпаргалку:

Решение квадратного уравнения через половинный дискриминант

Видео:КВАДРАТНОЕ УРАВНЕНИЕ дискриминантСкачать

КВАДРАТНОЕ УРАВНЕНИЕ дискриминант

Примеры решения квадратных уравнений с помощью дискриминанта

Пример 1. Решить уравнение: 3x 2 — 4x + 2 = 0.

  1. Определим коэффициенты: a = 3, b = -4, c = 2.
  2. Найдем дискриминант: D = b 2 — 4ac = (-4) 2 — 4 * 3 * 2 = 16 — 24 = -8.

Ответ: D 2 — 6x + 9 = 0.

  1. Определим коэффициенты: a = 1, b = -6, c = 9.
  2. Найдем дискриминант: D = b 2 — 4ac = (-6) 2 — 4 * 1 * 9 = 36 — 36 = 0.

D = 0, значит уравнение имеет один корень:

Решение квадратного уравнения через половинный дискриминант

Ответ: корень уравнения 3.

Пример 3. Решить уравнение: x 2 — 4x — 5 = 0.

  1. Определим коэффициенты: a = 1, b = -4, c = -5.
  2. Найдем дискриминант: D = b 2 — 4ac = (-4) 2 — 4 * 1 * (-5) = 16 + 20 = 36.

D > 0, значит уравнение имеет два корня:

Решение квадратного уравнения через половинный дискриминант

Ответ: два корня x1 = 5, x2 = -1.

Разобраться в решении квадратных уравнений на практике с классным преподавателем можно на курсах по математике в Skysmart.

Видео:Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать

Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетитор

Дискриминант квадратного уравнения

Дискриминант квадратного уравнения — это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.

Вид уравненияФормула корнейФормула
дискриминанта
ax 2 + bx + c = 0Решение квадратного уравнения через половинный дискриминантb 2 — 4ac
ax 2 + 2kx + c = 0Решение квадратного уравнения через половинный дискриминантk 2 — ac
x 2 + px + q = 0Решение квадратного уравнения через половинный дискриминантРешение квадратного уравнения через половинный дискриминант
Решение квадратного уравнения через половинный дискриминантp 2 — 4q

Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:

Вид уравненияФормула
ax 2 + bx + c = 0Решение квадратного уравнения через половинный дискриминант, где D = b 2 — 4ac
ax 2 + 2kx + c = 0Решение квадратного уравнения через половинный дискриминант, где D = k 2 — ac
x 2 + px + q = 0Решение квадратного уравнения через половинный дискриминант, где D = Решение квадратного уравнения через половинный дискриминант
Решение квадратного уравнения через половинный дискриминант, где D = p 2 — 4q

Дискриминант позволяет определить, имеет ли уравнение корни и сколько их, не решая само уравнение:

  1. Если дискриминант больше нуля, то уравнение имеет два корня.
  2. Если дискриминант равен нулю, то уравнение имеет один корень.
  3. Если дискриминант меньше нуля, то уравнение не имеет корней.

Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:

так как она относится к формуле:

Решение квадратного уравнения через половинный дискриминант,

которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.

Видео:Быстрый способ решения квадратного уравненияСкачать

Быстрый способ решения квадратного уравнения

Решение квадратных уравнений через дискриминант

Для решения квадратного уравнения по формуле можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата, либо искать корни по формуле, либо сделать вывод, что корней нет.

Пример 1. Решить уравнение:

Определим, чему равны коэффициенты:

D = b 2 — 4ac = (-4) 2 — 4 · 3 · 2 = 16 — 24 = -8,

Определим, чему равны коэффициенты:

D = b 2 — 4ac = (-6) 2 — 4 · 1 · 9 = 36 — 36 = 0,

Уравнение имеет всего один корень:

Решение квадратного уравнения через половинный дискриминант

Определим, чему равны коэффициенты:

D = b 2 — 4ac = (-4) 2 — 4 · 1 · (-5) = 16 + 20 = 36,

🎥 Видео

Как решать квадратные уравнения без дискриминантаСкачать

Как решать квадратные уравнения без дискриминанта

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

Решение квадратных уравнений. Дискриминант. Практическая часть. 1ч. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. Практическая часть. 1ч. 8 класс.

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Квадратное уравнение, дискриминант, формула корнейСкачать

Квадратное уравнение, дискриминант, формула корней

Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные УравненияСкачать

Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные Уравнения

8 класс, 25 урок, Формула корней квадратного уравненияСкачать

8 класс, 25 урок, Формула корней квадратного уравнения

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Как решать квадратные уравнения через дискриминант | МатематикаСкачать

Как решать квадратные уравнения через дискриминант | Математика

Квадратное уравнение. Как решить? | Математика ОГЭ 2023 | УмскулСкачать

Квадратное уравнение. Как решить? | Математика ОГЭ 2023 | Умскул

Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

Как решать квадратные уравнения. 8 класс. Вебинар | Математика
Поделиться или сохранить к себе: