Решение комплексных уравнений онлайн калькулятор с решением

Решение комплексных уравнений онлайн калькулятор с решением

. Вы вводите его по ссылке решение уравнений онлайн , указываете, что i — это комплексная единица (после того как ввели уравнение и нажали кнопку «решить»), нажимаете кнопку под формой «Обновить» и получаете ответ как здесь. Если в ответе присутствуют корни из комплексных чисел, то можно воспользоваться калькулятором по упрощению комлексных чисел по ссылке

Решение комплексных уравнений онлайн калькулятор с решением

© Контрольная работа РУ — примеры решения задач

Видео:Системы комплексных уравненийСкачать

Системы комплексных уравнений

Комплексные числа по-шагам

Видео:КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТ

Результат

Примеры комплексных выражений

  • Деление комплексных чисел
  • Умножение комплексных чисел
  • Комплексные уравнения
  • Возведение комплексного числа в степень
  • Корень из комплексного числа

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

Видео:Комплексные числа в уравненияхСкачать

Комплексные числа в уравнениях

Калькулятор комплексных чисел. Вычисление выражений с комплексными числами

Калькулятор комплексных чисел позволяет вычислять арифметические выражения, содержащие комплексные числа, знаки арифметических действий (+, -, *, /, ^), а также некоторые математические функции.

Калькулятор комплексных чисел

Видео:Комплексные корни квадратного уравненияСкачать

Комплексные корни квадратного уравнения

Как пользоваться калькулятором

  1. Введите в поле ввода выражение с комплексными числами
  2. Укажите, требуется ли вывод решения переключателем «С решением»
  3. Нажмите на кнопку «Построить»

Видео:Изобразить область на комплексной плоскостиСкачать

Изобразить область на комплексной плоскости

Ввод комплексных чисел

комплексные числа можно вводить в следующих трёх форматах:

  • Только действительная часть: 2, 2.5, -6.7, 12.25
  • Только мнимая часть: i, -i, 2i, -5i, 2.16i, -12.5i
  • Действительная и мнимая части: 2+i, -5+15i, -7+2.5i, -6+i
  • Математические константы: π, e

Видео:Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать

Математика без Ху!ни. Комплексные числа, часть 1. Введение.

Поддерживаемые операции и математические функции

  • Арифметические операции: +, -, *, /, ^
  • Получение абсолютного значения числа: abs
  • Базовые математические функции: exp, ln, sqrt
  • Получение действительной и мнимой частей: re, im
  • Тригонометрические функции: sin, cos, tg, ctg
  • Гиперболические функции: sh, ch, th, cth
  • Обратные тригонометрические функции: arcsin, arccos, arctg, arcctg
  • Обратные гиперболические функции: arsh, arch, arth, arcth

Видео:Комплексные корни квадратных уравнений. 11 класс.Скачать

Комплексные корни квадратных уравнений. 11 класс.

Примеры корректных выражений

  • (2+3i)*(5-7i)
  • sh(i)
  • (4+i) / (3 — 4i)
  • sqrt(2i)
  • (-3+4i)*2i / exp(2i + (15 — 8i)/4 — 3.75)

Видео:Комплексные числа на инженерном калькулятореСкачать

Комплексные числа на инженерном калькуляторе

Комплексные числа

Комплексные числа — это числа вида x+iy , где x , y — вещественные числа, а i — мнимая единица (специальное число, квадрат которого равен -1, то есть i 2 = -1 ).
Так же, как и для вещественных чисел, для комплексных чисел определены операции сложения, разности, умножения и деления, однако комплексные числа нельзя сравнивать.

Видео:Высшая математика. Комплексные числаСкачать

Высшая математика. Комплексные числа

Примеры комплексных чисел

  • 4+3i — действительная часть = 4, мнимая = 3
  • -2+i — действительная часть = -2, мнимая = 1
  • i — действительная часть = 0, мнимая = 1
  • -i — действительная часть = 0, мнимая = -1
  • 10 — действительная часть = 10, мнимая = 0

Видео:Сложение, вычитание, умножение и деление комплексных чисел | Высшая математикаСкачать

Сложение, вычитание, умножение и деление комплексных чисел | Высшая математика

Основные действия с комплексными числами

Основными операциями, определёнными для комплексных чисел, являются сложение, разность, произведение и деление комплексных чисел. Операции для двух произвольных комплексных чисел (a + bi) и (c + di) определяются следующим образом:

  • сложение: (a + bi) + (c + di) = (a + c) + (b + d)i
  • вычитание: (a + bi) — (c + di) = (a — c) + (b — d)i
  • умножение: (a + bi) · (c + di) = ac + bci + adi + bdi 2 = (ac — bd) + (bc + ad)i
  • деление:

Примеры

Найти сумму чисел 5+7i и 5.5-2i :
Найдём отдельно суммы действительных частей и сумму мнимых частей: re = 5 + 5.5 = 10.5, im = 7 — 2 = 5.
Запишем их рядом, добавив к мнимой части i: 10.5 + 5i
Полученное число и будет ответом: 5+7i + 5.5-2i = 10.5 + 5i

Найти разность чисел 12-i и -2i :
Найдём отдельно разности действительных частей и разности мнимых частей: re = 12 — 0 = 12, im = -1 — (-2) = 1.
Запишем их рядом, добавив к мнимой части i: 12 + 1i
Полученное число и будет ответом: 12-i — (-2i) = 12 + i

Найти произведение чисел 2+3i и 5-7i :
Найдём по формуле действительную и мнимую части: re = 2·5 — 3·(-7) = 31, im = 3·5 + 2·(-7) = 1.
Запишем их рядом, добавив к мнимой части i: 31 + 1i
Полученное число и будет ответом: 2+3i * (5-7i) = 31 + i

Найти отношение чисел 75-50i и 3+4i :
Найдём по формуле действительную и мнимую части: re = (75·3 — 50·4) / 25 = 1, im = (-50·3 — 75·4) / 25 = -18.
Запишем их рядом, добавив к мнимой части i: 1 — 18i
Полученное число и будет ответом: 75-50i / (3+4i) = 1 — 18i

Видео:комплЕксные ЧИСЛА решение примеров МАТЕМАТИКАСкачать

комплЕксные ЧИСЛА решение примеров МАТЕМАТИКА

Другие действия над комплексными числами

Помимо базовых операций сложения, вычитания, умножения и деления комплексных чисел существуют также различные математические функции. Рассмотрим некоторые из них:

  • Получение действительной части числа: Re(z) = a
  • Получение мнимой части числа: Im(z) = b
  • Модуль числа: |z| = √(a 2 + b 2 )
  • Аргумент числа: arg z = arctg(b / a)
  • Экспонента: e z = e a ·cos(b) + i·e a ·sin(b)
  • Логарифм: Ln(z) = ln |z| + i·arg(z)
  • Тригонометрические функции: sin z, cos z, tg z, ctg z
  • Гиперболические функции: sh z, ch z, th z, cth z
  • Обратные тригонометрические функции: arcsin z, arccos z, arctg z, arcctg z
  • Обратные гиперболические функции: arsh z, arch z, arth z, arcth z

Примеры

Найти действительную и мнимую части числа z, а также его модуль, если z = 4 — 3i
Re(z) = Re(4 — 3i) = 4
Im(z) = Im(4 — 3i) = -3
|z| = √(4 2 + (-3) 2 ) = √25 = 5

Видео:Комплексные числа: начало. Высшая математика или школа?Скачать

Комплексные числа: начало. Высшая математика или школа?

Формы представления комплексных чисел

Комплексные числа принято представлять в одной из трёх следующих форм: алгебраической, тригонометрической и показательной.

  • Алгебраическая форма — наиболее часто используемая форма комплексного числа, запись числа в виде суммы действительной и мнимой частей: x+iy , где x — действительная часть, а y — мнимая часть
  • Тригонометричкая форма — запись вида r·(cos φ + isin φ) , где r — модуль комплексного числа (r = |z|), а φ — аргумент этого числа (φ = arg(z))
  • Показательная форма — запись вида r·e iφ , где r — модуль комплексного числа (r = |z|), e — число Эйлера, а φ — аргумент комплексного числа (φ = arg(z))

Пример:

Переведите число 1+i в тригонометрическую и показательную формы:

  • Найдём радиус (модуль) комплексного числа r: r = √(1 2 + 1 2 ) = √2
  • Найдём аргумент числа: φ = arctan(

🎬 Видео

Изображение комплексных чисел. Модуль комплексного числа. 11 класс.Скачать

Изображение комплексных чисел. Модуль комплексного числа. 11 класс.

Комплексные числа. Сложение, умножение, деление, модуль комплексного числаСкачать

Комплексные числа. Сложение, умножение, деление, модуль комплексного числа

Решение уравнений с комплексными числамиСкачать

Решение уравнений с комплексными числами

Формула Муавра ➜ Вычислить ➜ (5+5i)⁷Скачать

Формула Муавра ➜ Вычислить ➜ (5+5i)⁷

✓ Задача про комплексное число | Ботай со мной #101 | Борис ТрушинСкачать

✓ Задача про комплексное число | Ботай со мной #101 | Борис Трушин

Математика без Ху!ни. Комплексные числа, часть 3. Формы записи. Возведение в степень.Скачать

Математика без Ху!ни. Комплексные числа, часть 3. Формы записи. Возведение в степень.

Математика это не ИсламСкачать

Математика это не Ислам
Поделиться или сохранить к себе: