Решение иррациональных уравнений введение новых переменных

Видео:Метод введения новой переменной при решении иррациональных уравненийСкачать

Метод введения новой переменной при решении иррациональных уравнений

Алгебра

План урока:

Видео:§101 Метод введения новой переменнойСкачать

§101 Метод введения новой переменной

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Видео:ЕГЭ 2020 С1. Иррациональные уравнения. Часть 2. Метод замены переменныхСкачать

ЕГЭ 2020 С1. Иррациональные уравнения. Часть 2. Метод замены переменных

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Видео:Решение уравнения методом замены переменнойСкачать

Решение уравнения методом замены переменной

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Видео:Иррациональные уравнения и их системы. 11 класс.Скачать

Иррациональные уравнения и их системы. 11 класс.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Видео:Решение иррациональных уравнений методом введения новых переменных Подготовка к ГВЭ11 + ЕГЭ 2021 #57Скачать

Решение иррациональных уравнений методом введения новых переменных Подготовка к ГВЭ11 + ЕГЭ 2021 #57

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Видео:Подготовка к ЕГЭ #57. Решение иррациональных уравнений методом введения новых переменныхСкачать

Подготовка к ЕГЭ #57. Решение иррациональных уравнений методом введения новых переменных

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3

Видео:8 класс, 38 урок, Иррациональные уравненияСкачать

8 класс, 38 урок, Иррациональные уравнения

Методы решений иррациональных уравнений

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

1 способ. Введение новой переменной

Метод замены переменной или метод подстановки очень часто используется при решении иррациональных уравнений и неравенств. Он позволяет значительно упростить решение, разбить его на самостоятельные этапы. Решить уравнение. Решение иррациональных уравнений введение новых переменных.

Решение иррациональных уравнений введение новых переменных

Решение иррациональных уравнений введение новых переменных

Выполняем обратную подстановку

Решение иррациональных уравнений введение новых переменных

Ответ: -5; 2.

2 способ. Исследование ОДЗ.

Решить уравнение. Решение иррациональных уравнений введение новых переменных

Решение. Замечаем, что ОДЗ уравнения состоит из одной точки х= 1 . Проверкой убеждаемся, что х= 1 решение уравнения .

3 способ. Умножение обеих частей уравнения на сопряженный множитель.

Решить уравнение Решение иррациональных уравнений введение новых переменных

Решение. Умножим обе части уравнения на Решение иррациональных уравнений введение новых переменных.

Получим, Решение иррациональных уравнений введение новых переменных.

Имеем, Решение иррациональных уравнений введение новых переменных

Отсюда, Решение иррациональных уравнений введение новых переменных

Проверкой убеждаемся, что х = 1 является корнем данного уравнения.

4 способ. Сведение уравнения к системе рациональных уравнений с помощью введения переменной.

Решить уравнение Решение иррациональных уравнений введение новых переменных

Решение. Положим Решение иррациональных уравнений введение новых переменныхТогда u + v = 3. Так как u 3 = x -2, v 2 = x +1, то v 2 u 3 =3. Итак, в новых переменных имеем

Решение иррациональных уравнений введение новых переменных

5 способ. Выделение полного квадрата

Решить уравнение Решение иррациональных уравнений введение новых переменных

Решение. Заметим, что

Решение иррациональных уравнений введение новых переменных= Решение иррациональных уравнений введение новых переменных2 ,

Решение иррациональных уравнений введение новых переменных.

Следовательно, имеем уравнение

Решение иррациональных уравнений введение новых переменных

Решение иррациональных уравнений введение новых переменных

Данное уравнение равносильно совокупности двух систем:

Решение иррациональных уравнений введение новых переменныхили Решение иррациональных уравнений введение новых переменных

Решением первой системы будет х =0, решением второй системы – все числа, удовлетворяющие неравенству Решение иррациональных уравнений введение новых переменных

6 способ. Использование ограниченности выражений, входящих в уравнение

Решить уравнение Решение иррациональных уравнений введение новых переменных

Так как Решение иррациональных уравнений введение новых переменныхдля Решение иррациональных уравнений введение новых переменныхто левая часть уравнения не меньше двух для Решение иррациональных уравнений введение новых переменных, а правая часть Решение иррациональных уравнений введение новых переменныхдля Решение иррациональных уравнений введение новых переменныхПоэтому уравнение может иметь корнями только те значения х , при которых Решение иррациональных уравнений введение новых переменных

Решая второе уравнение системы, найдем х=0 . Это значение удовлетворяет и первому уравнению системы. Итак, х= 0 – корень уравнения.

7 способ: Использование свойств монотонности функций.

Решить уравнение Решение иррациональных уравнений введение новых переменных.

Решение иррациональных уравнений введение новых переменныхРешение иррациональных уравнений введение новых переменныхРешение иррациональных уравнений введение новых переменныхешение. Если функция u ( x ) монотонная, то уравнение и(х) = А либо не имеет ре­шений, либо имеет единственное ре­шение. Отсюда следует, что урав­нение и(х) = v ( x ), где и(х) — возрас­тающая, a v ( x ) – убывающая функ­ции, либо не имеет решений, либо имеет единственное решение.

Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнем

решение иррациональных уравнений и неравенств методом замены переменной
статья по алгебре по теме

способ решения иррациональных уравнений и неравенств методом замены переменной

Видео:Алгебра Система уравнений Метод замены переменной № 6.22 9 классСкачать

Алгебра Система уравнений Метод замены переменной № 6.22  9 класс

Скачать:

ВложениеРазмер
reshenie_irratsionalnykh_uravneniy_i_neravenstv_metodom_vvedeniya_novoy_peremennoy.docx18.24 КБ

Видео:Решение рациональных уравнений методом введения новой переменной | Алгебра 8 класс #37 | ИнфоурокСкачать

Решение рациональных уравнений методом введения новой переменной | Алгебра 8 класс #37 | Инфоурок

Предварительный просмотр:

Решение иррациональных уравнений и неравенств методом введения новой переменной.

При изучении темы « решение иррациональных уравнений и неравенств» целесообразно вводить способ введения новой переменной, который облегчает решения некоторых уравнений и неравенств.

Например: Уравнения и неравенства вида = сх+d, >сх+d,

Пусть =t , где t≥0, тогда х-4= , х=

Данное уравнение примет вид: t = , =0, t= 2; t =-1 ( не удовлетворяет условию t≥0), значит х=4+4; х=8

Пусть = t , где t≥0, тогда 3х-5= ; х = ;

Данное неравенство примет вид: t ; -3t+2>0; 0≤ t 2.

Пусть = t, где t≥0, тогда х+3= , х= -3.

Данное уравнение примет вид: t + =7; = 7- t

Пусть = t, , где t≥0, тогда 3 -2х +8= , данное уравнение примет вид: + t=7, решая получившиеся иррациональное уравнение, находим значения х.

Для некоторых иррациональных уравнений целесообразно вводить две переменные.

Пусть = t, t≥0 =v, v≥0, тогда = ,

= . Составим систему: − =16х

Решая данную систему, находим значение x=0 или t=x+4.

= x+4, решая данное уравнение , находим его корни, х=3, х=-3

Видео:Алгебра 9 класс. Решение систем уравнений методом замены переменныхСкачать

Алгебра 9 класс. Решение систем уравнений методом замены переменных

По теме: методические разработки, презентации и конспекты

Мастер-класс по математике «Методика решений иррациональных уравнений и неравенств»

Содержание:1.Пояснительная записка.2. Актуальность и перспективность мастер-класса.3.Теоретическая база.4. Новизна.5. Методы работы.6. Итоги и анализ проведения мастер-класса.7. Предполагаемые р.

Решение иррациональных уравнений введение новых переменных

Материал к теме: «Решение иррациональных уравнений и неравенств».

В помощь учителю — материал к теме «Решение иррациональных уравнений и неравенств» (10 класс).

Решение иррациональных уравнений и неравенств 11 класс

Решение иррациональных уравнений и неравенств. данная работа содержит рекомендации выпускникам школ и абитуриентам технических вузов Особенностью моей работы является то, что в школьном кур.

решение иррациональных уравнений и неравенств методом замены переменной

способ решения иррациональных уравнений и неравенств методом замены переменной.

Решение иррациональных уравнений введение новых переменных

Методы решения иррациональных уравнений и неравенств

Иррациональные уравнения и неравенства часто встречаются на ЕГЭ. Разберем несколько примеров.

Решение иррациональных уравнений введение новых переменных

Открытый урок по алгебре и началам анализа в профильном 10А классе (физико-математическая группа) по теме: Решение иррациональных уравнений и неравенств.

На уроке рассматриваются сложные иррациональные уравнения и их решения.Решение неравенств рассматриваются двумя способами: методом интервалов и классическим.Урок подготовки к ЕГЭ-«С» часть.

Решение иррациональных уравнений введение новых переменных

План-конспект урока по алгебре в 10 классе на тему «Решение иррациональных уравнений и неравенств».

План-конспект урока по алгебре в 10 классе на тему «Решение иррациональных уравнений и неравенств».

💥 Видео

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Иррациональное уравнение на 2 минутыСкачать

Иррациональное уравнение на 2 минуты

Иррациональные неравенства. 11 класс.Скачать

Иррациональные неравенства. 11 класс.

Система иррациональных уравнений #1Скачать

Система иррациональных уравнений #1

Как решать иррациональные уравнения. Методы решения иррациональных уравнений. (часть 1).Скачать

Как решать иррациональные  уравнения. Методы решения иррациональных уравнений.  (часть 1).

9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Иррациональное уравнениеСкачать

Иррациональное уравнение
Поделиться или сохранить к себе: