Решение иррациональных уравнений с тремя корнями

Решение иррациональных уравнений с тремя корнями

Решить иррациональное уравнение Решение иррациональных уравнений с тремя корнями

Подобные иррациональные уравнения (см. что такое иррациональные уравнения) с тремя квадратными корнями с переменной под каждым из них можно решать методом возведения обеих частей уравнения в одну и ту же степень. Напомним, какие действия составляют указанный метод решения:

  • Во-первых, от исходного уравнения переходят к более простому уравнению. Это достигается циклическим выполнением трех следующих действий:
    • уединение радикала;
    • возведение обеих частей уравнения в степень;
    • упрощение вида уравнения.
  • Дальше решается полученное уравнение.
  • Наконец, если ранее проводилось возведение в четную степень, то выполняется проверка для отсеивания посторонних корней.

Проделаем описанные манипуляции.

В нашем примере участвуют три радикала. Избавиться от них в подобных случаях позволяет двукратное выполнение тройки действий – уединение радикала, возведение обеих частей в степень, упрощение вида уравнения.

Выполним первый проход.

Уединение радикала не требуется, так как в правой части уравнения мы уже имеем уединенный радикал.

Мы имеем дело с квадратными корнями, поэтому возведем обе части уравнения в квадрат: Решение иррациональных уравнений с тремя корнями.

Упростим вид полученного уравнения, последовательно осуществляя ряд преобразований уравнения. Формула сокращенного умножения «квадрат суммы» и определение корня позволяют нам провести несколько замен выражений тождественно равными им выражениями:
Решение иррациональных уравнений с тремя корнями

Дальше видна возможность подготовиться ко второму проходу цикла из трех действий, а именно, уединить произведение радикалов:
Решение иррациональных уравнений с тремя корнями

Очевидно, после первого прохода мы избавились от трех изначально присутствующих радикалов, но обрели произведение радикалов. Поэтому, для избавления от него выполним тройку указанных выше действий еще раз.

Вновь в уединении радикала нет надобности, так как мы прозорливо уже уединили произведение радикалов на предыдущем шаге.

Переходим к возведению обеих частей уравнения в квадрат: Решение иррациональных уравнений с тремя корнями.

И упрощаем вид полученного уравнения. Одно из свойств степеней, а именно, свойство степени произведения, позволяет заменить квадрат произведения в левой части уравнения произведением квадратов, имеем Решение иррациональных уравнений с тремя корнями. На базе определения корня и формулы «квадрат разности» переходим к следующему уравнению Решение иррациональных уравнений с тремя корнями. Дальнейшее упрощение вида уравнения не нуждается в комментариях:
Решение иррациональных уравнений с тремя корнями

Так после второго прохода цикла мы полностью освободились от радикалов и получили квадратное уравнение. Квадратные уравнения мы решать умеем, поэтому первый этап можно считать завершенным, и можно переходить ко второму этапу – к решению полученного уравнения.

Решим полученное квадратное уравнение x 2 −3·x−10=0 через дискриминант:
Решение иррациональных уравнений с тремя корнями

Остался третий этап решения по методу возведения обеих частей уравнения в одну и ту же степень – отсеивание посторонних корней. В нашем случае этот этап пропустить нельзя, так как выше мы осуществляли возведение в четную степень, причем дважды, а это могло привести к возникновению посторонних корней. Более того, при некоторых преобразованиях уравнений расширялась область допустимых значений переменной x , что также могло породить посторонние корни. Так что отсеем посторонние корни. Сделаем это через подстановку найденных корней x1=−2 и x2=5 в исходное иррациональное уравнение:
Решение иррациональных уравнений с тремя корнями

Видео:Уравнения с корнем. Иррациональные уравнения #shortsСкачать

Уравнения с корнем. Иррациональные уравнения #shorts

Иррациональные уравнения с кубическими радикалами

Разделы: Математика

Тема: «Иррациональные уравнения вида Решение иррациональных уравнений с тремя корнями , Решение иррациональных уравнений с тремя корнями

(Методическая разработка.)

Основные понятия

Иррациональными уравнениями называются уравнения, в которых переменная содержится под знаком корня (радикала) или знаком возведения в дробную степень.

Уравнение вида f(x)=g(x), где хотя бы одно из выражений f(x) или g(x) иррационально является иррациональным уравнением.

Основные свойства радикалов:

  • Все радикалы четной степени являются арифметическими, т.е. если подкоренное выражение отрицательно, то радикал не имеет смысла (не существует); если подкоренное выражение равно нулю, то радикал тоже равен нулю; если подкоренное выражение положительно, то значение радикала существует и положительно.
  • Все радикалы нечетной степени определены при любом значении подкоренного выражения. При этом радикал отрицателен, если подкоренное выражение отрицательно; равен нулю, если подкоренное выражение равно нулю; положителен, если покоренное выражение положительно.

Методы решения иррациональных уравнений

Решить иррациональное уравнение – значит найти все действительные значения переменной, при подстановке которых в исходное уравнение оно обращается в верное числовое равенство, либо доказать, что таких значений не существует. Иррациональные уравнения решаются на множестве действительных чисел R.

Областью допустимых значений уравнения состоит из тех значений переменной, при которых неотрицательны все выражения, стоящие под знаком радикалов четной степени.

Основными методами решения иррациональных уравнений являются:

а) метод возведения обеих частей уравнения в одну и ту же степень;

б) метод введения новых переменных (метод замен);

в) искусственные приемы решения иррациональных уравнений.

В данной статье остановимся на рассмотрении уравнений определённого выше вида и приведём 6 методов решения таких уравнений.

1 метод. Возведение в куб.

Этот способ требует применения формул сокращённого умножения и не содержит «подводных» камней, т.е. не приводит к появлению посторонних корней.

Пример 1. Решить уравнение Решение иррациональных уравнений с тремя корнями

Перепишем уравнение в виде Решение иррациональных уравнений с тремя корнямии возведём в куб обе его части. Получим уравнение равносильное данному уравнению Решение иррациональных уравнений с тремя корнями,

Решение иррациональных уравнений с тремя корнями,

Решение иррациональных уравнений с тремя корнями,

Решение иррациональных уравнений с тремя корнямиРешение иррациональных уравнений с тремя корнямиРешение иррациональных уравнений с тремя корнями

Пример 2. Решить уравнение Решение иррациональных уравнений с тремя корнями.

Перепишем уравнение в виде Решение иррациональных уравнений с тремя корнямии возведём в куб обе его части. Получим уравнение равносильное данному уравнению

Решение иррациональных уравнений с тремя корнями,

Решение иррациональных уравнений с тремя корнями,

Решение иррациональных уравнений с тремя корнями,

и рассмотрим полученное уравнение как квадратное относительно одного из корней

Решение иррациональных уравнений с тремя корнями,

Решение иррациональных уравнений с тремя корнями

Решение иррациональных уравнений с тремя корнями,

следовательно, дискриминант равен 0,а уравнение может иметь решение х=-2.

Проверка: Решение иррациональных уравнений с тремя корнями

Замечание: Проверка может быть опущена, в том случае, если дорешивается квадратное уравнение.

2 метод. Возведение в куб по формуле.

По-прежнему будем возводить уравнение в куб, но при этом пользоваться модифицированными формулами сокращенного умножения.

Решение иррациональных уравнений с тремя корнямиРешение иррациональных уравнений с тремя корнями,

(незначительная модификация известной формулы), тогда

Решение иррациональных уравнений с тремя корнями

Пример3. Решить уравнение Решение иррациональных уравнений с тремя корнями.

Возведём уравнение в куб с использованием формул, приведённых выше.

Решение иррациональных уравнений с тремя корнями,

Но выражение Решение иррациональных уравнений с тремя корнямидолжно быть равно правой части. Поэтому имеем:

Решение иррациональных уравнений с тремя корнями, откуда

Решение иррациональных уравнений с тремя корнями.

Теперь при возведении в куб получаем обычное квадратное уравнение:

Решение иррациональных уравнений с тремя корнями, и два его корня

Решение иррациональных уравнений с тремя корнями,Решение иррациональных уравнений с тремя корнями

Оба значения, как показывает проверка, правильные.

Но все ли преобразования здесь равносильны? Прежде чем ответить на этот вопрос, решим ещё одно уравнение.

Пример4. Решить уравнение Решение иррациональных уравнений с тремя корнями.

Возводя, как и ранее, обе части в третью степень, имеем:

Решение иррациональных уравнений с тремя корнями.

Откуда (учитывая, что выражение в скобках равно Решение иррациональных уравнений с тремя корнями), получаем:

Решение иррациональных уравнений с тремя корнями, значит

Решение иррациональных уравнений с тремя корнями. ПолучаемРешение иррациональных уравнений с тремя корнями, Решение иррациональных уравнений с тремя корнями.Сделаем проверку и убедимся х=0 –посторонний корень.

Ответ: Решение иррациональных уравнений с тремя корнями.

Ответим на вопрос: «Почему возникли посторонние корни?»

Равенство Решение иррациональных уравнений с тремя корнямивлечёт равенство Решение иррациональных уравнений с тремя корнями. Заменим с на –с, получим:

Решение иррациональных уравнений с тремя корнямии Решение иррациональных уравнений с тремя корнями.

Нетрудно проверить тождество

Решение иррациональных уравнений с тремя корнями,

Итак, если Решение иррациональных уравнений с тремя корнями, то либо Решение иррациональных уравнений с тремя корнями, либо Решение иррациональных уравнений с тремя корнями. Уравнение можно представить в виде Решение иррациональных уравнений с тремя корнями, Решение иррациональных уравнений с тремя корнями.

Заменяя с на –с, получаем: если Решение иррациональных уравнений с тремя корнями, то либо Решение иррациональных уравнений с тремя корнями, либо Решение иррациональных уравнений с тремя корнями

Поэтому при использовании этого метода решения обязательно нужно сделать проверку и убедиться что посторонних корней нет.

3 метод. Метод системы.

Пример 5. Решить уравнение Решение иррациональных уравнений с тремя корнями.

Введём замену, составим и решим систему уравнений.

Пусть Решение иррациональных уравнений с тремя корнями, Решение иррациональных уравнений с тремя корнями. Тогда:

Решение иррациональных уравнений с тремя корнямиоткуда очевидно, что Решение иррациональных уравнений с тремя корнями

Второе уравнение системы получается таким образом, чтобы линейная комбинация подкоренных выражений не зависела от исходной переменной.

Решение иррациональных уравнений с тремя корнямиЛегко убедиться , что система не имеет решения, следовательно и исходное уравнение не имеет решения.

Ответ: Корней нет.

Пример 6. Решить уравнение Решение иррациональных уравнений с тремя корнями.

Введём замену, составим и решим систему уравнений.

Пусть Решение иррациональных уравнений с тремя корнями, Решение иррациональных уравнений с тремя корнями. Тогда

Решение иррациональных уравнений с тремя корнямиРешение иррациональных уравнений с тремя корнямиРешение иррациональных уравнений с тремя корнями

Решение иррациональных уравнений с тремя корнямиили Решение иррациональных уравнений с тремя корнями

Возвращаясь к исходной переменной имеем:

Решение иррациональных уравнений с тремя корнямих=0.

4 метод. Использование монотонности функций.

Прежде чем использовать данный метод обратимся к теории.

Нам понадобятся следующие свойства:

  • Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, то функция y=f(x)+g(x) также возрастает (убывает ) на этом множестве.
  • Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, при чем обе они принимают неотрицательные значения при всех допустимых х, то функция y=f(x)g(x) возрастает (убывает) на данном множестве.
  • Если функция y=f(x) монотонная, то уравнение f(x)=a имеет не более одного решения.
  • Если функции y=f(x) и y=g(x) имеют разный характер монотонности, то уравнение f(x)=g(x) имеет не более одного решения.
  • Функция вида Решение иррациональных уравнений с тремя корнямивозрастает при к>0 и убывает при к 30.05.2009

Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

Алгебра

План урока:

Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнем

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Видео:Ещё один приём решения иррациональных уравнений с корнем третьей степениСкачать

Ещё один приём решения иррациональных уравнений с корнем третьей степени

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Видео:8 класс, 38 урок, Иррациональные уравненияСкачать

8 класс, 38 урок, Иррациональные уравнения

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Видео:Система иррациональных уравнений #3Скачать

Система иррациональных уравнений #3

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Видео:ИРРАЦИОНАЛЬНЫЕ НЕРАВЕНСТВА неравенства с корнемСкачать

ИРРАЦИОНАЛЬНЫЕ НЕРАВЕНСТВА неравенства с корнем

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Видео:Иррациональные уравнения и их системы. 11 класс.Скачать

Иррациональные уравнения и их системы. 11 класс.

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Видео:Система иррациональных уравнений #1Скачать

Система иррациональных уравнений #1

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3

🎦 Видео

Ограничения в иррациональных уравнениях #shorts #ЕГЭ #ОГЭ #математика #подготовкакегэ #егэматематикаСкачать

Ограничения в иррациональных уравнениях #shorts #ЕГЭ #ОГЭ #математика #подготовкакегэ #егэматематика

10 класс. Алгебра. Иррациональные уравнения.Скачать

10 класс. Алгебра. Иррациональные уравнения.

Как решать иррациональные уравнения. Методы решения иррациональных уравнений. (часть 1).Скачать

Как решать иррациональные  уравнения. Методы решения иррациональных уравнений.  (часть 1).

Иррациональное уравнение на 2 минутыСкачать

Иррациональное уравнение на 2 минуты

Иррациональное неравенство #8Скачать

Иррациональное неравенство #8

Решите уравнение с корнями ★ Иррациональное уравнениеСкачать

Решите уравнение с корнями ★ Иррациональное уравнение

Более сложные иррациональные уравнения. Иррациональные уравнения Часть 2 из 2Скачать

Более сложные иррациональные уравнения. Иррациональные уравнения Часть 2 из 2

Иррациональные уравнения | Математика ЕГЭ 10 класс | УмскулСкачать

Иррациональные уравнения | Математика ЕГЭ 10 класс | Умскул

Иррациональные уравнения #1Скачать

Иррациональные уравнения #1

Иррациональные уравнения / 2 часть ЕГЭ профильСкачать

Иррациональные уравнения / 2 часть ЕГЭ профиль

Иррациональные уравнения. 10 классСкачать

Иррациональные уравнения. 10 класс
Поделиться или сохранить к себе: