Решение иррациональных уравнений онлайн калькулятор

Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнем

Калькулятор онлайн.
Решение иррациональных уравнений и неравенств.

Этот математический калькулятор онлайн поможет вам решить иррациональное уравнение или неравенство. Программа для решения иррациональных уравнений и неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> sqrt(x) — квадратный корень x
x^(1/n) — корень степени n

Введите иррациональное уравнение или неравенство
Решить уравнение или неравенство

Видео:Иррациональные уравнения и их системы. 11 класс.Скачать

Иррациональные уравнения и их системы. 11 класс.

Немного теории.

Видео:Иррациональные уравнения и их системы. Практическая часть. 1ч. 11 класс.Скачать

Иррациональные уравнения и их системы. Практическая часть. 1ч. 11 класс.

Решение иррациональных уравнений и неравенств

Видео:Как решать иррациональные уравнения. Методы решения иррациональных уравнений. (часть 1).Скачать

Как решать иррациональные  уравнения. Методы решения иррациональных уравнений.  (часть 1).

1. Иррациональные уравнения

Иррациональными называют уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную степень. Для таких уравнений ищут, как правило, только действительные корни.

Основной метод решения иррациональных уравнений — метод возведения обеих частей уравнения в одну и ту же степень. При этом следует иметь в виду, что возведение обеих частей уравнения в одну и ту же нечётную степень есть равносильное преобразование уравнения, а в чётную — НЕравносильное. Значит, основные принципиальные трудности связаны с возведением обеих частей уравнения в одну и ту же чётную степень, когда из-за неравносильности преобразования могут появиться посторонние корни, а потому обязательна проверка всех найденных корней.

ПРИМЕР 1.
( sqrt[Large6normalsize] = sqrt[Large6normalsize] )

Возведя обе части уравнения в шестую степень, получим:
( x^2-5x = 2x-6 Rightarrow )
( x^2-7x +6= 0 Rightarrow )
( x_1=1, ; x_2=6 )
Проверка. «Хорошие» корни можно проверить непосредственной подстановкой в исходное уравнение. При x = 1 заданное уравнение принимает вид ( sqrt[Large6normalsize] = sqrt[Large6normalsize] ), во множестве действительных чисел такое «равенство» не имеет смысла. Значит, 1 — посторонний корень, он появился по причине расширения ОДЗ уравнения после возведения в шестую степень. При х = 6 заданное уравнение принимает вид ( sqrt[Large6normalsize] = sqrt[Large6normalsize] ) — это верное равенство.
Итак, уравнение имеет единственный корень: х = 6.
Ответ: х = 6

Введя новую переменную ( u=x^2-x), получим существенно более простое иррациональное уравнение:
( sqrt+sqrt = sqrt ).
Возведём обе части уравнения в квадрат:
( (sqrt+sqrt)^2 = (sqrt)^2 Rightarrow )
( u+2 +2sqrtsqrt +u+7 = 2u+21 Rightarrow )
( sqrt = 6 Rightarrow )
( u^2+9u+14=36 Rightarrow )
( u^2+9u-22=0 Rightarrow )
( u_1=2, ; u_2=-11 )
Проверка найденных значений их подстановкой в уравнение ( sqrt+sqrt = sqrt ) показывает, что ( u_1=2 ) — корень уравнения, а ( u_2=-11 ) — посторонний корень.
Возвращаясь к исходной переменной x, получаем уравнение ( x^2-x=2 Rightarrow x^2-x-2=0 ), решив которое находим два корня: ( x_1=2, ; x_2=-1 )
Ответ: 2; -1.

Уединение корня и возведение обеих частей уравнения в квадрат привело бы к громоздкому уравнению. В то же время, если проявить некоторую наблюдательность, можно заметить, что уравнение легко сводится к квадратному. Действительно, умножим обе его части на 2:
( 2x^2 +6 -2sqrt = 3x+12 Rightarrow )
( 2x^2 -3x +2 -2sqrt -8 = 0 Rightarrow )

Введя новую переменную ( y=sqrt ), получим: ( y^2-2y-8=0 ), откуда ( y_1=4, ; y_2=-2 ). Значит, исходное уравнение равносильно следующей совокупности уравнений:
( left[begin sqrt =4 \ sqrt = -2 endright. )

Из первого уравнения этой совокупности находим: ( x_1=35; ; x_2=-2 ). Второе уравнение корней не имеет.

Проверка. Так как совокупность уравнений равносильна исходному уравнению, причём второе уравнение этой совокупности корней не имеет, то найденные корни можно проверить подстановкой в уравнение ( sqrt =4). Эта подстановка показывает, что оба найденных значения x являются корнями этого уравнения, а значит, и исходного уравнения.
Ответ: 3,5; -2.

Областью определения уравнения является луч ( [5; ; +infty) ). В этой области выражение ( sqrt ) можно представить следующим образом: ( sqrt = sqrtsqrt ). Теперь уравнение можно переписать так:
( x+x -5 +2sqrtsqrt +2sqrt +2sqrt -48 = 0 Rightarrow ) ( (sqrt)^2 +2sqrtsqrt +(sqrt)^2 +2(sqrt+sqrt) -48 = 0 Rightarrow ) ( (sqrt +sqrt)^2 +2(sqrt+sqrt) -48 = 0 )

Введя новую переменную ( y= sqrt +sqrt ), получим квадратное уравнение ( y^2+2y-48=0 ), из которого находим: ( y_1=6, ; y_2=-8 ). Таким образом, задача свелась к решению совокупности уравнений:
( left[begin sqrt +sqrt =6 \ sqrt +sqrt = -8 endright. )
Из первого уравнения совокупности находим ( x= left( frac right)^2 ), второе уравнение совокупности решений явно не имеет.

Проверка. Нетрудно проверить (подстановкой), что ( x= left( frac right)^2 ) — является корнем уравнения ( sqrt +sqrt =6 ). Но это уравнение равносильно исходному уравнению, значит, ( x= left( frac right)^2 ) — является корнем и исходного уравнения.
Ответ: ( x= left( frac right)^2 )

Иногда при решении иррациональных уравнений оказывается удобным ввести две новые переменные.

ПРИМЕР 5.
( sqrt[Large4normalsize] + sqrt[Large4normalsize] =2 )

Введём новые переменные: ( left<begin u=sqrt[Large4normalsize] \ v=sqrt[Large4normalsize] endright. )

Тогда уравнение примет вид (u+v=2). Но для нахождения значений двух новых переменных одного уравнения недостаточно. Возведя в четвёртую степень обе части каждого из уравнений системы, получим:
( left<begin u^4=1-x \ v^4= 15+x endright. )

Сложим уравнения последней системы: (u^4 +v^4 =16). Таким образом, для нахождения u, v мы имеем следующую симметрическую систему уравнений:
( left<begin u+v=2 \ u^4 +v^4 =16 endright. )
Решив её, находим: ( left<begin u_1=0 \ v_1 =2; endright. ) ( left<begin u_2=2 \ v_2 =0 endright. )

Таким образом, исходное уравнение свелось к следующей совокупности систем уравнений: ( left<begin sqrt[Large4normalsize] =0 \ sqrt[Large4normalsize] =2; endright. ) ( left<begin sqrt[Large4normalsize] =2 \ sqrt[Large4normalsize] =0 endright. )

Решив эту совокупность, находим: (x_1=1, ; x_2=-15 )

Проверка. Проще всего проверить найденные корни непосредственной подстановкой в заданное уравнение. Проделав это, убеждаемся, что оба значения являются корнями исходного уравнения.
Ответ: 1; -15.

ПРИМЕР 6.
( sqrt[Large3normalsize] + sqrt[Large3normalsize] = sqrt[Large3normalsize] )

Возведём обе части уравнения в куб:
( 2x+1 + 3sqrt[Large3normalsize] cdot sqrt[Large3normalsize] + 3sqrt[Large3normalsize] cdot sqrt[Large3normalsize] +6x+1 = 2x-1 Rightarrow ) ( 3sqrt[Large3normalsize] cdot sqrt[Large3normalsize] cdot (3sqrt[Large3normalsize] + sqrt[Large3normalsize] ) = -6x-3 )

Воспользовавшись исходным уравнением, заменим сумму ( sqrt[Large3normalsize] + sqrt[Large3normalsize] ) на выражение ( sqrt[Large3normalsize] ):
( 3sqrt[Large3normalsize] cdot sqrt[Large3normalsize] cdot sqrt[Large3normalsize] = -6x-3 Rightarrow )
( 3sqrt[Large3normalsize] = -2x-1 )
Возведём обе части в куб:
( (2x+1)(6x+1)(2x-1) = -(2x+1)^3 Rightarrow )
( (2x+1)((6x+1)(2x-1) + (2x+1)^2) =0 Rightarrow )
( 16x^2(2x+1) =0 Rightarrow )
( x_1= -05; ; x_2=0 )

Проверка. Подстановкой найденных значений x в исходное уравнение убеждаемся, что его корнем является только x = -0,5.
Ответ: -0,5.

Видео:Иррациональные уравнения #1Скачать

Иррациональные уравнения #1

2. Иррациональные неравенства

Рассмотрим иррациональное неравенство вида ( sqrt 0 ). Осталось лишь заметить, что при одновременном выполнении указанных выше условий обе части заданного иррационального неравенства неотрицательны, а потому их возведение в квадрат представляет собой равносильное преобразование неравенства.

Таким образом, иррациональное неравенство ( sqrt 0 \ f(x) 0 \ x^2-x-12 0 \ x > -12 endright. )

Получаем: ( x geqslant 4)

Решение иррациональных уравнений онлайн калькулятор
Ответ: ( x geqslant 4)

Рассмотрим теперь неравенство вида ( sqrt > g(x) ).

Ясно, во-первых, что его решения должны удовлетворять условию ( f(x) geqslant 0 ).
Во-вторых, замечаем, что при ( g(x) g(x) ) не вызывает сомнений.
В-третьих, замечаем, что если ( g(x) geqslant 0 ), то можно возвести в квадрат обе части заданного иррационального неравенства.

Таким образом, иррациональное неравенство ( sqrt > g(x) ) равносильно совокупности систем неравенств:
( left<begin f(x) geqslant 0 \ g(x) (g(x))^2 endright. )

Во второй системе первое неравенство является следствием третьего, его можно не писать.

Данное неравенство равносильно совокупности систем неравенств:
( left<begin x^2-x-12 geqslant 0 \ x 0 )

Преобразуем неравенство к виду ( x^2+3x-10 +3sqrt >0 ) и введём новую переменную ( y= sqrt ). Тогда последнее неравенство примет вид ( y^2+3y-10 >0 ), откуда находим, что либо (y 2).

Таким образом, задача сводится к решению совокупности двух неравенств:
( left[begin sqrt 2 endright. )

Первое неравенство не имеет решений, а из второго находим:
( x^2+3x >4 Rightarrow )
( (x+4)(x-1) >0 Rightarrow )
( x 1 )
Ответ: ( x 1 ).

Видео:Уравнения с корнем. Иррациональные уравнения #shortsСкачать

Уравнения с корнем. Иррациональные уравнения #shorts

Решение иррациональных уравнений

Данный онлайн калькулятор находит решения иррациональных уравнений.
Уравнения, в которых под знаком корня содержится переменная, называют иррациональными. При решении иррациональных уравнений полученные решения требуют проверки, потому, например, что неверное равенство при возведении в квадрат может дать верное равенство.
Основной метод решения иррациональных уравнений состоит в том, что необходимо свести его к такому рациональному уравнению, которое равносильно исходному иррациональному уравнению или является его следствием. При решении иррациональных уравнений речь всегда идет об отыскании действительных корней. Область допустимых значений иррационального уравнения состоит из трех значений неизвестных, при которых неотрицательными являются все выражения, стоящие под знаком радикала четной степени.

Калькулятор в ответе выводит решение иррационального уравнения и график в координатной плоскости.

Калькулятор поможет решить иррациональные уравнения онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.

Основные функции

Решение иррациональных уравнений онлайн калькулятор

  • Решение иррациональных уравнений онлайн калькулятор: x^a

Видео:8 класс, 38 урок, Иррациональные уравненияСкачать

8 класс, 38 урок, Иррациональные уравнения

Универсальный математический калькулятор

Онлайн-калькулятор позволяет решать математические выражения любой сложности с выводом подробного результата решения по шагам. Решение иррациональных уравнений онлайн калькулятор

Также универсальный калькулятор умеет производить действия со скобками, дробями, тригонометрическими функциями, возведение в любую степень и многое другое (смотрите примеры ниже).

Видео:Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)Скачать

Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)

Онлайн калькулятор уравнений, интегралов, производных, пределов, дробей и пр.

Разделитель системы уравнений

Натуральный логарифм и предел:

Видео:Иррациональные уравнения / 2 часть ЕГЭ профильСкачать

Иррациональные уравнения / 2 часть ЕГЭ профиль

Пояснения к калькулятору

  1. Для решения математического выражения необходимо набрать его в поле ввода с помощью предложенной виртуальной клавиатуры и нажать кнопку ↵ .
  2. Управлять курсором можно кликами в нужное местоположение в поле ввода или с помощью клавиш со стрелками ← и → .
  3. ⌫ — удалить в поле ввода символ слева от курсора.
  4. C — очистить поле ввода.
  5. При использовании скобок ( ) в выражении в целях упрощения может производится автоматическое закрытие, ранее открытых скобок.
  6. Для того чтобы ввести смешанное число или дробь необходимо нажать кнопку ½ , ввести сначала значение числителя, затем нажать кнопку со стрелкой вправо → и внести значение знаменателя дроби. Для ввода целой части смешанного числа необходимо установить курсор перед дробью с помощью клавиши ← и ввести число.
  7. Ввод числа в n-ой степени и квадратного корня прозводится кнопками a b и √ соответственно. Завершить ввод значения в степени или в корне можно клавишей → .

Видео:Иррациональные уравнения. Видеоурок 8. Алгебра 10 классСкачать

Иррациональные уравнения. Видеоурок 8. Алгебра 10 класс

Упрощение выражений, раскрытие скобок, разложение многочленов на множители

Калькулятор позволяет произвести некоторые алгебраические преобразования с выражениями. Результат выводится в нескольких вариантах упрощения/разложения/раскрытия скобок и пр.

Видео:Решение иррациональных уравнений: метод заменыСкачать

Решение иррациональных уравнений: метод замены

Решение уравнений и неравенств

Математический калькулятор может решать уравнения и неравентства относительно переменной «x». Если есть необходимость найти другую переменную, например «y», то следует просто поменять их местами в выражении. Ввод переменных «x»,»y»,»z» производится в группе xyz нажатием соответствующих кнопок x , y , z .

Примеры решений уравнений и неравенств:

Видео:Иррациональное уравнение на 2 минутыСкачать

Иррациональное уравнение на 2 минуты

Решение систем уравнений и неравенств

Системы уравнений и неравенств также решаются с помощью онлайн калькулятора. Чтобы задать систему необходимо ввести уравнения/неравенства, разделяя их точкой с запятой с помощью кнопки ; .

Примеры вычислений систем уравнений и неравенств:

Видео:Система иррациональных уравнений #1Скачать

Система иррациональных уравнений #1

Вычисление выражений с логарифмами

В калькуляторе кнопкой loge(x) возможно задать натуральный логарифм, т.е логарифм с основанием «e»: loge(x) — это ln(x). Для того чтобы ввести логарифм с другим основанием нужно преобразовать логарифм по следующей формуле: $$log_a left(bright) = frac$$ Например, $$log_ left(5x-1right) = frac$$

Примеры решений выражений с логарифмами:

Видео:Иррациональные неравенства | Математика ЕГЭ | УмскулСкачать

Иррациональные неравенства | Математика ЕГЭ | Умскул

Вычисление пределов функций

Предел функции задается последовательным нажатием групповой кнопки f(x) и функциональной кнопки lim .

Примеры решений пределов:

Видео:Решение иррациональных уравнений.Скачать

Решение иррациональных уравнений.

Решение интегралов

Онлайн калькулятор предоставляет инструменты для интегрирования функций. Вычисления производятся как с неопределенными, так и с определенными интегралами. Ввод интегралов в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:
∫ f(x) — для неопределенного интеграла;
b a∫ f(x) — для определенного интеграла.

В определенном интеграле кроме самой функции необходимо задать нижний и верхний пределы.

Примеры вычислений интегралов:

Видео:Иррациональные уравнения | Математика ЕГЭ 10 класс | УмскулСкачать

Иррациональные уравнения | Математика ЕГЭ 10 класс | Умскул

Вычисление производных

Математический калькулятор может дифференцировать функции (нахождение производной) произвольного порядка в точке «x». Ввод производной в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:
f'(x) — производная первого порядка;
f»(x) — производная второго порядка;
f»'(x) — производная третьего порядка.
f n (x) — производная любого n-о порядка.

Видео:Иррациональные неравенства. 11 класс.Скачать

Иррациональные неравенства. 11 класс.

Действия над комплексными числами

Онлайн калькулятор имеет функционал для работы с комплексными числами (операции сложения, вычитания, умножения, деления, возведения в степень и пр.). Комплексное число обзначается символом «i» и вводится с помощью групповой кнопки xyz и кнопки i

💡 Видео

ИРРАЦИОНАЛЬНЫЕ НЕРАВЕНСТВА неравенства с корнемСкачать

ИРРАЦИОНАЛЬНЫЕ НЕРАВЕНСТВА неравенства с корнем

✓ Иррациональное уравнение | ЕГЭ-2018. Задание 12. Математика. Профильный уровень | Борис ТрушинСкачать

✓ Иррациональное уравнение | ЕГЭ-2018. Задание 12. Математика. Профильный уровень | Борис Трушин
Поделиться или сохранить к себе: