Решение дробно рациональных уравнений оформление

Дробно-рациональные уравнения. Алгоритм решения
Содержание
  1. Дробно-рациональные уравнения – уравнения, которые можно свести к виду (frac ) (=0), где (P(x)) и (Q(x)) — выражения с иксом (или другой переменной). Проще говоря, это уравнения, в которых есть хотя бы одна дробь с переменной в знаменателе. Пример не дробно-рациональных уравнений: Как решаются дробно-рациональные уравнения? Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать ОДЗ . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным. Алгоритм решения дробно-рационального уравнения: Выпишите и «решите» ОДЗ. Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут. Запишите уравнение, не раскрывая скобок. Решите полученное уравнение. Проверьте найденные корни с ОДЗ. Запишите в ответ корни, которые прошли проверку в п.7. Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам. Пример. Решите дробно-рациональное уравнение (frac — frac=frac) Сначала записываем и «решаем» ОДЗ. По формуле сокращенного умножения : (x^2-4=(x-2)(x+2)). Значит, общий знаменатель дробей будет ((x-2)(x+2)). Умножаем каждый член уравнения на ((x-2)(x+2)). Сокращаем то, что можно и записываем получившееся уравнение. Приводим подобные слагаемые Согласуем корни с ОДЗ. Замечаем, что по ОДЗ (x≠2). Значит первый корень — посторонний. В ответ записываем только второй. Пример. Найдите корни дробно-рационального уравнения (frac + frac-frac) (=0) Записываем и «решаем» ОДЗ. Раскладываем квадратный трехчлен (x^2+7x+10) на множители по формуле: (ax^2+bx+c=a(x-x_1)(x-x_2)). Благо (x_1) и (x_2) мы уже нашли. Очевидно, общий знаменатель дробей: ((x+2)(x+5)). Умножаем на него всё уравнение. Приводим подобные слагаемые Находим корни уравнения Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень. Дробно-рациональные уравнения Что такое дробно-рациональные уравнения Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как: при P ( x ) и Q ( x ) в виде выражений, содержащих переменную. Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем. 9 x 2 — 1 3 x = 0 1 2 x + x x + 1 = 1 2 6 x + 1 = x 2 — 5 x x + 1 Уравнения, которые не являются дробно-рациональными: Как решаются дробно-рациональные уравнения В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения. Алгоритм действий при стандартном способе решения: Выписать и определить ОДЗ. Найти общий знаменатель для дробей. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели. Записать уравнение со скобками. Раскрыть скобки для приведения подобных слагаемых. Найти корни полученного уравнения. Выполним проверку корней в соответствии с ОДЗ. Записать ответ. Пример 1 Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить: x x — 2 — 7 x + 2 = 8 x 2 — 4 Начать следует с области допустимых значений: x 2 — 4 ≠ 0 ⇔ x ≠ ± 2 Воспользуемся правилом сокращенного умножения: x 2 — 4 = ( x — 2 ) ( x + 2 ) В результате общим знаменателем дробей является: Выполним умножение каждого из членов выражения на общий знаменатель: x x — 2 — 7 x + 2 = 8 x 2 — 4 x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 ) После сокращения избавимся от скобок и приведем подобные слагаемые: x ( x + 2 ) — 7 ( x — 2 ) = 8 x 2 + 2 x — 7 x + 14 = 8 Осталось решить квадратное уравнение: Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать: Примеры задач с ответами для 9 класса Требуется решить дробно-рациональное уравнение: x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0 x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0 Определим область допустимых значений: О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2 x 2 + 7 x + 10 ≠ 0 D = 49 — 4 · 10 = 9 x 1 ≠ — 7 + 3 2 = — 2 x 2 ≠ — 7 — 3 2 = — 5 Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой: a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 ) x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0 Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение: x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0 Сократим дроби, избавимся от скобок, приведем подобные слагаемые: x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 — — ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0 x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0 x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0 2 x 2 + 9 x — 5 = 0 Потребуется решить квадратное уравнение: 2 x 2 + 9 x — 5 = 0 Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень. Дано дробно-рациональное уравнение, корни которого требуется найти: 4 x — 2 — 3 x + 4 = 1 В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю: 4 ( x + 4 ) x — 2 — 3 ( x — 2 ) x + 4 — 1 ( x — 2 ) ( x + 4 ) = 0 4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0 4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0 x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0 Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему: — x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0 Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ: ( x — 2 ) ( x + 4 ) ≠ 0 Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль: — x 2 — x + 30 = 0 _ _ _ · ( — 1 ) Получилось квадратное уравнение, которое можно решить: Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения. Нужно решить дробно-рациональное уравнение: x + 2 x 2 — 2 x — x x — 2 = 3 x На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю: x + 2 1 x ( x — 2 ) — x x x — 2 — 3 ( x — 2 ) x = 0 x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0 x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0 — x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0 Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений. — x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 ) Корни квадратного уравнения: x 1 = — 4 ; x 2 = 2 Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень. Найти корни уравнения: x 2 — x — 6 x — 3 = x + 2 Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю: x 2 — x — 6 1 x — 3 — x ( x — 3 ) — 2 ( x — 3 ) = 0 x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0 x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0 0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0 Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений: Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ. Ответ: х — любое число, за исключением 3. Требуется вычислить корни дробно-рационального уравнения: 5 x — 2 — 3 x + 2 = 20 x 2 — 4 На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю: 5 ( x + 2 ) x — 2 — 3 ( x — 2 ) x + 2 — 20 1 ( x — 2 ) ( x + 2 ) = 0 5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0 5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0 2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0 ( x — 2 ) ( x + 2 ) ≠ 0 Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение. Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни. Ответ: корни отсутствуют Нужно найти корни уравнения: x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) Начнем с определения ОДЗ: — 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0 При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим: x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 ) ( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 ) ( x — 3 ) x + x = x + 5 Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме: x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0 Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета: x 1 · x 2 = — 10 x 1 + x 2 = 3 В этом случае подходящими являются числа: -2 и 5. Второе значение не соответствует области допустимых значений. Решение целых и дробно рациональных уравнений Давайте познакомимся с рациональными и дробными рациональными уравнениями, дадим их определение, приведем примеры, а также разберем наиболее распространенные типы задач. Рациональное уравнение: определение и примеры Знакомство с рациональными выражениями начинается в 8 классе школы. В это время на уроках алгебры учащиеся все чаще начинают встречать задания с уравнениями, которые содержат рациональные выражения в своих записях. Давайте освежим в памяти, что это такое. Рациональное уравнение – это такое уравнение, в обеих частях которого содержатся рациональные выражения. В различных пособиях можно встретить еще одну формулировку. Рациональное уравнение – это такое уравнение, запись левой части которого содержит рациональное выражение, а правая – нуль. Определения, которые мы привели для рациональных уравнений, являются равнозначными, так как говорят об одно и том же. Подтверждает правильность наших слов тот факт, что для любых рациональных выражений P и Q уравнения P = Q и P − Q = 0 будут равносильными выражениями. А теперь обратимся к примерам. x = 1 , 2 · x − 12 · x 2 · y · z 3 = 0 , x x 2 + 3 · x — 1 = 2 + 2 7 · x — a · ( x + 2 ) , 1 2 + 3 4 — 12 x — 1 = 3 . Рациональные уравнения точно также, как и уравнения других видов, могут содержать любое количество переменных от 1 до нескольких. Для начала мы рассмотрим простые примеры, в которых уравнения будут содержать только одну переменную. А затем начнем постепенно усложнять задачу. Рациональные уравнения делятся на две большие группы: целые и дробные. Посмотрим, какие уравнения будут относиться к каждой из групп. Рациональное уравнение будет являться целым в том случае, если в записи левой и правой его частей содержатся целые рациональные выражения. Рациональное уравнение будет являться дробным в том случае, если одна или обе его части содержат дробь. Дробно рациональные уравнения в обязательном порядке содержат деление на переменную или же переменная имеется в знаменателе. В записи целых уравнений такого деления нет. 3 · x + 2 = 0 и ( x + y ) · ( 3 · x 2 − 1 ) + x = − y + 0 , 5 – целые рациональные уравнения. Здесь обе части уравнения представлены целыми выражениями. 1 x — 1 = x 3 и x : ( 5 · x 3 + y 2 ) = 3 : ( x − 1 ) : 5 – это дробно рациональные уравнения. К числу целых рациональных уравнений можно отнести линейные и квадратные уравнения. Решение целых уравнений Решение таких уравнений обычно сводится к преобразованию их в равносильные алгебраические уравнения. Достичь этого можно путем проведения равносильных преобразований уравнений в соответствии со следующим алгоритмом: сначала получим ноль в правой части уравнения, для этого на необходимо перенести выражение, которое находится в правой части уравнения, в его левую часть и поменять знак; затем преобразуем выражение в левой части уравнения в многочлен стандартного вида. Мы должны получить алгебраическое уравнение. Это уравнение будет равносильным по отношению к исходному уравнению. Легкие случаи позволяют нам для решения задачи свести целое уравнение с линейному или квадратному. В общем случае мы решаем алгебраическое уравнение степени n . Необходимо найти корни целого уравнения 3 · ( x + 1 ) · ( x − 3 ) = x · ( 2 · x − 1 ) − 3 . Решение Проведем преобразование исходного выражения с целью получить равносильное ему алгебраическое уравнение. Для этого произведем перенос выражения, содержащегося в правой части уравнения, в левую часть и заменим знак на противоположный. В итоге получим: 3 · ( x + 1 ) · ( x − 3 ) − x · ( 2 · x − 1 ) + 3 = 0 . Теперь проведем преобразование выражения, которое находится в левой части в многочлен стандартного вида и произведем необходимые действия с этим многочленом: 3 · ( x + 1 ) · ( x − 3 ) − x · ( 2 · x − 1 ) + 3 = ( 3 · x + 3 ) · ( x − 3 ) − 2 · x 2 + x + 3 = = 3 · x 2 − 9 · x + 3 · x − 9 − 2 · x 2 + x + 3 = x 2 − 5 · x − 6 У нас получилось свести решение исходного уравнения к решению квадратного уравнения вида x 2 − 5 · x − 6 = 0 . Дискриминант этого уравнения положительный: D = ( − 5 ) 2 − 4 · 1 · ( − 6 ) = 25 + 24 = 49 . Это значит, действительных корней будет два. Найдем их, воспользовавшись формулой корней квадратного уравнения: x = — — 5 ± 49 2 · 1 , x 1 = 5 + 7 2 или x 2 = 5 — 7 2 , x 1 = 6 или x 2 = — 1 Проверим верность корней уравнения, которые мы нашли в ходе решения. Для этого числа, которые мы получили, подставим в исходное уравнение: 3 · ( 6 + 1 ) · ( 6 − 3 ) = 6 · ( 2 · 6 − 1 ) − 3 и 3 · ( − 1 + 1 ) · ( − 1 − 3 ) = ( − 1 ) · ( 2 · ( − 1 ) − 1 ) − 3 . В первом случае 63 = 63 , во втором 0 = 0 . Корни x = 6 и x = − 1 действительно являются корнями уравнения, данного в условии примера. Ответ: 6 , − 1 . Давайте разберем, что значит «степень целого уравнения». С этим термином мы будем часто встречаться в тех случаях, когда нам надо будет представить целое уравнение в виде алгебраического. Дадим определение понятию. Степень целого уравнения – это степень алгебраического уравнения, равносильного исходному целому уравнению. Если посмотреть на уравнения из примера, приведенного выше, можно установить: степень данного целого уравнения вторая. Если бы наш курс ограничивался решением уравнений второй степени, то рассмотрение темы на этом можно было бы закончить. Но все не так просто. Решение уравнений третьей степени сопряжено с трудностями. А для уравнений выше четвертой степени и вовсе не существует общих формул корней. В связи с этим решение целых уравнений третьей, четвертой и других степеней требует от нас применения целого ряда других приемов и методов. Чаще прочих используется подход к решению целых рациональных уравнений, который основан на методе разложения на множители. Алгоритм действий в этом случае следующий: переносим выражение из правой части в левую с тем, чтобы в правой части записи остался нуль; представляем выражение в левой части как произведение множителей, а затем переходим к совокупности нескольких более простых уравнений. Пример 4 Найдите решение уравнения ( x 2 − 1 ) · ( x 2 − 10 · x + 13 ) = 2 · x · ( x 2 − 10 · x + 13 ) . Решение Переносим выражение из правой части записи в левую с противоположным знаком: ( x 2 − 1 ) · ( x 2 − 10 · x + 13 ) − 2 · x · ( x 2 − 10 · x + 13 ) = 0 . Преобразование левой части в многочлен стандартного вида нецелесообразно в связи с тем, что это даст нам алгебраическое уравнение четвертой степени: x 4 − 12 · x 3 + 32 · x 2 − 16 · x − 13 = 0 . Легкость преобразования не оправдывает всех сложностей с решением такого уравнения. Намного проще пойти другим путем: вынесем за скобки общий множитель x 2 − 10 · x + 13 . Так мы придем к уравнению вида ( x 2 − 10 · x + 13 ) · ( x 2 − 2 · x − 1 ) = 0 . Теперь заменим полученное уравнение совокупностью двух квадратных уравнений x 2 − 10 · x + 13 = 0 и x 2 − 2 · x − 1 = 0 и найдем их корни через дискриминант: 5 + 2 · 3 , 5 — 2 · 3 , 1 + 2 , 1 — 2 . Ответ: 5 + 2 · 3 , 5 — 2 · 3 , 1 + 2 , 1 — 2 . Точно также мы можем использовать метод введения новой переменной. Этот метод позволяет нам переходить к равносильным уравнениям со степенями ниже, чем были степени в исходном целом уравнении. Есть ли корни у уравнения ( x 2 + 3 · x + 1 ) 2 + 10 = − 2 · ( x 2 + 3 · x − 4 ) ? Решение Если мы сейчас попробуем свести целое рациональное уравнение к алгебраическому, то получим уравнение 4 степени, которое не имеет рациональных корней. Потому нам будет проще пойти другим путем: ввести новую переменную у, которая заменит в уравнении выражение x 2 + 3 · x . Теперь мы будем работать с целым уравнением ( y + 1 ) 2 + 10 = − 2 · ( y − 4 ) . Перенесем правую часть уравнения в левую с противоположным знаком и проведем необходимые преобразования. Получим: y 2 + 4 · y + 3 = 0 . Найдем корни квадратного уравнения: y = − 1 и y = − 3 . Теперь проведем обратную замену. Получим два уравнения x 2 + 3 · x = − 1 и x 2 + 3 · x = − 3 . Перепишем их как x 2 + 3 · x + 1 = 0 и x 2 + 3 · x + 3 = 0 . Используем формулу корней квадратного уравнения для того, чтобы найти корни первого уравнения из полученных: — 3 ± 5 2 . Дискриминант второго уравнения отрицательный. Это значит, что действительных корней у второго уравнения нет. Ответ: — 3 ± 5 2 Целые уравнения высоких степеней попадаются в задачах достаточно часто. Пугаться их не нужно. Нужно быть готовым применить нестандартный метод их решения, в том числе и ряд искусственных преобразований. Решение дробно рациональных уравнений Начнем рассмотрение этой подтемы мы с алгоритма решения дробно рациональных уравнений вида p ( x ) q ( x ) = 0 , где p ( x ) и q ( x ) – целые рациональные выражения. Решение остальных дробно рациональных уравнений всегда можно свести к решению уравнений указанного вида. В основу наиболее употребимого метода решения уравнений p ( x ) q ( x ) = 0 положено следующее утверждение: числовая дробь u v , где v – это число, которое отлично от нуля, равна нулю только в тех случаях, когда числитель дроби равен нулю. Следуя логике приведенного утверждения мы можем утверждать, что решение уравнения p ( x ) q ( x ) = 0 может быть сведено в выполнению двух условий: p ( x ) = 0 и q ( x ) ≠ 0 . На этом построен алгоритм решения дробных рациональных уравнений вида p ( x ) q ( x ) = 0 : находим решение целого рационального уравнения p ( x ) = 0 ; проверяем, выполняется ли для корней, найденных в ходе решения, условие q ( x ) ≠ 0 . Если это условие выполняется, то найденный корень является корнем исходного уравнения. Если нет, то корень не является решением задачи. Найдем корни уравнения 3 · x — 2 5 · x 2 — 2 = 0 . Решение Мы имеем дело с дробным рациональным уравнением вида p ( x ) q ( x ) = 0 , в котором p ( x ) = 3 · x − 2 , q ( x ) = 5 · x 2 − 2 = 0 . Приступим к решению линейного уравнения 3 · x − 2 = 0 . Корнем этого уравнения будет x = 2 3 . Проведем проверку найденного корня, удовлетворяет ли он условию 5 · x 2 − 2 ≠ 0 . Для этого подставим числовое значение в выражение. Получим: 5 · 2 3 2 — 2 = 5 · 4 9 — 2 = 20 9 — 2 = 2 9 ≠ 0 . Условие выполняется. Это значит, что x = 2 3 является корнем исходного уравнения. Ответ: 2 3 . Есть еще один вариант решения дробных рациональных уравнений p ( x ) q ( x ) = 0 . Вспомним, что это уравнение равносильно целому уравнению p ( x ) = 0 на области допустимых значений переменной x исходного уравнения. Это позволяет нам использовать следующий алгоритм в решении уравнений p ( x ) q ( x ) = 0 : решаем уравнение p ( x ) = 0 ; находим область допустимых значений переменной x ; берем корни, которые лежат в области допустимых значений переменной x , в качестве искомых корней исходного дробного рационального уравнения. Пример 7 Решите уравнение x 2 — 2 · x — 11 x 2 + 3 · x = 0 . Решение Для начала решим квадратное уравнение x 2 − 2 · x − 11 = 0 . Для вычисления его корней мы используем формулу корней для четного второго коэффициента. Получаем D 1 = ( − 1 ) 2 − 1 · ( − 11 ) = 12 , и x = 1 ± 2 3 . Теперь мы можем найти ОДЗ переменной x для исходного уравнения. Это все числа, для которых x 2 + 3 · x ≠ 0 . Это то же самое, что x · ( x + 3 ) ≠ 0 , откуда x ≠ 0 , x ≠ − 3 . Теперь проверим, входят ли полученные на первом этапе решения корни x = 1 ± 2 3 в область допустимых значений переменной x . Мы видим, что входят. Это значит, что исходное дробное рациональное уравнение имеет два корня x = 1 ± 2 3 . Ответ​​: x = 1 ± 2 3 Второй описанный метод решения проще первого в случаях, когда легко находится область допустимых значений переменной x , а корни уравнения p ( x ) = 0 иррациональные. Например, 7 ± 4 · 26 9 . Корни могут быть и рациональными, но с большим числителем или знаменателем. Например, 127 1101 и − 31 59 . Это позволяет сэкономить время на проведении проверки условия q ( x ) ≠ 0 : намного проще исключить корни, которые не подходят, по ОДЗ. В тех случаях, когда корни уравнения p ( x ) = 0 целые, целесообразнее использовать первый из описанных алгоритмов решения уравнений вида p ( x ) q ( x ) = 0 . Быстрее сразу находить корни целого уравнения p ( x ) = 0 , после чего проверять, выполняется ли для них условие q ( x ) ≠ 0 , а не находить ОДЗ, после чего решать уравнение p ( x ) = 0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ. Найдите корни уравнения ( 2 · x — 1 ) · ( x — 6 ) · ( x 2 — 5 · x + 14 ) · ( x + 1 ) x 5 — 15 · x 4 + 57 · x 3 — 13 · x 2 + 26 · x + 112 = 0 . Решение Начнем с рассмотрения целого уравнения ( 2 · x − 1 ) · ( x − 6 ) · ( x 2 − 5 · x + 14 ) · ( x + 1 ) = 0 и нахождения его корней. Для этого применим метод решения уравнений через разложение на множители. Получается, что исходное уравнение равносильно совокупности четырех уравнений 2 · x − 1 = 0 , x − 6 = 0 , x 2 − 5 · x + 14 = 0 , x + 1 = 0 , из которых три линейных и одно квадратное. Находим корни: из первого уравнения x = 1 2 , из второго – x = 6 , из третьего – x = 7 , x = − 2 , из четвертого – x = − 1 . Проведем проверку полученных корней. Определить ОДЗ в данном случае нам сложно, так как для этого придется провести решение алгебраического уравнения пятой степени. Проще будет проверить условие, по которому знаменатель дроби, которая находится в левой части уравнения, не должен обращаться в нуль. По очереди подставим корни на место переменной х в выражение x 5 − 15 · x 4 + 57 · x 3 − 13 · x 2 + 26 · x + 112 и вычислим его значение: 1 2 5 − 15 · 1 2 4 + 57 · 1 2 3 − 13 · 1 2 2 + 26 · 1 2 + 112 = = 1 32 − 15 16 + 57 8 − 13 4 + 13 + 112 = 122 + 1 32 ≠ 0 ; 6 5 − 15 · 6 4 + 57 · 6 3 − 13 · 6 2 + 26 · 6 + 112 = 448 ≠ 0 ; 7 5 − 15 · 7 4 + 57 · 7 3 − 13 · 7 2 + 26 · 7 + 112 = 0 ; ( − 2 ) 5 − 15 · ( − 2 ) 4 + 57 · ( − 2 ) 3 − 13 · ( − 2 ) 2 + 26 · ( − 2 ) + 112 = − 720 ≠ 0 ; ( − 1 ) 5 − 15 · ( − 1 ) 4 + 57 · ( − 1 ) 3 − 13 · ( − 1 ) 2 + 26 · ( − 1 ) + 112 = 0 . Проведенная проверка позволяет нам установить, что корнями исходного дробного рацинального уравнения являются 1 2 , 6 и − 2 . Ответ: 1 2 , 6 , — 2 Найдите корни дробного рационального уравнения 5 · x 2 — 7 · x — 1 · x — 2 x 2 + 5 · x — 14 = 0 . Решение Начнем работу с уравнением ( 5 · x 2 − 7 · x − 1 ) · ( x − 2 ) = 0 . Найдем его корни. Нам проще представить это уравнение как совокупность квадратного и линейного уравнений 5 · x 2 − 7 · x − 1 = 0 и x − 2 = 0 . Используем формулу корней квадратного уравнения для поиска корней. Получаем из первого уравнения два корня x = 7 ± 69 10 , а из второго x = 2 . Подставлять значение корней в исходное уравнение для проверки условий нам будет достаточно сложно. Проще будет определить ОДЗ переменной x . В данном случае ОДЗ переменной x – это все числа, кроме тех, для которых выполняется условие x 2 + 5 · x − 14 = 0 . Получаем: x ∈ — ∞ , — 7 ∪ — 7 , 2 ∪ 2 , + ∞ . Теперь проверим, принадлежат ли найденные нами корни к области допустимых значений переменной x . Корни x = 7 ± 69 10 — принадлежат, поэтому, они являются корнями исходного уравнения, а x = 2 – не принадлежит, поэтому, это посторонний корень. Ответ: x = 7 ± 69 10 . Разберем отдельно случаи, когда в числителе дробного рационального уравнения вида p ( x ) q ( x ) = 0 находится число. В таких случаях, если в числителе находится число, отличное от нуля, то уравнение не будет иметь корней. Если это число будет равно нулю, то корнем уравнения будет любое число из ОДЗ. Решите дробное рациональное уравнение — 3 , 2 x 3 + 27 = 0 . Решение Данное уравнение не будет иметь корней, так как в числителе дроби из левой части уравнения находится отличное от нуля число. Это значит, что ни при каких значениях x значение приведенной в условии задачи дроби не будет равняться нулю. Ответ: нет корней. Решите уравнение 0 x 4 + 5 · x 3 = 0 . Решение Так как в числителе дроби находится нуль, решением уравнения будет любое значение x из ОДЗ переменной x . Теперь определим ОДЗ. Оно будет включать все значения x , при которых x 4 + 5 · x 3 ≠ 0 . Решениями уравнения x 4 + 5 · x 3 = 0 являются 0 и − 5 , так как, это уравнение равносильно уравнению x 3 · ( x + 5 ) = 0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 = 0 и x + 5 = 0 , откуда и видны эти корни. Мы приходим к тому, что искомой областью допустимых значений являются любые x , кроме x = 0 и x = − 5 . Получается, что дробное рациональное уравнение 0 x 4 + 5 · x 3 = 0 имеет бесконечное множество решений, которыми являются любые числа кроме нуля и — 5 . Ответ: — ∞ , — 5 ∪ ( — 5 , 0 ∪ 0 , + ∞ Теперь поговорим о дробных рациональных уравнениях произвольного вида и методах их решения. Их можно записать как r ( x ) = s ( x ) , где r ( x ) и s ( x ) – рациональные выражения, причем хотя бы одно из них дробное. Решение таких уравнений сводится к решению уравнений вида p ( x ) q ( x ) = 0 . Мы уже знаем, что мы можем получить равносильное уравнение при переносе выражения из правой части уравнения в левое с противоположным знаком. Это значит, что уравнение r ( x ) = s ( x ) равносильно уравнение r ( x ) − s ( x ) = 0 . Также мы уже разобрали способы преобразования рационального выражения в рациональную дробь. Благодаря этому мы без труда можем преобразовать уравнение r ( x ) − s ( x ) = 0 в тождественную ему рациональную дробь вида p ( x ) q ( x ) . Так мы переходим от исходного дробного рационального уравнения r ( x ) = s ( x ) к уравнению вида p ( x ) q ( x ) = 0 , решать которые мы уже научились. Следует учитывать, что при проведении переходов от r ( x ) − s ( x ) = 0 к p ( x ) q ( x ) = 0 , а затем к p ( x ) = 0 мы можем не учесть расширения области допустимых значений переменной x . Вполне реальна ситуация, когда исходное уравнение r ( x ) = s ( x ) и уравнение p ( x ) = 0 в результате преобразований перестанут быть равносильными. Тогда решение уравнения p ( x ) = 0 может дать нам корни, которые будут посторонними для r ( x ) = s ( x ) . В связи с этим в каждом случае необходимо проводить проверку любым из описанных выше способов. Чтобы облегчить вам работу по изучению темы, мы обобщили всю информацию в алгритм решения дробного рационального уравнения вида r ( x ) = s ( x ) : переносим выражение из правой части с противоположным знаком и получаем справа нуль; преобразуем исходное выражение в рациональную дробь p ( x ) q ( x ) , последовательно выполняя действия с дробями и многочленами; решаем уравнение p ( x ) = 0 ; выявляем посторонние корни путем проверки их принадлежности ОДЗ или методом подстановки в исходное уравнение. Визуально цепочка действий будет выглядеть следующим образом: r ( x ) = s ( x ) → r ( x ) — s ( x ) = 0 → p ( x ) q ( x ) = 0 → p ( x ) = 0 → о т с е и в а н и е п о с т о р о н н и х к о р н е й Решите дробное рациональное уравнение x x + 1 = 1 x + 1 . Решение Перейдем к уравнению x x + 1 — 1 x + 1 = 0 . Преобразуем дробное рациональное выражение в левой части уравнения к виду p ( x ) q ( x ) . Для этого нам придется привести рациональные дроби к общему знаменателю и упростить выражение: x x + 1 — 1 x — 1 = x · x — 1 · ( x + 1 ) — 1 · x · ( x + 1 ) x · ( x + 1 ) = = x 2 — x — 1 — x 2 — x x · ( x + 1 ) = — 2 · x — 1 x · ( x + 1 ) Для того, чтобы найти корни уравнения — 2 · x — 1 x · ( x + 1 ) = 0 , нам необходимо решить уравнение − 2 · x − 1 = 0 . Получаем один корень x = — 1 2 . Нам осталось выполнить проверку любым из методов. Рассмотрим их оба. Подставим полученное значение в исходное уравнение. Получим — 1 2 — 1 2 + 1 = 1 — 1 2 + 1 . Мы пришли к верному числовому равенству − 1 = − 1 . Это значит, что x = − 1 2 является корнем исходного уравнения. Теперь проведем проверку через ОДЗ. Определим область допустимых значений переменной x . Это будет все множество чисел, за исключением − 1 и 0 (при x = − 1 и x = 0 обращаются в нуль знаменатели дробей). Полученный нами корень x = − 1 2 принадлежит ОДЗ. Это значит, что он является корнем исходного уравнения. Ответ: − 1 2 . Найдите корни уравнения x 1 x + 3 — 1 x = — 2 3 · x . Решение Мы имеем дело с дробным рациональным уравнением. Следовательно, будем действовать по алгоритму. Перенесем выражение из правой части в левую с противоположным знаком: x 1 x + 3 — 1 x + 2 3 · x = 0 Проведем необходимые преобразования: x 1 x + 3 — 1 x + 2 3 · x = x 3 + 2 · x 3 = 3 · x 3 = x . Приходим к уравнению x = 0 . Корень этого уравнения – нуль. Проверим, не является ли этот корень посторонним для исходного уравнения. Подставим значение в исходное уравнение: 0 1 0 + 3 — 1 0 = — 2 3 · 0 . Как видите, полученное уравнение не имеет смысла. Это значит, что 0 – это посторонний корень, а исходное дробное рациональное уравнение корней не имеет. Ответ: нет корней. Если мы не включили в алгоритм другие равносильные преобразования, то это вовсе не значит, что ими нельзя пользоваться. Алгоритм универсален, но он создан для того, чтобы помогать, а не ограничивать. Решите уравнение 7 + 1 3 + 1 2 + 1 5 — x 2 = 7 7 24 Решение Проще всего будет решить приведенное дробное рациональное уравнение согласно алгоритму. Но есть и другой путь. Рассмотрим его. Отнимем от правой и левой частей 7 , получаем: 1 3 + 1 2 + 1 5 — x 2 = 7 24 . Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно числу, обратному числу из правой части, то есть, 3 + 1 2 + 1 5 — x 2 = 24 7 . Вычтем из обеих частей 3 : 1 2 + 1 5 — x 2 = 3 7 . По аналогии 2 + 1 5 — x 2 = 7 3 , откуда 1 5 — x 2 = 1 3 , и дальше 5 — x 2 = 3 , x 2 = 2 , x = ± 2 Проведем проверку для того, чтобы установить, являются ли найденные корни корнями исходного уравнения.
  2. Как решаются дробно-рациональные уравнения?
  3. Дробно-рациональные уравнения
  4. Что такое дробно-рациональные уравнения
  5. Как решаются дробно-рациональные уравнения
  6. Примеры задач с ответами для 9 класса
  7. Решение целых и дробно рациональных уравнений
  8. Рациональное уравнение: определение и примеры
  9. Решение целых уравнений
  10. Решение дробно рациональных уравнений
  11. 💡 Видео

Дробно-рациональные уравнения – уравнения, которые можно свести к виду (frac

) (=0), где (P(x)) и (Q(x)) — выражения с иксом (или другой переменной).

Проще говоря, это уравнения, в которых есть хотя бы одна дробь с переменной в знаменателе.

Пример не дробно-рациональных уравнений:

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Как решаются дробно-рациональные уравнения?

Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать ОДЗ . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным.

Алгоритм решения дробно-рационального уравнения:

Выпишите и «решите» ОДЗ.

Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут.

Запишите уравнение, не раскрывая скобок.

Решите полученное уравнение.

Проверьте найденные корни с ОДЗ.

Запишите в ответ корни, которые прошли проверку в п.7.

Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам.

Пример. Решите дробно-рациональное уравнение (frac — frac=frac)

Сначала записываем и «решаем» ОДЗ.

По формуле сокращенного умножения : (x^2-4=(x-2)(x+2)). Значит, общий знаменатель дробей будет ((x-2)(x+2)). Умножаем каждый член уравнения на ((x-2)(x+2)).

Сокращаем то, что можно и записываем получившееся уравнение.

Приводим подобные слагаемые

Согласуем корни с ОДЗ. Замечаем, что по ОДЗ (x≠2). Значит первый корень — посторонний. В ответ записываем только второй.

Пример. Найдите корни дробно-рационального уравнения (frac + frac-frac) (=0)

Записываем и «решаем» ОДЗ.

Раскладываем квадратный трехчлен (x^2+7x+10) на множители по формуле: (ax^2+bx+c=a(x-x_1)(x-x_2)).
Благо (x_1) и (x_2) мы уже нашли.

Очевидно, общий знаменатель дробей: ((x+2)(x+5)). Умножаем на него всё уравнение.

Приводим подобные слагаемые

Находим корни уравнения

Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень.

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Дробно-рациональные уравнения

Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

Алгебра 8. Урок 11 - Дробно-рациональные уравнения

Что такое дробно-рациональные уравнения

Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

9 x 2 — 1 3 x = 0

1 2 x + x x + 1 = 1 2

6 x + 1 = x 2 — 5 x x + 1

Уравнения, которые не являются дробно-рациональными:

Видео:Зачётный способ решить дробно рациональное уравнение методом заменыСкачать

Зачётный способ решить дробно рациональное уравнение методом замены

Как решаются дробно-рациональные уравнения

В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

Алгоритм действий при стандартном способе решения:

  1. Выписать и определить ОДЗ.
  2. Найти общий знаменатель для дробей.
  3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
  4. Записать уравнение со скобками.
  5. Раскрыть скобки для приведения подобных слагаемых.
  6. Найти корни полученного уравнения.
  7. Выполним проверку корней в соответствии с ОДЗ.
  8. Записать ответ.

Пример 1

Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

x x — 2 — 7 x + 2 = 8 x 2 — 4

Начать следует с области допустимых значений:

x 2 — 4 ≠ 0 ⇔ x ≠ ± 2

Воспользуемся правилом сокращенного умножения:

x 2 — 4 = ( x — 2 ) ( x + 2 )

В результате общим знаменателем дробей является:

Выполним умножение каждого из членов выражения на общий знаменатель:

x x — 2 — 7 x + 2 = 8 x 2 — 4

x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 )

После сокращения избавимся от скобок и приведем подобные слагаемые:

x ( x + 2 ) — 7 ( x — 2 ) = 8

x 2 + 2 x — 7 x + 14 = 8

Осталось решить квадратное уравнение:

Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

Видео:Алгебра 8. Урок 12 - Задачи на составление дробно-рациональных уравнений (Часть 1)Скачать

Алгебра 8. Урок 12 - Задачи на составление дробно-рациональных уравнений (Часть 1)

Примеры задач с ответами для 9 класса

Требуется решить дробно-рациональное уравнение:

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

Определим область допустимых значений:

О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2

x 2 + 7 x + 10 ≠ 0

D = 49 — 4 · 10 = 9

x 1 ≠ — 7 + 3 2 = — 2

x 2 ≠ — 7 — 3 2 = — 5

Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 )

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 —

— ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0

x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0

2 x 2 + 9 x — 5 = 0

Потребуется решить квадратное уравнение:

2 x 2 + 9 x — 5 = 0

Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

Дано дробно-рациональное уравнение, корни которого требуется найти:

4 x — 2 — 3 x + 4 = 1

В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

4 ( x + 4 ) x — 2 — 3 ( x — 2 ) x + 4 — 1 ( x — 2 ) ( x + 4 ) = 0

4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0

4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0

x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0

Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

— x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0

Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

( x — 2 ) ( x + 4 ) ≠ 0

Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

— x 2 — x + 30 = 0 _ _ _ · ( — 1 )

Получилось квадратное уравнение, которое можно решить:

Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

Нужно решить дробно-рациональное уравнение:

x + 2 x 2 — 2 x — x x — 2 = 3 x

На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

x + 2 1 x ( x — 2 ) — x x x — 2 — 3 ( x — 2 ) x = 0

x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0

x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0

— x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0

Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

— x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 )

Корни квадратного уравнения:

x 1 = — 4 ; x 2 = 2

Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

Найти корни уравнения:

x 2 — x — 6 x — 3 = x + 2

Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

x 2 — x — 6 1 x — 3 — x ( x — 3 ) — 2 ( x — 3 ) = 0

x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0

x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0

0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0

Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

Ответ: х — любое число, за исключением 3.

Требуется вычислить корни дробно-рационального уравнения:

5 x — 2 — 3 x + 2 = 20 x 2 — 4

На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

5 ( x + 2 ) x — 2 — 3 ( x — 2 ) x + 2 — 20 1 ( x — 2 ) ( x + 2 ) = 0

5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0

5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0

2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0

( x — 2 ) ( x + 2 ) ≠ 0

Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

Ответ: корни отсутствуют

Нужно найти корни уравнения:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )

Начнем с определения ОДЗ:

— 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0

При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 )

( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 )

( x — 3 ) x + x = x + 5

Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0

Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

x 1 · x 2 = — 10 x 1 + x 2 = 3

В этом случае подходящими являются числа: -2 и 5.

Второе значение не соответствует области допустимых значений.

Видео:ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ I #shorts #егэ #огэ #математика #профильныйегэСкачать

ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ I #shorts #егэ #огэ #математика #профильныйегэ

Решение целых и дробно рациональных уравнений

Давайте познакомимся с рациональными и дробными рациональными уравнениями, дадим их определение, приведем примеры, а также разберем наиболее распространенные типы задач.

Видео:Решение дробных рациональных уравнений. Алгебра, 8 классСкачать

Решение дробных рациональных уравнений. Алгебра, 8 класс

Рациональное уравнение: определение и примеры

Знакомство с рациональными выражениями начинается в 8 классе школы. В это время на уроках алгебры учащиеся все чаще начинают встречать задания с уравнениями, которые содержат рациональные выражения в своих записях. Давайте освежим в памяти, что это такое.

Рациональное уравнение – это такое уравнение, в обеих частях которого содержатся рациональные выражения.

В различных пособиях можно встретить еще одну формулировку.

Рациональное уравнение – это такое уравнение, запись левой части которого содержит рациональное выражение, а правая – нуль.

Определения, которые мы привели для рациональных уравнений, являются равнозначными, так как говорят об одно и том же. Подтверждает правильность наших слов тот факт, что для любых рациональных выражений P и Q уравнения P = Q и P − Q = 0 будут равносильными выражениями.

А теперь обратимся к примерам.

x = 1 , 2 · x − 12 · x 2 · y · z 3 = 0 , x x 2 + 3 · x — 1 = 2 + 2 7 · x — a · ( x + 2 ) , 1 2 + 3 4 — 12 x — 1 = 3 .

Рациональные уравнения точно также, как и уравнения других видов, могут содержать любое количество переменных от 1 до нескольких. Для начала мы рассмотрим простые примеры, в которых уравнения будут содержать только одну переменную. А затем начнем постепенно усложнять задачу.

Рациональные уравнения делятся на две большие группы: целые и дробные. Посмотрим, какие уравнения будут относиться к каждой из групп.

Рациональное уравнение будет являться целым в том случае, если в записи левой и правой его частей содержатся целые рациональные выражения.

Рациональное уравнение будет являться дробным в том случае, если одна или обе его части содержат дробь.

Дробно рациональные уравнения в обязательном порядке содержат деление на переменную или же переменная имеется в знаменателе. В записи целых уравнений такого деления нет.

3 · x + 2 = 0 и ( x + y ) · ( 3 · x 2 − 1 ) + x = − y + 0 , 5 – целые рациональные уравнения. Здесь обе части уравнения представлены целыми выражениями.

1 x — 1 = x 3 и x : ( 5 · x 3 + y 2 ) = 3 : ( x − 1 ) : 5 – это дробно рациональные уравнения.

К числу целых рациональных уравнений можно отнести линейные и квадратные уравнения.

Видео:ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать

ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?

Решение целых уравнений

Решение таких уравнений обычно сводится к преобразованию их в равносильные алгебраические уравнения. Достичь этого можно путем проведения равносильных преобразований уравнений в соответствии со следующим алгоритмом:

  • сначала получим ноль в правой части уравнения, для этого на необходимо перенести выражение, которое находится в правой части уравнения, в его левую часть и поменять знак;
  • затем преобразуем выражение в левой части уравнения в многочлен стандартного вида.

Мы должны получить алгебраическое уравнение. Это уравнение будет равносильным по отношению к исходному уравнению. Легкие случаи позволяют нам для решения задачи свести целое уравнение с линейному или квадратному. В общем случае мы решаем алгебраическое уравнение степени n .

Необходимо найти корни целого уравнения 3 · ( x + 1 ) · ( x − 3 ) = x · ( 2 · x − 1 ) − 3 .

Решение

Проведем преобразование исходного выражения с целью получить равносильное ему алгебраическое уравнение. Для этого произведем перенос выражения, содержащегося в правой части уравнения, в левую часть и заменим знак на противоположный. В итоге получим: 3 · ( x + 1 ) · ( x − 3 ) − x · ( 2 · x − 1 ) + 3 = 0 .

Теперь проведем преобразование выражения, которое находится в левой части в многочлен стандартного вида и произведем необходимые действия с этим многочленом:

3 · ( x + 1 ) · ( x − 3 ) − x · ( 2 · x − 1 ) + 3 = ( 3 · x + 3 ) · ( x − 3 ) − 2 · x 2 + x + 3 = = 3 · x 2 − 9 · x + 3 · x − 9 − 2 · x 2 + x + 3 = x 2 − 5 · x − 6

У нас получилось свести решение исходного уравнения к решению квадратного уравнения вида x 2 − 5 · x − 6 = 0 . Дискриминант этого уравнения положительный: D = ( − 5 ) 2 − 4 · 1 · ( − 6 ) = 25 + 24 = 49 . Это значит, действительных корней будет два. Найдем их, воспользовавшись формулой корней квадратного уравнения:

x = — — 5 ± 49 2 · 1 ,

x 1 = 5 + 7 2 или x 2 = 5 — 7 2 ,

x 1 = 6 или x 2 = — 1

Проверим верность корней уравнения, которые мы нашли в ходе решения. Для этого числа, которые мы получили, подставим в исходное уравнение: 3 · ( 6 + 1 ) · ( 6 − 3 ) = 6 · ( 2 · 6 − 1 ) − 3 и 3 · ( − 1 + 1 ) · ( − 1 − 3 ) = ( − 1 ) · ( 2 · ( − 1 ) − 1 ) − 3 . В первом случае 63 = 63 , во втором 0 = 0 . Корни x = 6 и x = − 1 действительно являются корнями уравнения, данного в условии примера.

Ответ: 6 , − 1 .

Давайте разберем, что значит «степень целого уравнения». С этим термином мы будем часто встречаться в тех случаях, когда нам надо будет представить целое уравнение в виде алгебраического. Дадим определение понятию.

Степень целого уравнения – это степень алгебраического уравнения, равносильного исходному целому уравнению.

Если посмотреть на уравнения из примера, приведенного выше, можно установить: степень данного целого уравнения вторая.

Если бы наш курс ограничивался решением уравнений второй степени, то рассмотрение темы на этом можно было бы закончить. Но все не так просто. Решение уравнений третьей степени сопряжено с трудностями. А для уравнений выше четвертой степени и вовсе не существует общих формул корней. В связи с этим решение целых уравнений третьей, четвертой и других степеней требует от нас применения целого ряда других приемов и методов.

Чаще прочих используется подход к решению целых рациональных уравнений, который основан на методе разложения на множители. Алгоритм действий в этом случае следующий:

  • переносим выражение из правой части в левую с тем, чтобы в правой части записи остался нуль;
  • представляем выражение в левой части как произведение множителей, а затем переходим к совокупности нескольких более простых уравнений.

Пример 4

Найдите решение уравнения ( x 2 − 1 ) · ( x 2 − 10 · x + 13 ) = 2 · x · ( x 2 − 10 · x + 13 ) .

Решение

Переносим выражение из правой части записи в левую с противоположным знаком: ( x 2 − 1 ) · ( x 2 − 10 · x + 13 ) − 2 · x · ( x 2 − 10 · x + 13 ) = 0 . Преобразование левой части в многочлен стандартного вида нецелесообразно в связи с тем, что это даст нам алгебраическое уравнение четвертой степени: x 4 − 12 · x 3 + 32 · x 2 − 16 · x − 13 = 0 . Легкость преобразования не оправдывает всех сложностей с решением такого уравнения.

Намного проще пойти другим путем: вынесем за скобки общий множитель x 2 − 10 · x + 13 . Так мы придем к уравнению вида ( x 2 − 10 · x + 13 ) · ( x 2 − 2 · x − 1 ) = 0 . Теперь заменим полученное уравнение совокупностью двух квадратных уравнений x 2 − 10 · x + 13 = 0 и x 2 − 2 · x − 1 = 0 и найдем их корни через дискриминант: 5 + 2 · 3 , 5 — 2 · 3 , 1 + 2 , 1 — 2 .

Ответ: 5 + 2 · 3 , 5 — 2 · 3 , 1 + 2 , 1 — 2 .

Точно также мы можем использовать метод введения новой переменной. Этот метод позволяет нам переходить к равносильным уравнениям со степенями ниже, чем были степени в исходном целом уравнении.

Есть ли корни у уравнения ( x 2 + 3 · x + 1 ) 2 + 10 = − 2 · ( x 2 + 3 · x − 4 ) ?

Решение

Если мы сейчас попробуем свести целое рациональное уравнение к алгебраическому, то получим уравнение 4 степени, которое не имеет рациональных корней. Потому нам будет проще пойти другим путем: ввести новую переменную у, которая заменит в уравнении выражение x 2 + 3 · x .

Теперь мы будем работать с целым уравнением ( y + 1 ) 2 + 10 = − 2 · ( y − 4 ) . Перенесем правую часть уравнения в левую с противоположным знаком и проведем необходимые преобразования. Получим: y 2 + 4 · y + 3 = 0 . Найдем корни квадратного уравнения: y = − 1 и y = − 3 .

Теперь проведем обратную замену. Получим два уравнения x 2 + 3 · x = − 1 и x 2 + 3 · x = − 3 . Перепишем их как x 2 + 3 · x + 1 = 0 и x 2 + 3 · x + 3 = 0 . Используем формулу корней квадратного уравнения для того, чтобы найти корни первого уравнения из полученных: — 3 ± 5 2 . Дискриминант второго уравнения отрицательный. Это значит, что действительных корней у второго уравнения нет.

Ответ: — 3 ± 5 2

Целые уравнения высоких степеней попадаются в задачах достаточно часто. Пугаться их не нужно. Нужно быть готовым применить нестандартный метод их решения, в том числе и ряд искусственных преобразований.

Видео:Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴Скачать

Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴

Решение дробно рациональных уравнений

Начнем рассмотрение этой подтемы мы с алгоритма решения дробно рациональных уравнений вида p ( x ) q ( x ) = 0 , где p ( x ) и q ( x ) – целые рациональные выражения. Решение остальных дробно рациональных уравнений всегда можно свести к решению уравнений указанного вида.

В основу наиболее употребимого метода решения уравнений p ( x ) q ( x ) = 0 положено следующее утверждение: числовая дробь u v , где v – это число, которое отлично от нуля, равна нулю только в тех случаях, когда числитель дроби равен нулю. Следуя логике приведенного утверждения мы можем утверждать, что решение уравнения p ( x ) q ( x ) = 0 может быть сведено в выполнению двух условий: p ( x ) = 0 и q ( x ) ≠ 0 . На этом построен алгоритм решения дробных рациональных уравнений вида p ( x ) q ( x ) = 0 :

  • находим решение целого рационального уравнения p ( x ) = 0 ;
  • проверяем, выполняется ли для корней, найденных в ходе решения, условие q ( x ) ≠ 0 .

Если это условие выполняется, то найденный корень является корнем исходного уравнения. Если нет, то корень не является решением задачи.

Найдем корни уравнения 3 · x — 2 5 · x 2 — 2 = 0 .

Решение

Мы имеем дело с дробным рациональным уравнением вида p ( x ) q ( x ) = 0 , в котором p ( x ) = 3 · x − 2 , q ( x ) = 5 · x 2 − 2 = 0 . Приступим к решению линейного уравнения 3 · x − 2 = 0 . Корнем этого уравнения будет x = 2 3 .

Проведем проверку найденного корня, удовлетворяет ли он условию 5 · x 2 − 2 ≠ 0 . Для этого подставим числовое значение в выражение. Получим: 5 · 2 3 2 — 2 = 5 · 4 9 — 2 = 20 9 — 2 = 2 9 ≠ 0 .

Условие выполняется. Это значит, что x = 2 3 является корнем исходного уравнения.

Ответ: 2 3 .

Есть еще один вариант решения дробных рациональных уравнений p ( x ) q ( x ) = 0 . Вспомним, что это уравнение равносильно целому уравнению p ( x ) = 0 на области допустимых значений переменной x исходного уравнения. Это позволяет нам использовать следующий алгоритм в решении уравнений p ( x ) q ( x ) = 0 :

  • решаем уравнение p ( x ) = 0 ;
  • находим область допустимых значений переменной x ;
  • берем корни, которые лежат в области допустимых значений переменной x , в качестве искомых корней исходного дробного рационального уравнения.

Пример 7

Решите уравнение x 2 — 2 · x — 11 x 2 + 3 · x = 0 .

Решение

Для начала решим квадратное уравнение x 2 − 2 · x − 11 = 0 . Для вычисления его корней мы используем формулу корней для четного второго коэффициента. Получаем D 1 = ( − 1 ) 2 − 1 · ( − 11 ) = 12 , и x = 1 ± 2 3 .

Теперь мы можем найти ОДЗ переменной x для исходного уравнения. Это все числа, для которых x 2 + 3 · x ≠ 0 . Это то же самое, что x · ( x + 3 ) ≠ 0 , откуда x ≠ 0 , x ≠ − 3 .

Теперь проверим, входят ли полученные на первом этапе решения корни x = 1 ± 2 3 в область допустимых значений переменной x . Мы видим, что входят. Это значит, что исходное дробное рациональное уравнение имеет два корня x = 1 ± 2 3 .

Ответ​​: x = 1 ± 2 3

Второй описанный метод решения проще первого в случаях, когда легко находится область допустимых значений переменной x , а корни уравнения p ( x ) = 0 иррациональные. Например, 7 ± 4 · 26 9 . Корни могут быть и рациональными, но с большим числителем или знаменателем. Например, 127 1101 и − 31 59 . Это позволяет сэкономить время на проведении проверки условия q ( x ) ≠ 0 : намного проще исключить корни, которые не подходят, по ОДЗ.

В тех случаях, когда корни уравнения p ( x ) = 0 целые, целесообразнее использовать первый из описанных алгоритмов решения уравнений вида p ( x ) q ( x ) = 0 . Быстрее сразу находить корни целого уравнения p ( x ) = 0 , после чего проверять, выполняется ли для них условие q ( x ) ≠ 0 , а не находить ОДЗ, после чего решать уравнение p ( x ) = 0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

Найдите корни уравнения ( 2 · x — 1 ) · ( x — 6 ) · ( x 2 — 5 · x + 14 ) · ( x + 1 ) x 5 — 15 · x 4 + 57 · x 3 — 13 · x 2 + 26 · x + 112 = 0 .

Решение

Начнем с рассмотрения целого уравнения ( 2 · x − 1 ) · ( x − 6 ) · ( x 2 − 5 · x + 14 ) · ( x + 1 ) = 0 и нахождения его корней. Для этого применим метод решения уравнений через разложение на множители. Получается, что исходное уравнение равносильно совокупности четырех уравнений 2 · x − 1 = 0 , x − 6 = 0 , x 2 − 5 · x + 14 = 0 , x + 1 = 0 , из которых три линейных и одно квадратное. Находим корни: из первого уравнения x = 1 2 , из второго – x = 6 , из третьего – x = 7 , x = − 2 , из четвертого – x = − 1 .

Проведем проверку полученных корней. Определить ОДЗ в данном случае нам сложно, так как для этого придется провести решение алгебраического уравнения пятой степени. Проще будет проверить условие, по которому знаменатель дроби, которая находится в левой части уравнения, не должен обращаться в нуль.

По очереди подставим корни на место переменной х в выражение x 5 − 15 · x 4 + 57 · x 3 − 13 · x 2 + 26 · x + 112 и вычислим его значение:

1 2 5 − 15 · 1 2 4 + 57 · 1 2 3 − 13 · 1 2 2 + 26 · 1 2 + 112 = = 1 32 − 15 16 + 57 8 − 13 4 + 13 + 112 = 122 + 1 32 ≠ 0 ;

6 5 − 15 · 6 4 + 57 · 6 3 − 13 · 6 2 + 26 · 6 + 112 = 448 ≠ 0 ;

7 5 − 15 · 7 4 + 57 · 7 3 − 13 · 7 2 + 26 · 7 + 112 = 0 ;

( − 2 ) 5 − 15 · ( − 2 ) 4 + 57 · ( − 2 ) 3 − 13 · ( − 2 ) 2 + 26 · ( − 2 ) + 112 = − 720 ≠ 0 ;

( − 1 ) 5 − 15 · ( − 1 ) 4 + 57 · ( − 1 ) 3 − 13 · ( − 1 ) 2 + 26 · ( − 1 ) + 112 = 0 .

Проведенная проверка позволяет нам установить, что корнями исходного дробного рацинального уравнения являются 1 2 , 6 и − 2 .

Ответ: 1 2 , 6 , — 2

Найдите корни дробного рационального уравнения 5 · x 2 — 7 · x — 1 · x — 2 x 2 + 5 · x — 14 = 0 .

Решение

Начнем работу с уравнением ( 5 · x 2 − 7 · x − 1 ) · ( x − 2 ) = 0 . Найдем его корни. Нам проще представить это уравнение как совокупность квадратного и линейного уравнений 5 · x 2 − 7 · x − 1 = 0 и x − 2 = 0 .

Используем формулу корней квадратного уравнения для поиска корней. Получаем из первого уравнения два корня x = 7 ± 69 10 , а из второго x = 2 .

Подставлять значение корней в исходное уравнение для проверки условий нам будет достаточно сложно. Проще будет определить ОДЗ переменной x . В данном случае ОДЗ переменной x – это все числа, кроме тех, для которых выполняется условие x 2 + 5 · x − 14 = 0 . Получаем: x ∈ — ∞ , — 7 ∪ — 7 , 2 ∪ 2 , + ∞ .

Теперь проверим, принадлежат ли найденные нами корни к области допустимых значений переменной x .

Корни x = 7 ± 69 10 — принадлежат, поэтому, они являются корнями исходного уравнения, а x = 2 – не принадлежит, поэтому, это посторонний корень.

Ответ: x = 7 ± 69 10 .

Разберем отдельно случаи, когда в числителе дробного рационального уравнения вида p ( x ) q ( x ) = 0 находится число. В таких случаях, если в числителе находится число, отличное от нуля, то уравнение не будет иметь корней. Если это число будет равно нулю, то корнем уравнения будет любое число из ОДЗ.

Решите дробное рациональное уравнение — 3 , 2 x 3 + 27 = 0 .

Решение

Данное уравнение не будет иметь корней, так как в числителе дроби из левой части уравнения находится отличное от нуля число. Это значит, что ни при каких значениях x значение приведенной в условии задачи дроби не будет равняться нулю.

Ответ: нет корней.

Решите уравнение 0 x 4 + 5 · x 3 = 0 .

Решение

Так как в числителе дроби находится нуль, решением уравнения будет любое значение x из ОДЗ переменной x .

Теперь определим ОДЗ. Оно будет включать все значения x , при которых x 4 + 5 · x 3 ≠ 0 . Решениями уравнения x 4 + 5 · x 3 = 0 являются 0 и − 5 , так как, это уравнение равносильно уравнению x 3 · ( x + 5 ) = 0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 = 0 и x + 5 = 0 , откуда и видны эти корни. Мы приходим к тому, что искомой областью допустимых значений являются любые x , кроме x = 0 и x = − 5 .

Получается, что дробное рациональное уравнение 0 x 4 + 5 · x 3 = 0 имеет бесконечное множество решений, которыми являются любые числа кроме нуля и — 5 .

Ответ: — ∞ , — 5 ∪ ( — 5 , 0 ∪ 0 , + ∞

Теперь поговорим о дробных рациональных уравнениях произвольного вида и методах их решения. Их можно записать как r ( x ) = s ( x ) , где r ( x ) и s ( x ) – рациональные выражения, причем хотя бы одно из них дробное. Решение таких уравнений сводится к решению уравнений вида p ( x ) q ( x ) = 0 .

Мы уже знаем, что мы можем получить равносильное уравнение при переносе выражения из правой части уравнения в левое с противоположным знаком. Это значит, что уравнение r ( x ) = s ( x ) равносильно уравнение r ( x ) − s ( x ) = 0 . Также мы уже разобрали способы преобразования рационального выражения в рациональную дробь. Благодаря этому мы без труда можем преобразовать уравнение r ( x ) − s ( x ) = 0 в тождественную ему рациональную дробь вида p ( x ) q ( x ) .

Так мы переходим от исходного дробного рационального уравнения r ( x ) = s ( x ) к уравнению вида p ( x ) q ( x ) = 0 , решать которые мы уже научились.

Следует учитывать, что при проведении переходов от r ( x ) − s ( x ) = 0 к p ( x ) q ( x ) = 0 , а затем к p ( x ) = 0 мы можем не учесть расширения области допустимых значений переменной x .

Вполне реальна ситуация, когда исходное уравнение r ( x ) = s ( x ) и уравнение p ( x ) = 0 в результате преобразований перестанут быть равносильными. Тогда решение уравнения p ( x ) = 0 может дать нам корни, которые будут посторонними для r ( x ) = s ( x ) . В связи с этим в каждом случае необходимо проводить проверку любым из описанных выше способов.

Чтобы облегчить вам работу по изучению темы, мы обобщили всю информацию в алгритм решения дробного рационального уравнения вида r ( x ) = s ( x ) :

  • переносим выражение из правой части с противоположным знаком и получаем справа нуль;
  • преобразуем исходное выражение в рациональную дробь p ( x ) q ( x ) , последовательно выполняя действия с дробями и многочленами;
  • решаем уравнение p ( x ) = 0 ;
  • выявляем посторонние корни путем проверки их принадлежности ОДЗ или методом подстановки в исходное уравнение.

Визуально цепочка действий будет выглядеть следующим образом:

r ( x ) = s ( x ) → r ( x ) — s ( x ) = 0 → p ( x ) q ( x ) = 0 → p ( x ) = 0 → о т с е и в а н и е п о с т о р о н н и х к о р н е й

Решите дробное рациональное уравнение x x + 1 = 1 x + 1 .

Решение

Перейдем к уравнению x x + 1 — 1 x + 1 = 0 . Преобразуем дробное рациональное выражение в левой части уравнения к виду p ( x ) q ( x ) .

Для этого нам придется привести рациональные дроби к общему знаменателю и упростить выражение:

x x + 1 — 1 x — 1 = x · x — 1 · ( x + 1 ) — 1 · x · ( x + 1 ) x · ( x + 1 ) = = x 2 — x — 1 — x 2 — x x · ( x + 1 ) = — 2 · x — 1 x · ( x + 1 )

Для того, чтобы найти корни уравнения — 2 · x — 1 x · ( x + 1 ) = 0 , нам необходимо решить уравнение − 2 · x − 1 = 0 . Получаем один корень x = — 1 2 .

Нам осталось выполнить проверку любым из методов. Рассмотрим их оба.

Подставим полученное значение в исходное уравнение. Получим — 1 2 — 1 2 + 1 = 1 — 1 2 + 1 . Мы пришли к верному числовому равенству − 1 = − 1 . Это значит, что x = − 1 2 является корнем исходного уравнения.

Теперь проведем проверку через ОДЗ. Определим область допустимых значений переменной x . Это будет все множество чисел, за исключением − 1 и 0 (при x = − 1 и x = 0 обращаются в нуль знаменатели дробей). Полученный нами корень x = − 1 2 принадлежит ОДЗ. Это значит, что он является корнем исходного уравнения.

Ответ: − 1 2 .

Найдите корни уравнения x 1 x + 3 — 1 x = — 2 3 · x .

Решение

Мы имеем дело с дробным рациональным уравнением. Следовательно, будем действовать по алгоритму.

Перенесем выражение из правой части в левую с противоположным знаком: x 1 x + 3 — 1 x + 2 3 · x = 0

Проведем необходимые преобразования: x 1 x + 3 — 1 x + 2 3 · x = x 3 + 2 · x 3 = 3 · x 3 = x .

Приходим к уравнению x = 0 . Корень этого уравнения – нуль.

Проверим, не является ли этот корень посторонним для исходного уравнения. Подставим значение в исходное уравнение: 0 1 0 + 3 — 1 0 = — 2 3 · 0 . Как видите, полученное уравнение не имеет смысла. Это значит, что 0 – это посторонний корень, а исходное дробное рациональное уравнение корней не имеет.

Ответ: нет корней.

Если мы не включили в алгоритм другие равносильные преобразования, то это вовсе не значит, что ими нельзя пользоваться. Алгоритм универсален, но он создан для того, чтобы помогать, а не ограничивать.

Решите уравнение 7 + 1 3 + 1 2 + 1 5 — x 2 = 7 7 24

Решение

Проще всего будет решить приведенное дробное рациональное уравнение согласно алгоритму. Но есть и другой путь. Рассмотрим его.

Отнимем от правой и левой частей 7 , получаем: 1 3 + 1 2 + 1 5 — x 2 = 7 24 .

Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно числу, обратному числу из правой части, то есть, 3 + 1 2 + 1 5 — x 2 = 24 7 .

Вычтем из обеих частей 3 : 1 2 + 1 5 — x 2 = 3 7 . По аналогии 2 + 1 5 — x 2 = 7 3 , откуда 1 5 — x 2 = 1 3 , и дальше 5 — x 2 = 3 , x 2 = 2 , x = ± 2

Проведем проверку для того, чтобы установить, являются ли найденные корни корнями исходного уравнения.

💡 Видео

Решение задач с помощью рациональных уравнений. Алгебра, 8 классСкачать

Решение задач с помощью рациональных уравнений. Алгебра, 8 класс

Дробно-рациональные уравнения.Решение дробно-рациональных уравнений. 8 классСкачать

Дробно-рациональные уравнения.Решение дробно-рациональных уравнений. 8 класс

#136 Урок 61. Дробно-рациональные уравнения. Рациональные уравнения, приводящиеся к квадратным.Скачать

#136 Урок 61. Дробно-рациональные уравнения. Рациональные уравнения, приводящиеся к квадратным.

Алгебра 8 класс (Урок№31 - Решение дробных рациональных уравнений.)Скачать

Алгебра 8 класс (Урок№31 - Решение дробных рациональных уравнений.)

Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts

Решение дробно-рационального уравнения методом общего знаменателяСкачать

Решение дробно-рационального уравнения методом общего знаменателя

8 класс, 5 урок, Первые представления о решении рациональных уравненийСкачать

8 класс, 5 урок, Первые представления о решении рациональных уравнений

8 класс, 28 урок, Рациональные уравнения как математические модели реальных ситуацийСкачать

8 класс, 28 урок, Рациональные уравнения как математические модели реальных ситуаций

Решение дробно рациональных уравнений. Алгебра 8 класс. Часть 1.Скачать

Решение дробно рациональных уравнений. Алгебра 8 класс. Часть 1.

Алгебра 8. Урок 13 - Задачи на составление дробно-рациональных уравнений (Часть 2)Скачать

Алгебра 8. Урок 13 - Задачи на составление дробно-рациональных уравнений (Часть 2)

Алгебра 8. Урок 14 - Задачи на составление дробно-рациональных уравнений (Часть 3)Скачать

Алгебра 8. Урок 14 - Задачи на составление дробно-рациональных уравнений (Часть 3)
Поделиться или сохранить к себе: