Пример №1 . Решить задачу методом динамического программирования в прямом и обратном времени для целевой функции, заданной таблично.
F(x1,x2,x3) = f1(x1) + f2(x2) + f3(x3) → max
x1 + 2x2 + 2x3 ≤ 5
X | 0 | 1 | 2 | 3 | 4 | 5 |
f1(x1) | 6 | 7 | 11 | 12 | 15 | 16 |
f2(x2) | 9 | 11 | 13 | 15 | ||
f3(x3) | 8 | 12 | 14 | 16 |
Решение.
I этап. Условная оптимизация. f1(L) = max(f1); 0 ≤ x1 ≤ 5; x1 = 0,1,2,3,4,5.
f1(0) = max[6] = 6
f1(1) = max[6, 7] = 7
f1(2) = max[6, 7, 11] = 11
f1(3) = max[6, 7, 11, 12] = 12
f1(4) = max[6, 7, 11, 12, 15] = 15
f1(5) = max[6, 7, 11, 12, 15, 16] = 16
Таблица 1 – Расчет значения функции f1(L)
L | 0 | 1 | 2 | 3 | 4 | 5 |
f1(L) | 6 | 7 | 11 | 12 | 15 | 16 |
x1 | 0 | 1 | 2 | 3 | 4 | 5 |
f2(L) = max[f2 + f1(L — 2x2)]; 0 ≤ x2 ≤ 5; x2 = 0,1,2,3,4,5.
f2(0) = max[9+6] = 15
f2(1) = max[9+7] = 16
f2(2) = max[9+11, 11+6] = 20
f2(3) = max[9+12, 11+7] = 21
f2(4) = max[9+15, 11+11, 13+6] = 24
f2(5) = max[9+16, 11+12, 13+7] = 25
Таблица 2 – Расчет значения функции f2(L)
L | 0 | 1 | 2 | 3 | 4 | 5 |
f2(L) | 15 | 16 | 20 | 21 | 24 | 25 |
x2 | 0 | 0 | 0 | 0 | 0 | 0 |
f3(L) = max[f3 + f2(L — 2x3)]; 0 ≤ x3 ≤ 5; x3 = 0,1,2,3,4,5.
f3(0) = max[8+15] = 23
f3(1) = max[8+16] = 24
f3(2) = max[8+20, 12+15] = 28
f3(3) = max[8+21, 12+16] = 29
f3(4) = max[8+24, 12+20, 14+15] = 32
f3(5) = max[8+25, 12+21, 14+16] = 33
Таблица 3 – Расчет значения функции f3(L)
L | 0 | 1 | 2 | 3 | 4 | 5 |
f3(L) | 23 | 24 | 28 | 29 | 32 | 33 |
x3 | 0 | 0 | 0 | 0 | 0 | 0 |
II этап. Безусловная оптимизация.
Таким образом, максимум f3(5) = 33
При этом x3 = 0, так как f3(5) = 33 достигается при х3=0 (см. таблицу 3).
Остальные x распределяются следующим образом:
L = 5 — 2 * 0 = 5
f2(5) = 25 достигается при х2 = 0 (см. таблицу 2).
L = 5 — 2 * 0 = 5
f1(5) = 16 достигается при х1 = 5 (см. таблицу 1).
L = 5 — 1 * 5 = 0
В итоге наилучший вариант достигается при значениях: x1 = 5, x2 = 0, x3 = 0
Пример №2 . Рассмотрим задачу об оптимальном размещении капитала K = nh в m различных независимых фондах (банки, организации, фирма и т.д.), для которых известна ожидаемая прибыль fi при капиталовложениях xi = ih, i = 1..n. Здесь n – количество дискретных приращений h (дискрет), на которые разбит капитал К.
Пусть такие данные имеются по четырем (m=4) фондам для h = 1 млн. руб., n = 6
Решение.
I этап. Условная оптимизация.
1-й шаг: k = 4.
Предположим, что все средства в количестве x4 = 6 отданы 4-у предприятию. В этом случае максимальный доход, как это видно из таблицы 1*, составит 0.56, следовательно:
F4(c4) = g4(x4)
Таблица 1.
0 | x1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
x4 | f0(x0) / F4(x4) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 |
2 | 0.33 | 0 | 0 | 0 | 0 | 0.33 | 0 | 0 |
3 | 0.42 | 0 | 0 | 0 | 0.42 | 0 | 0 | 0 |
4 | 0.48 | 0 | 0 | 0.48 | 0 | 0 | 0 | 0 |
5 | 0.53 | 0 | 0.53 | 0 | 0 | 0 | 0 | 0 |
6 | 0.56 | 0.56* | 0 | 0 | 0 | 0 | 0 | 0 |
Таблица 1*.
c1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
F0(c1) | 0 | 0.2 | 0.33 | 0.42 | 0.48 | 0.53 | 0.56 |
x1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
2-й шаг: k = 3.
Определяем оптимальную стратегию при распределении средств между остальными предприятиями. При этом рекуррентное соотношение Беллмана имеет вид:
F3(c3) = max [ g3(x3) + F4(c3 — x3)]
Таблица 2.
0 | x2 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
x3 | f3(x3) / F3(x3) | 0 | 0.2 | 0.33 | 0.42 | 0.48 | 0.53 | 0.56 |
0 | 0 | 0 | 0.2* | 0.33 | 0.42 | 0.48 | 0.53 | 0.56 |
1 | 0.15 | 0.15 | 0.35* | 0.48* | 0.57 | 0.63 | 0.68 | 0 |
2 | 0.25 | 0.25 | 0.45 | 0.58 | 0.67 | 0.73 | 0 | 0 |
3 | 0.4 | 0.4 | 0.6* | 0.73* | 0.82 | 0 | 0 | 0 |
4 | 0.5 | 0.5 | 0.7 | 0.83* | 0 | 0 | 0 | 0 |
5 | 0.62 | 0.62 | 0.82 | 0 | 0 | 0 | 0 | 0 |
6 | 0.73 | 0.73 | 0 | 0 | 0 | 0 | 0 | 0 |
Заполняем таблицу 2*. Для этого на каждой северо-восточной диагонали находим наибольшее число, которое отмечаем звездочкой и указываем соответствующее значение x2.
Таблица 2*.
c2 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
F3(c2) | 0 | 0.2 | 0.35 | 0.48 | 0.6 | 0.73 | 0.83 |
x2 | 0 | 0 | 1 | 1 | 3 | 3 | 4 |
3-й шаг: k = 2.
Определяем оптимальную стратегию при распределении средств между остальными предприятиями. При этом рекуррентное соотношение Беллмана имеет вид:
F2(c2) = max [ g2(x2) + F3(c2 — x2)]
Таблица 3.
0 | x3 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
x2 | f4(x4) / F2(x2) | 0 | 0.2 | 0.35 | 0.48 | 0.6 | 0.73 | 0.83 |
0 | 0 | 0 | 0.2 | 0.35 | 0.48 | 0.6 | 0.73 | 0.83 |
1 | 0.25 | 0.25* | 0.45* | 0.6 | 0.73 | 0.85 | 0.98 | 0 |
2 | 0.41 | 0.41 | 0.61* | 0.76* | 0.89 | 1.01 | 0 | 0 |
3 | 0.55 | 0.55 | 0.75 | 0.9* | 1.03* | 0 | 0 | 0 |
4 | 0.65 | 0.65 | 0.85 | 1 | 0 | 0 | 0 | 0 |
5 | 0.75 | 0.75 | 0.95 | 0 | 0 | 0 | 0 | 0 |
6 | 0.8 | 0.8 | 0 | 0 | 0 | 0 | 0 | 0 |
Заполняем таблицу 3*. Для этого на каждой северо-восточной диагонали находим наибольшее число, которое отмечаем звездочкой и указываем соответствующее значение x3.
Таблица 3*.
c3 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
F4(c3) | 0 | 0.25 | 0.45 | 0.61 | 0.76 | 0.9 | 1.03 |
x3 | 0 | 1 | 1 | 2 | 2 | 3 | 3 |
4-й шаг: k = 1.
Определяем оптимальную стратегию при распределении средств между остальными предприятиями. При этом рекуррентное соотношение Беллмана имеет вид:
F1(c1) = max [ g1(x1) + F2(c1 — x1)]
Таблица 4.
0 | x4 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
x1 | f5(x5) / F1(x1) | 0 | 0.25 | 0.45 | 0.61 | 0.76 | 0.9 | 1.03 |
0 | 0 | 0 | 0.25 | 0.45 | 0.61 | 0.76 | 0.9 | 1.03 |
1 | 0.28 | 0.28* | 0.53* | 0.73* | 0.89 | 1.04 | 1.18 | 0 |
2 | 0.45 | 0.45 | 0.7 | 0.9 | 1.06 | 1.21 | 0 | 0 |
3 | 0.65 | 0.65 | 0.9* | 1.1* | 1.26* | 0 | 0 | 0 |
4 | 0.78 | 0.78 | 1.03 | 1.23 | 0 | 0 | 0 | 0 |
5 | 0.9 | 0.9 | 1.15 | 0 | 0 | 0 | 0 | 0 |
6 | 1.02 | 1.02 | 0 | 0 | 0 | 0 | 0 | 0 |
Заполняем таблицу 4*. Для этого на каждой северо-восточной диагонали находим наибольшее число, которое отмечаем звездочкой и указываем соответствующее значение x4.
Таблица 4*.
c4 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
F5(c4) | 0 | 0.28 | 0.53 | 0.73 | 0.9 | 1.1 | 1.26 |
x4 | 0 | 1 | 1 | 1 | 3 | 3 | 3 |
II этап. Безусловная оптимизация.
1-й шаг: k = 1.
По данным таблицы 4* максимальный доход при распределении 6 между предприятиями составляет c1 = 6, F1(6) = 1.26. При этом 1-му предприятию нужно выделить x1 = 3.
2-й шаг: k = 2.
Определим величину оставшихся денежных средств, приходящихся на долю остальных предприятий.
c2 = c1 — x1 = 6 — 3 = 3.
По данным таблицы 3* максимальный доход при распределении 3 между предприятиями составляет c2 = 3, F2(3) = 0.61. При этом 2-му предприятию нужно выделить x2 = 2.
3-й шаг: k = 3.
Определим величину оставшихся денежных средств, приходящихся на долю остальных предприятий.
c3 = c2 — x2 = 3 — 2 = 1.
По данным таблицы 2* максимальный доход при распределении 1 между предприятиями составляет c3 = 1, F3(1) = 0.2. При этом 3-му предприятию нужно выделить x3 = 0.
4-й шаг: k = 4.
Определим величину оставшихся денежных средств, приходящихся на долю остальных предприятий.
c4 = c3 — x3 = 1 — 0 = 1.
По данным таблицы 1* максимальный доход при распределении 1 между предприятиями составляет c4 = 1, F4(1) = 0.20. При этом 4-му предприятию нужно выделить x4 = 1.
Таким образом, оптимальный план инвестирования предприятия: x1 = 3, x2 = 2, x3 = 0, x4 = 1, который обеспечит максимальный доход, равный: F(6) = g1(3) + g2(2) + g3(0) + g4(1) = 0.65 + 0.41 + 0 + 0.20 = 1.26.
Пример №3 . Распределите c=200 млн ден. ед. инвестиций между четырьмя министерствами республики ( n=4 ) на реконструкцию и модернизацию производственных мощностей таким образом, чтобы суммарный прирост производства продукции всех министерств f4(с) был максимальным. Прирост выпуска продукции в каждом из министерств gi(x) в зависимости от объема выделенных средств x (0 c=200 млн ден. ед. между первыми тремя министерствами, максимизирующее их суммарный прирост производства продукции f3(с).
Примечание. Основная задача решается с помощью процедуры прямой прогонки. Ответ на подзадачу можно получить из таблицы n-1 исходного решения.
Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
Дифференциальные уравнения по-шагам
Видео:Частное решение дифференциального уравнения. 11 класс.Скачать
Результат
Примеры дифференциальных уравнений
- Простейшие дифференциальные ур-ния 1-порядка
- Дифференциальные ур-ния с разделяющимися переменными
- Линейные неоднородные дифференциальные ур-ния 1-го порядка
- Линейные однородные дифференциальные ур-ния 2-го порядка
- Уравнения в полных дифференциалах
- Решение дифференциального уравнения заменой
- Смена y(x) на x в уравнении
- Другие
Указанные выше примеры содержат также:
- квадратные корни sqrt(x),
кубические корни cbrt(x) - тригонометрические функции:
синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x) - показательные функции и экспоненты exp(x)
- обратные тригонометрические функции:
арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x) - натуральные логарифмы ln(x),
десятичные логарифмы log(x) - гиперболические функции:
гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x) - обратные гиперболические функции:
asinh(x), acosh(x), atanh(x), actanh(x) - число Пи pi
- комплексное число i
Правила ввода
Можно делать следующие операции
2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5
Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:
Видео:6-5. Алгоритм прогонкиСкачать
Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)
Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5
Ввод распознает различные синонимы функций, как asin , arsin , arcsin
Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)
Список математических функций и констант :
• ln(x) — натуральный логарифм
• sh(x) — гиперболический синус
• ch(x) — гиперболический косинус
• th(x) — гиперболический тангенс
• cth(x) — гиперболический котангенс
• sch(x) — гиперболический секанс
• csch(x) — гиперболический косеканс
• arsh(x) — обратный гиперболический синус
• arch(x) — обратный гиперболический косинус
• arth(x) — обратный гиперболический тангенс
• arcth(x) — обратный гиперболический котангенс
• arsch(x) — обратный гиперболический секанс
• arcsch(x) — обратный гиперболический косеканс
💥 Видео
2.1 Точные методы решения СЛАУ (Крамера, Гаусса, Жордана, прогонки)Скачать
18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Решение системы дифференциальных уравнений методом ЭйлераСкачать
Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
Решение дифференциальных уравнений. Практическая часть. 11 класс.Скачать
13. Как решить дифференциальное уравнение первого порядка?Скачать
Решение системы уравнений методом ГауссаСкачать
7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
Сеточные методы решения дифференциальных уравнений в частных производных.Скачать
Методы решения нелинейных краевых задач для ОДУСкачать
Метод Гаусса решения СЛАУ. Метод прогонки. Итерационные методы. Численные методы. Лекция №3Скачать
9. Метод вариации произвольной постоянной ( метод Лагранжа ). Линейные дифференциальные уравнения.Скачать
Математика без Ху!ни. Метод Гаусса.Скачать
Пример 65. Решить задачу Коши (диффуры)Скачать
Дифференциальные уравнения. 11 класс.Скачать