Видео:Математика без Ху!ни. Нахождение асимптот, построение графика функции.Скачать
Результат
Примеры дифференциальных уравнений
- Простейшие дифференциальные ур-ния 1-порядка
- Дифференциальные ур-ния с разделяющимися переменными
- Линейные неоднородные дифференциальные ур-ния 1-го порядка
- Линейные однородные дифференциальные ур-ния 2-го порядка
- Уравнения в полных дифференциалах
- Решение дифференциального уравнения заменой
- Смена y(x) на x в уравнении
- Другие
Указанные выше примеры содержат также:
- квадратные корни sqrt(x),
кубические корни cbrt(x) - тригонометрические функции:
синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x) - показательные функции и экспоненты exp(x)
- обратные тригонометрические функции:
арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x) - натуральные логарифмы ln(x),
десятичные логарифмы log(x) - гиперболические функции:
гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x) - обратные гиперболические функции:
asinh(x), acosh(x), atanh(x), actanh(x) - число Пи pi
- комплексное число i
Правила ввода
Можно делать следующие операции
2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5
Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:
Видео:Математический анализ, 16 урок, Исследование функции и построение графикаСкачать
Решение дифференциального уравнения и построение графиков решений
Численное решение дифференциальных уравнений с помощью команды dsolve. Построение графиков решений дифференциальных уравнений с помощью команды odeplot.
Для того, чтобы найти численное решение дифференциального уравнения (задачи Коши или краевой задачи) в команде dsolve следует указать параметр type=numeric (или просто numeric ). Тогда команда решения дифференциального уравнения будет иметь вид dsolve(eq, vars, type=numeric, options), где eq – уравнения, vars – список неизвестных функций, options – параметры, позволяющие указать метод численного интегрирования дифференциального уравнения. В Maple реализованы такие методы: method=rkf45 — метод Рунге-Кутта-Фельберга 4-5-ого порядка (установлен по умолчанию); method=dverk78 – метод Рунге-Кутта 7-8 порядка; mtthod=classical – классический метод Рунге-Кутта 3-его порядка; method=gear и method=mgear – одношаговый и многошаговый методы Гира.
График численного решения дифференциального уравнения можно построить с помощью команды odeplot(dd, [x,y(x)], x=x1..x2), где в качестве функции используется команда dd:=dsolve(, y(x), numeric) численного решения, после нее в квадратных скобках указывают переменную и неизвестную функцию [x,y(x)] , и интервал x=x1..x2 для построения графика.
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Задание 2.1.
1. Найти численное и приближенное решение в виде степенного ряда до 6-ого порядка задачи Коши: , , .
Сначала найдем численное решение задачи Коши и построим его график.
de := proc ( rkf45_x ). end
Замечание : в строке вывода появляется сообщение о том, что при решении использован метод rkf45 . Во избежание вывода строк, не несущих полезной информации, рекомендуется отделять промежуточные команды двоеточием. Если необходимо получить значение решения при каком-то фиксированном значении переменной х (заодно будет выведено значение производной решения в этой точке), например, при х =0.5, то следует набрать:
Теперь найдем приближенное решение задачи Коши в виде степенного ряда и построим графики численного решения и полученного степенного ряда в интервале их наилучшего совпадения.
Наилучшее приближение решения степенным рядом достигается примерно на интервале — 1 x
х ‘( t )=2 y ( t )sin( t ) — х ( t ) — t ,
Пакет графического представления решений дифференциальных уравнений Detools .
Для численного решения задачи Коши, построения графиков решения и фазовых портретов в Maple имеется специальный пакет DEtools .
Команда DEplot из пакета DEtools строит численными методами графики решения или фазовые портреты. Эта команда аналогична команде odeplot , но более функциональна. Она, в отличие от odeplot , сама производит численное решение дифференциального уравнения. Основные параметры DEplot похожи на параметры odeplot : DEplot(de, vars, range, x=х1..х2, y=у1..у2, cond, ptions) , где de — дифференциальное уравнение или система дифференциальных уравнений; vars – список неизвестных функций; range – диапазон измерения независимой переменной; cond – начальные условия; x=х1..х2 и y=у1..у2 – диапазоны изменения функций; options – дополнительные параметры.
Наиболее часто используемые параметры: linecolor =цвет линии; scene=[x,y] — определяет, какие зависимости выводить на график; iterations =число итераций, необходимое для повышения точности вычислений (по умолчанию это число равно 1); stepsize =число, равное расстоянию между точками на графике, по умолчанию оно равно ( x2 — x1 )/20, этот параметр необходим для вывода более гладкой кривой решения; obsrange = true / false — прерывать или нет вычисления, если график решения выходит за установленный для рисования интервал.
Для решения дифференциального уравнения n -ого порядка начальные условия можно задавать в более компактной форме: [x0, y0, y ‘ 0, y » 0,…] , где x0 — точка, в которой задаются начальные условия, y0 — значение искомой функции в точке x0 , y ‘ 0, y » 0,… — значения производных первой, второй и т.д. до ( n — 1)-ого порядка.
Видео:ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать
Задание 2.2.
Нарисовать график решения дифференциального уравнения:
, , , в интервале .
(D@@2)(y)(0)=1]], stepsize=.1, linecolor=black,
Построение фазовых портретов систем дифференциальных уравнений.
Для дифференциального уравнения порядка выше первого команда DEplot рисует только кривые решений дифференциальных уравнений, а для систем дифференциальных уравнений первого порядка могут быть нарисованы и фазовые портреты.
С помощью команды DEplot можно построить фазовый портрет в плоскости ( x , y ), для системы двух дифференциальных уравнений: , если в параметрах данной команды указать scene=[x,y] .
Если система дифференциальных уравнений является автономной, то на фазовом портрете будет построено поле направлений в виде стрелок. Размер стрелок регулируется параметром arrows = SMALL , MEDIUM , LARGE , LINE или NONE .
Для того, чтобы нарисовать весь фазовый портрет, необходимо для каждой фазовой траектории указывать начальные условия: например, для системы двух дифференциальных уравнений первого порядка несколько начальных условий в команде DEplots указываются после задания диапазона изменения независимой переменной t : [[x(0)=x1, y(0)=y1], [x(0)=x2, y(0)=y2],…, [x(0)=xn, y(0)=yn]] .
Начальные условия можно задавать в более компактной форме: [t0, x0, y0] , где t0 — точка, в которой задаются начальные условия, x0 и y0 — значения искомых функций в точке t0 .
Фазовый протрет системы двух дифференциальных уравнений первого порядка можно также построить с помощью команды phaseportrait(sys, [x,y],x1..x2,[[cond]]) , где sys — система двух дифференциальных уравнений первого порядка, [x,y] — имена искомых функций, x1..x2 — интервал, на котором следует построить фазовый портрет, а в фигурных скобках указываются начальные условия. Эта команда находится в пакете DEtools , поэтому данный пакет должен быть предварительно загружен.
Видео:Матан за час. Шпаргалка для первокурсника. Высшая математикаСкачать
Задание 2.3.
1. Построить фазовый портрет системы дифференциальных уравнений:
для нескольких наборов начальных условий: х (0)=1, у (0)=0.2; х (0)=0, у (0)=1; х (0)=1, у (0)=0.4; х (0)=1, у (0)=0.75; х (0)=0, у (0)=1.5; х (0)= — 0.1, у (0)=0.7.
stepsize=0.1, arrows=none, linecolor=black);
2. Построить фазовый портрет с полем направлений автономной системы
для различных начальных условий х (0)=1, у (0)=0; х (0)= — 1, у (0)=0; х (0)= p , у (0)=1; х (0)= — p , у (0)=1; х (0)=3 p , у (0)=0.2; х (0)=3 p , у (0)=1; х (0)=3 p , у (0)=1.8; х (0)= — 2 p , у (0)=1;.
3. Построить фазовый портрет системы дифференциальных уравнений:
Начальные условия, диапазон изменения переменной и размеры координатных осей подбираются самостоятельно из соображений наглядности фазового портрета.
Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Видео:Квадратичная функция и ее график. 8 класс.Скачать
Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)
Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5
Ввод распознает различные синонимы функций, как asin , arsin , arcsin
Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)
Список математических функций и констант :
• ln(x) — натуральный логарифм
• sh(x) — гиперболический синус
• ch(x) — гиперболический косинус
• th(x) — гиперболический тангенс
• cth(x) — гиперболический котангенс
• sch(x) — гиперболический секанс
• csch(x) — гиперболический косеканс
• arsh(x) — обратный гиперболический синус
• arch(x) — обратный гиперболический косинус
• arth(x) — обратный гиперболический тангенс
• arcth(x) — обратный гиперболический котангенс
• arsch(x) — обратный гиперболический секанс
• arcsch(x) — обратный гиперболический косеканс
🎬 Видео
Откуда появляются дифференциальные уравнения и как их решатьСкачать
Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
Частное решение дифференциального уравнения. 11 класс.Скачать
Для 1 курса. Исследование функций и построение графиков.Скачать
6. Особые решения ДУ первого порядкаСкачать
Математика без Ху!ни. Исследование функции, график. Первая, вторая производная, асимптоты.Скачать
Практика 1 ИзоклиныСкачать
Общее и частное решение дифференциального уравненияСкачать
Дифференциальные уравнения. 11 класс.Скачать
Поле направлений дифференциального уравнения первого порядкаСкачать
Построение графика квадратичной функцииСкачать
Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать
Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать