Решение биквадратных уравнений в комплексных числах

Решение биквадратных уравнений в комплексных числах

. Вы вводите его по ссылке решение уравнений онлайн , указываете, что i — это комплексная единица (после того как ввели уравнение и нажали кнопку «решить»), нажимаете кнопку под формой «Обновить» и получаете ответ как здесь. Если в ответе присутствуют корни из комплексных чисел, то можно воспользоваться калькулятором по упрощению комлексных чисел по ссылке

Решение биквадратных уравнений в комплексных числах

© Контрольная работа РУ — примеры решения задач

Видео:Биквадратное уравнение. Комплексные корни.Скачать

Биквадратное уравнение. Комплексные корни.

Решение уравнений четвертой степени

Для уравнений четвертой степени применимы все те общие схемы решения уравнений высших степеней, что мы разбирали в предыдущем материале. Однако существует ряд нюансов в решении двучленных, биквадратных и возвратных уравнений, на которых мы хотели бы остановиться подробнее.

Также в статье мы разберем искусственный метод разложения многочлена на множители, решение в радикалах и метод Феррари, который используется для того, чтобы свести решение уравнения четвертой степени к кубическому уравнению.

Видео:Комплексные корни квадратного уравненияСкачать

Комплексные корни квадратного уравнения

Решение двучленного уравнения четвертой степени

Это простейший тип уравнений четвертой степени. Запись уравнения имеет вид A x 4 + B = 0 .

Для решения этого типа уравнений применяются формулы сокращенного умножения:

A x 4 + B = 0 x 4 + B A = 0 x 4 + 2 B A x 2 + B A — 2 B A x 2 = 0 x 2 + B A 2 — 2 B A x 2 = 0 x 2 — 2 B A 4 x + B A x 2 + 2 B A 4 x + B A = 0

Остается лишь найти корни квадратных трехчленов.

Решить уравнение четвертой степени 4 x 4 + 1 = 0 .

Решение

Для начала проведем разложение многочлена 4 x 4 + 1 на множители:

4 x 4 + 1 = 4 x 4 + 4 x 2 + 1 = ( 2 x 2 + 1 ) 2 — 4 x 2 = 2 x 2 — 2 x + 1 ( 2 x 2 + 2 x + 1 )

Теперь найдем корни квадратных трехчленов.

2 x 2 — 2 x + 1 = 0 D = ( — 2 ) 2 — 4 · 2 · 1 = — 4 x 1 = 2 + D 2 · 2 = 1 2 + i x 2 = 2 — D 2 · 2 = 1 2 — i

2 x 2 + 2 x + 1 = 0 D = 2 2 — 4 · 2 · 1 = — 4 x 3 = — 2 + D 2 · 2 = — 1 2 + i x 4 = — 2 — D 2 · 2 = — 1 2 — i

Мы получили четыре комплексных корня.

Ответ: x = 1 2 ± i и x = — 1 2 ± i .

Видео:Комплексные числа в уравненияхСкачать

Комплексные числа в уравнениях

Решение возвратного уравнения четвертой степени

Возвратные уравнения четвертого порядка имеют вид A x 4 + B x 3 + C x 2 + B x + A = 0

х = 0 не является корнем этого уравнения: A · 0 4 + B · 0 3 + C · 0 2 + B · 0 + A = A ≠ 0 . Поэтому на x 2 можно смело разделить обе части этого уравнения:

A x 4 + B x 3 + C x 2 + B x + A = 0 A x 2 + B x + C + B x + A x 2 = 0 A x 2 + A x 2 + B x + B x + C = 0 A x 2 + 1 x 2 + B x + 1 x + C = 0

Проведем замену переменных x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 — 2 :

A x 2 + 1 x 2 + B x + 1 x + C = 0 A ( y 2 — 2 ) + B y + C = 0 A y 2 + B y + C — 2 A = 0

Так мы проведи сведение возвратного уравнения четвертой степени к квадратному уравнению.

Найти все комплексные корни уравнения 2 x 4 + 2 3 + 2 x 3 + 4 + 6 x 2 + 2 3 + 2 x + 2 = 0 .

Решение

Симметрия коэффициентов подсказывает нам, что мы имеем дело с возвратным уравнением четвертой степени. Проведем деление обеих частей на x 2 :

2 x 2 + 2 3 + 2 x + 4 + 6 + 2 3 + 2 x + 2 x 2 = 0

2 x 2 + 2 x 2 + 2 3 + 2 x + 2 3 + 2 x + 4 + 6 + = 0 2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0

Проведем замену переменной x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 — 2

2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0 2 y 2 — 2 + 2 3 + 2 y + 4 + 6 = 0 2 y 2 + 2 3 + 2 y + 6 = 0

Решим полученное квадратное уравнение:

D = 2 3 + 2 2 — 4 · 2 · 6 = 12 + 4 6 + 2 — 8 6 = = 12 — 4 6 + 2 = 2 3 — 2 2 y 1 = — 2 3 — 2 + D 2 · 2 = — 2 3 — 2 + 2 3 — 2 4 = — 2 2 y 2 = — 2 3 — 2 — D 2 · 2 = — 2 3 — 2 — 2 3 + 2 4 = — 3

Вернемся к замене: x + 1 x = — 2 2 , x + 1 x = — 3 .

Решим первое уравнение:

x + 1 x = — 2 2 ⇒ 2 x 2 + 2 x + 2 = 0 D = 2 2 — 4 · 2 · 2 = — 14 x 1 = — 2 — D 2 · 2 = — 2 4 + i · 14 4 x 2 = — 2 — D 2 · 2 = — 2 4 — i · 14 4

Решим второе уравнение:

x + 1 x = — 3 ⇒ x 2 + 3 x + 1 = 0 D = 3 2 — 4 · 1 · 1 = — 1 x 3 = — 3 + D 2 = — 3 2 + i · 1 2 x 4 = — 3 — D 2 = — 3 2 — i · 1 2

Ответ: x = — 2 4 ± i · 14 4 и x = — 3 2 ± i · 1 2 .

Видео:Комплексные корни квадратных уравнений. 11 класс.Скачать

Комплексные корни квадратных уравнений. 11 класс.

Решение биквадратного уравнения

Биквадратные уравнения четвертой степени имеют вид A x 4 + B x 2 + C = 0 . Мы можем свести такое уравнение к квадратному A y 2 + B y + C = 0 путем замены y = x 2 . Это стандартный прием.

Решить биквадратное уравнение 2 x 4 + 5 x 2 — 3 = 0 .

Решение

Выполним замену переменной y = x 2 , что позволит нам свести исходное уравнение к квадратному:

2 y 2 + 5 y — 3 = 0 D = 5 2 — 4 · 2 · ( — 3 ) = 49 y 1 = — 5 + D 2 · 2 = — 5 + 7 4 = 1 2 y 2 = — 5 — D 2 · 2 = — 5 — 7 4 = — 3

Следовательно, x 2 = 1 2 или x 2 = — 3 .

Первое равенство позволяет нам получить корень x = ± 1 2 . Второе равенство не имеет действительных корней, зато имеет комплексно сопряженных корней x = ± i · 3 .

Ответ: x = ± 1 2 и x = ± i · 3 .

Найти все комплексные корни биквадратного уравнения 16 x 4 + 145 x 2 + 9 = 0 .

Решение

Используем метод замены y = x 2 для того, чтобы свести исходное биквадратное уравнение к квадратному:

16 y 2 + 145 y + 9 = 0 D = 145 2 — 4 · 16 · 9 = 20449 y 1 = — 145 + D 2 · 16 = — 145 + 143 32 = — 1 16 y 2 = — 145 — D 2 · 16 = — 145 — 143 32 = — 9

Поэтому, в силу замены переменной, x 2 = — 1 16 или x 2 = — 9 .

Ответ: x 1 , 2 = ± 1 4 · i , x 3 , 4 = ± 3 · i .

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Решение уравнений четвертой степени с рациональными корнями

Алгоритм нахождения рациональных корней уравнения четвертой степени приведен в материале «Решение уравнений высших степеней».

Видео:Решение квадратных уравнений на множестве комплексных чиселСкачать

Решение квадратных уравнений на множестве комплексных чисел

Решение уравнений четвертой степени по методу Феррари

Уравнения четвертой степени вида x 4 + A x 3 + B x 2 + C x + D = 0 в общем случае можно решить с применением метода Феррари. Для этого необходимо найти y 0 . Это любой из корней кубического уравнения y 3 — B y 2 + A C — 4 D y — A 2 D + 4 B D — C 2 = 0 . После этого необходимо решить два квадратных уравнения x 2 + A 2 x + y 0 2 + A 2 4 — B + y 0 x 2 + A 2 y 0 — C x + y 0 2 4 — D = 0 , у которых подкоренное выражение является полным квадратом.

Корни, полученные в ходе вычислений, будут корнями исходного уравнения четвертой степени.

Найти корни уравнения x 4 + 3 x 3 + 3 x 2 — x — 6 = 0 .

Решение

Имеем А = 3 , В = 3 , С = — 1 , D = — 6 . Применим метод Феррари для решения данного уравнения.

Составим и решим кубическое уравнение:
y 3 — B y 2 + A C — 4 D y — A 2 D + 4 B D — C 2 = 0 y 3 — 3 y 2 + 21 y — 19 = 0

Одним из корней кубического уравнения будет y 0 = 1 , так как 1 3 — 3 · 1 2 + 21 · 1 — 19 = 0 .

Запишем два квадратных уравнения:
x 2 + A 2 x + y 0 2 ± A 2 4 — B + y 0 x 2 + A 2 y 0 — C x + y 0 2 4 — D = 0 x 2 + 3 2 x + 1 2 ± 1 4 x 2 + 5 2 x + 25 4 = 0 x 2 + 3 2 x + 1 2 ± 1 2 x + 5 2 2 = 0

x 2 + 3 2 x + 1 2 + 1 2 x + 5 2 = 0 или x 2 + 3 2 x + 1 2 — 1 2 x — 5 2 = 0

x 2 + 2 x + 3 = 0 или x 2 + x — 2 = 0

Корнями первого уравнения будут x = — 1 ± i · 2 , корнями второго х = 1 и х = — 2 .

Ответ: x 1 , 2 = — 1 ± i 2 , x 3 = 1 , x 4 = — 2 .

Видео:10 класс, 35 урок, Комплексные числа и квадратные уравненияСкачать

10 класс, 35 урок, Комплексные числа и квадратные уравнения

Решение квадратных уравнений с помощью комплексных чисел

Одна из причин введения комплексных чисел состояла в том, чтобы добиться разрешимости любого квадратного уравнения, в частности уравнения x2 = – 1.

Покажем, что расширив поле действительных чисел до поля комплексных чисел, мы получили поле, в котором каждое квадратное уравнение разрешимо, т.е. имеет решение. Так, уравнение x2 = – 1 имеет два решения: x1 = i, x2 = – i.

Это нетрудно установить проверкой: , .

Перейдем теперь к вопросу о решении полного квадратного уравнения. Квадратным уравнением называют уравнение вида:

где x – неизвестная, a, b, c – действительные числа, соответственно первый, второй коэффициенты и свободный член, причем . Решим это уравнение, выполнив над ним ряд несложных преобразований.

Разделим все члены уравнения на и перенесем свободный член в правую часть уравнения:

Решение биквадратных уравнений в комплексных числахРешение биквадратных уравнений в комплексных числах

К обеим частям уравнения прибавим выражение с тем, чтобы левая его часть представляла полный квадрат суммы двух слагаемых:

Решение биквадратных уравнений в комплексных числах

Извлечем корень квадратный из обеих частей уравнения:

Решение биквадратных уравнений в комплексных числах

Найдем значения неизвестной:

Решение биквадратных уравнений в комплексных числах

Теперь можно исследовать полученное решение. Оно зависит от значения подкоренного выражения, называемого дискриминантом квадратного уравнения.

Решение биквадратных уравнений в комплексных числах

Если , то есть действительное число и квадратное уравнение имеет действительные корни.

Решение биквадратных уравнений в комплексных числах

Если же то мнимое число, квадратное уравнение имеет мнимые корни.

Результаты исследования представлены ниже в таблице:

Решение биквадратных уравнений в комплексных числах

Итак, введение комплексных чисел позволяет разработать полную теорию квадратных уравнений. В поле комплексных чисел разрешимо любое квадратное уравнение.

1. Решите уравнение .

Решение. Найдем дискриминант .

Уравнение имеет два действительных корня:

Решение биквадратных уравнений в комплексных числахРешение биквадратных уравнений в комплексных числах

2. Решите уравнение .

Решение. , уравнение имеет два равных действительных корня:

Рассмотрим решение уравнений с комплексными корнями и коэффициентами.

Двучленным называется уравнение вида $x^ =A$.

Рассмотрим три случая:

Решить уравнение: $x^ =8$.

Так как $A>0$, то $x_ =sqrt[ ] cdot left(cos frac +icdot sin frac
ight),, , , k=0. 2$.

При $k=0$ получаем $x_ =sqrt[ ] cdot left(cos 0+icdot sin 0
ight)=sqrt[ ] =2$.

При $k=1$ получаем

[x_ =sqrt[ ] cdot left(cos frac +icdot sin frac
ight)=sqrt[ ] cdot (-frac +frac > cdot i)=2cdot (-frac +frac > cdot i)=-1+sqrt cdot i.]

При $k=2$ получаем

[x_ =sqrt[ ] cdot left(cos frac +icdot sin frac
ight)=sqrt[ ] cdot (-frac -frac > cdot i)=2cdot (-frac -frac > cdot i)=-1-sqrt cdot i.]

Попробуй обратиться за помощью к преподавателям

Решить уравнение: $x^ =1+i$.

Так как $A$ – комплексное число, то

Тригонометрическая форма записи некоторого комплексного числа имеет вид $z=r(cos varphi +icdot sin varphi )$.

По условию $a=1,b=1$.

Вычислим модуль исходного комплексного числа:

Вычислим аргумент исходного комплексного числа:

[varphi =arg z=arctgfrac =arctg1=frac

Подставим полученные значения и получим:

Уравнение перепишем в виде:

При $k=0$ получаем $x_ =sqrt[ ] > cdot left(cos frac

ight)=sqrt[ ] > cdot left(cos frac

ight)=sqrt[ ] cdot left(cos frac

При $k=1$ получаем

При $k=2$ получаем

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Квадратным называется уравнение вида $ax^ +bx+c=0$, где коэффициенты $a,b,c$ в общем случае являются некоторыми комплексными числами.

Решение квадратного уравнения находится с помощью дискриминанта $D=b^ -4ac$, при этом

В случае, когда дискриминант является отрицательным числом, корни данного уравнения являются комплексными числами.

Решить уравнение $x^ +2x+5=0$ и изобразить корни на плоскости.

[D=2^ -4cdot 1cdot 5=4-20=-16.]

Изображение корней уравнения на комплексной плоскости (так как корни комплексные) приведено на рис. 1.

Решение биквадратных уравнений в комплексных числах

В случае, когда уравнение имеет комплексные корни, они являются комплексно-сопряженными числами.

Комплексное число вида $overline =a-bi$ называется числом комплексно-сопряженным для $z=a+bi$.

Известно, что если $x_ $ являются корнями квадратного уравнения $ax^ +bx+c=0$, то данное уравнение можно переписать в виде $(x-x_ )(x-x_ )=0$. В общем случае $x_ $ являются комплексными корнями.

Зная корни уравнения $x_ =1pm 2i$, записать исходное уравнение.

Запишем уравнение следующим образом:

[x^ -(1-2i)cdot x-xcdot (1+2i)+(1-2i)cdot (1+2i)=0] [x^ -x+2icdot x-x-2icdot x+1-4i^ =0] [x^ -2x+1+4=0] [x^ -2x+5=0]

Следовательно, $x^ -2x+5=0$ – искомое уравнение.

Рассмотрим квадратное уравнение с комплексными коэффициентами.

Решить уравнение: $z^ +(1-2i)cdot z-(1+i)=0$ и изобразить корни на плоскости.

Так как $D>0$, уравнение имеет два корня:

Изображение корней уравнения на комплексной плоскости (так как корни комплексные) приведено на рис. 2.

Решение биквадратных уравнений в комплексных числах

В случае, когда уравнение имеет комплексные коэффициенты, его корни не обязательно являются комплексно-сопряженными числами.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Устанавливая рекомендуемое программное обеспечение вы соглашаетесь
с лицензионным соглашением Яндекс.Браузера и настольного ПО Яндекса .

Урок на тему: «Решение квадратных уравнений с помощью комплексных чисел».

Образовательные: расширить понятие числа, ввести понятие комплексного числа, действия над комплексными числами, заданными в алгебраической форме.

Воспитательные: прививать интерес к математике, ознакомить учащихся с историей развития комплексных чисел, воспитывать

Развивающие : развивать творческое мышление, пространственное мышление, научить применять теоретические знания при решении практических задач, формировать активность и самостоятельность при работе в группах.

Используемые технологии и методы: 1) проблемный диалог; 2) информационно- коммуникационные технологии.

Тип занятия: комбинированный.

Повторение материала предыдущего занятия.

Изучение нового материала.

Закрепление нового материала.

1.Организационный момент (2 мин).

2. Повторение материала предыдущего занятия (10 мин).

Множество действительных чисел;

Множество комплексных чисел;

Определение и форма записи комплексного числа;

Изображение комплексного числа на комплексной оси;

Степени мнимой единицы;

3. Изучение нового материала.

Решение биквадратных уравнений в комплексных числах

-Как называется картинка, которую вы видите на экране? (Мем).

-Что мы знаем об извлечении корня из отрицательных чисел? (что корень из отрицательных чисел не извлекается).

-А что, если я докажу вам сегодня на уроке, что не так уж этот корень и нереален? А помогут мне в этом числа, с которыми мы познакомились на предыдущем занятии – комплексные числа!

Верно, что во множестве действительных чисел корней из отрицательных чисел быть не может. Об этом нам всем говорили в школе. НО, введение понятия «комплексное число» продвинуло вперед современную математику, а с ней и другие естественные науки.

Так вот, в множестве комплексных чисел корень из -1 извлекается и очень хорошо! Вспомним знакомую нам формулу . Корень из -1= i,

Исследование алгебраических уравнений является одним из важнейших вопросов в математике. Например, действительных корней не имеет квадратное уравнение с отрицательным дискриминантом. Простейшим таким уравнением является уравнение

Решение биквадратных уравнений в комплексных числах.

Для того чтобы это уравнение имело решение, необходимо расширить множество действительных чисел путем присоединения к нему корня уравнения

Решение биквадратных уравнений в комплексных числах.

Обозначим этот корень через Решение биквадратных уравнений в комплексных числах. Таким образом, по определению

Решение биквадратных уравнений в комплексных числах, или

Решение биквадратных уравнений в комплексных числах,

Решение биквадратных уравнений в комплексных числах.

Таким образом, действительных чисел явно недостаточно, чтобы построить такую теорию квадратных уравнений, в рамках которой каждое квадратное уравнение было бы разрешимо. Это приводит к необходимости расширять множество действительных чисел до множества, в котором было бы разрешимо любое квадратное уравнение. Такое множество называется множеством комплексных чисел и обозначается С.

Рассматривать будем на таком примере:

Решение биквадратных уравнений в комплексных числах

Если говорить о действительных числах, то, вы знаете, что корень из отрицательного числа нельзя извлекать. Однако в комплексных числах можно. Если конкретнее, 2 корня:

Решение биквадратных уравнений в комплексных числах

Решение биквадратных уравнений в комплексных числах

Выполним проверку того, что эти корни и права оказываются решением уравнения:

Решение биквадратных уравнений в комплексных числах

Решение биквадратных уравнений в комплексных числах

Что и требовалось доказать.

Зачастую используют сокращенную запись, корни записывают в одну строчку в таком виде: Решение биквадратных уравнений в комплексных числах.

Такие корни являются сопряженными комплексными корнями .

Теперь вы знаете как можно извлечь квадратный корень из отрицательного числа. Приведем еще несколько примеров:

Решение биквадратных уравнений в комплексных числах, Решение биквадратных уравнений в комплексных числах,

Решение биквадратных уравнений в комплексных числах,

Решение биквадратных уравнений в комплексных числах,

Решение биквадратных уравнений в комплексных числах

Решим квадратное уравнение Решение биквадратных уравнений в комплексных числах.

Первым шагом определим дискриминант уравнения:
Решение биквадратных уравнений в комплексных числах

В нашем случае дискриминант оказался отрицательным, и в случае с действительными числами у уравнения нет решений, но у нас вариант с комплексными числами, поэтому можем продолжать решение:

Решение биквадратных уравнений в комплексных числах

Как известно из формул дискриминанта у нас образуется 2 корня:

Решение биквадратных уравнений в комплексных числах

Решение биквадратных уравнений в комплексных числах– сопряженные комплексные корни

Т.о., у уравнения Решение биквадратных уравнений в комплексных числахесть 2 сопряженных комплексных корня:

Решение биквадратных уравнений в комплексных числах,

Решение биквадратных уравнений в комплексных числах

Найти корни квадратного уравнения
Решение биквадратных уравнений в комплексных числах

Решение : на первом месте расположена мнимая единица, и, в принципе, от неё можно избавиться (умножая обе части на Решение биквадратных уравнений в комплексных числах) , однако, в этом нет особой надобности.

Для удобства выпишем коэффициенты:
Решение биквадратных уравнений в комплексных числах
Не теряем «минус» у свободного члена. Уравнение в стандартном виде Решение биквадратных уравнений в комплексных числах:
Решение биквадратных уравнений в комплексных числах

Вычислим дискриминант:
Решение биквадратных уравнений в комплексных числах

А вот и главное препятствие:
Решение биквадратных уравнений в комплексных числах

Применение общей формулы извлечения корня осложняется серьёзными затруднениями, связанными с аргументом подкоренного комплексного числа (убедитесь сами) . Но существует и другой, «алгебраический» путь! Корень будем искать в виде:
Решение биквадратных уравнений в комплексных числах

Возведём обе части в квадрат:
Решение биквадратных уравнений в комплексных числах

Два комплексных числа равны, если равны их действительные и их мнимые части. Таким образом, получаем следующую систему:
Решение биквадратных уравнений в комплексных числах

Систему проще решить подбором (более основательный путь – выразить из 2-го уравнения Решение биквадратных уравнений в комплексных числах– подставить в 1-е, получить и решить биквадратное уравнение) . Из 1-го уравнения следуют, что «икс» по модулю больше, чем «игрек». Кроме того, положительное произведение Решение биквадратных уравнений в комплексных числахсообщает нам, что неизвестные одного знака. Исходя из вышесказанного, и ориентируясь на 2-е уравнение, запишем все подходящие ему пары:
Решение биквадратных уравнений в комплексных числах

Очевидно, что 1-му уравнению системы удовлетворяют две последние пары, таким образом:
Решение биквадратных уравнений в комплексных числах

Не помешает промежуточная проверка:
Решение биквадратных уравнений в комплексных числах
что и требовалось проверить.

В качестве «рабочего» корня можно выбрать любое значение. Понятно, что лучше взять версию без «минусов»: Решение биквадратных уравнений в комплексных числах

Находим корни, не забывая, кстати, что Решение биквадратных уравнений в комплексных числах:
Решение биквадратных уравнений в комплексных числах

Ответ : Решение биквадратных уравнений в комплексных числах

Проверим, удовлетворяют ли найденные корни уравнению Решение биквадратных уравнений в комплексных числах:

1) Подставим Решение биквадратных уравнений в комплексных числах:
Решение биквадратных уравнений в комплексных числах
верное равенство.

Решение биквадратных уравнений в комплексных числах:
Решение биквадратных уравнений в комплексных числах
верное равенство.

Таким образом, решение найдено правильно.

4. Закрепление нового материала

3. Решение биквадратных уравнений в комплексных числах

Мне больше всего удалось…

Для меня было открытием то, что …

Что на ваш взгляд не удалось? Почему? Что учесть на будущее?

6. Домашнее задание

Составить конспект на тему «Тригонометрическая форма записи комплексного числа»;

🔍 Видео

Решение квадратных уравнений в поле комплексных чиселСкачать

Решение квадратных уравнений в поле комплексных чисел

Биквадратное уравнение 2 Комплексные корниСкачать

Биквадратное уравнение 2 Комплексные корни

Решение кубического уравнения общего вида, используя комплексные числа, по формуле Кардано!Скачать

Решение кубического уравнения общего вида, используя комплексные числа, по формуле Кардано!

✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис ТрушинСкачать

✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис Трушин

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТ

Комплексные числа. Разбор задач. Задача 2.1Скачать

Комплексные числа. Разбор задач. Задача 2.1

Решение биквадратных уравнений. Практическая часть. 1ч. 8 класс.Скачать

Решение биквадратных уравнений. Практическая часть. 1ч. 8 класс.

Формула Кардано. Решение уравнений третьей степени.Скачать

Формула Кардано. Решение уравнений третьей степени.

Решение уравнений с комплексными числамиСкачать

Решение уравнений с комплексными числами

Изобразить область на комплексной плоскостиСкачать

Изобразить область на комплексной плоскости

Комплексные числа. Разбор задач. Задача 2.2Скачать

Комплексные числа. Разбор задач. Задача 2.2

Решите уравнение ★ Комплексные числаСкачать

Решите уравнение ★ Комплексные числа
Поделиться или сохранить к себе: