Решение биквадратных уравнений примеры и их решение

Биквадратное уравнение. Алгоритм решения и примеры.

Биквадратные уравнения относятся к разделу школьной алгебры. Метод решения таких уравнений довольно простой, нужно использовать замену переменной.
Рассмотрим алгоритм решения:
-Что такое биквадратное уравнение?
-Как решить биквадратное уравнение?
-Метод замены переменной.
-Примеры биквадратного уравнения.
-Нахождение корней биквадратного уравнения.

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Формула биквадратного уравнения:

Формулы биквадратного уравнения отличается от квадратного уравнения тем, что у переменной х степени повышатся в два раза.

ax 4 +bx 2 +c=0, где a≠0

Видео:Решение биквадратных уравнений. Практическая часть. 2ч. 8 класс.Скачать

Решение биквадратных уравнений. Практическая часть. 2ч. 8 класс.

Как решаются биквадратные уравнения?

Решение биквадратных уравнений сводится сначала к замене, а потом решению квадратного уравнения:
(x^=t,;tgeq0)
t должно быть положительным числом или равным нулю

Получаем квадратное уравнение и решаем его:
at 2 +bt+c=0,
где x и t — переменная,
a, b, c -числовые коэффициенты.

(t^-5t+6=0)
Получилось полное квадратное уравнение, решаем его через дискриминант:
(D=b^-4ac=(-5)^-4times1times6=25-24=1)
Дискриминант больше нуля, следовательно, два корня, найдем их:

Возвращаемся в замену, подставим вместо переменной t полученные числа: (x^=3)
Чтобы решить такого вида уравнение, необходимо обе части уравнения занести под квадратный корень.

Получилось полное квадратное уравнение, решаем через дискриминант:
(D=b^-4ac=(-4)^-4times1times4=16-16=0)
Дискриминант равен нулю, следовательно, один корень, найдем его:
(t=frac=frac=2)

Возвращаемся в замену, подставим вместо переменной t полученное число:

Можно не во всех случаях делать замену. Рассмотрим пример.

Пример №3:
Решить биквадратное уравнение.

Выносим переменную x 2 за скобку,

Приравниваем каждый множитель к нулю

Делим всё уравнение на -4:
Чтобы решить (x^=4) такое уравнение, необходимо, обе части уравнения занести под квадратный корень.
(begin
&x^=4\
&x_=2\
&x_=-2\
end)

Пример №4:
Решите биквадратное уравнение.
(x^-16=0)

Возвращаемся в замену, подставим вместо переменной t полученное число:
(begin
&x^=4\
&x_=2\
&x_=-2
end)

Ответ: решения нет.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.

Видео:Решение биквадратных уравнений. Практическая часть. 1ч. 8 класс.Скачать

Решение биквадратных уравнений. Практическая часть. 1ч. 8 класс.

Биквадратные уравнения — примеры с решениями

Впервые с решением биквадратных уравнений сталкиваются на уроках алгебры. Степенные равенства высокого порядка решаются по аналогии с квадратными уравнениями. Существует несколько способов, позволяющих найти ответ, но чаще используется метод введения новой переменной. Такой подход простой и разобраться с ним будет под силу даже семикласснику. При этом существуют и онлайн-сервисы, проводящие вычисление корней квадратичного равенства.

Решение биквадратных уравнений примеры и их решение

Видео:5 Лайфхаков Которые Помогут Решить Биквадратное УравнениеСкачать

5 Лайфхаков Которые Помогут Решить Биквадратное Уравнение

Появление методики

Уравнения начали составлять ещё в Древнем Вавилоне. Это было вызвано потребностью находить площади земельных участков, выполнять инженерные работы. Составляли равенства и астрономы, высчитывая расстояния до обнаруживаемых космических тел. Квадратные равенства встречаются в клинописных текстах греков и вавилонян. При этом в этих записях попадаются уравнения, содержащие кубическую или биквадратную степень.

Решение биквадратных уравнений примеры и их решение

Несмотря на довольно хорошее развитие алгебры в стародавнее время, находимые упоминания о равенствах содержат только ответы, без указаний способов решений. Задачи с примерами решения биквадратных уравнений встречаются у астронома Ариабхатта и индийского учёного Брахмапутра. Формулы для решения сложных уравнений были изложены в сборнике «Книга абака», написанной в 1202 году итальянцем Фибоначчи. Это издание способствовало развитию математики, в частности, алгебре, в Италии, Германии, Франции. Большой вклад в развитие теории решения внесли и советские учёные-математики: Чеботарев, Четаев.

В XVI веках в Китае был разработан способ нахождения корней равенств высшей степени методом Цинь Цзю-шао, после успешно применявшимся в работах Руффини и Горнера.

Решение биквадратных уравнений примеры и их решение

Этот метод использовал способ подбора, но применим был только для случаев, когда в ответе присутствовали только целые числа.

Все способы решения биквадратных уравнений сводились к приведению их к простому квадратному равенству. Была найдена формула, позволяющая решать уравнения с помощью радикалов (корней). Впервые этот метод предложил Виета, но он был рассчитан только на положительные ответы. Итальянские же учёные Тарталья, Кордано, Бомбелли стали учитывать и отрицательные корни. В итоге Декарт, Жирар и Ньютон привели способы решения к современному виду.

Биквадратные выражения стали разделять на полные и неполные. В алгоритмическом языке корнями уравнения начали называть такие значения неизвестной составляющей, при которой решаемое выражение обращается в правильное числовое равенство. То есть чтобы решить задачу, нужно найти всевозможные его корни или доказать, что решения быть не может.

Видео:Уравнения, сводящиеся к квадратным. Биквадратное уравнениеСкачать

Уравнения, сводящиеся к квадратным. Биквадратное уравнение

Основные понятия

Биквадратным уравнением будет называться равенство вида: a*p 4 + b*p 2 + c = 0. Переменные a, b, c могут быть различными числами, при этом A не должно равняться нулю. Символ C называют свободным членом. За P принимают неизвестную переменную, требующую вычисления. Решение уравнений сводится к поиску чисел, которые при подстановке вместо P сделают равенство верным.

Решение биквадратных уравнений примеры и их решение

Согласно теореме Безу, число корней многочлена, не равного нулю, не может превосходить величину его степени. При этом любой многочлен с коэффициентами ненулевой степени должен иметь хотя бы одно решение. Тут следует отметить, что корень уравнения может быть комплексным. То есть таким выражением, степень которого равна wx = z, где x — степень, а w — комплексное число. Понятие комплексного числа уже относится к высшей математике. Обозначают его символом (z)1/x.

Для того чтобы доказать справедливость утверждения Безу, нужно за корень многочлена f принять c1 и составить равенство f = (p — c1) f1 . Тогда (f 1 Є K [p]), где К — является элементом поля многочлена, но лишь при условии, что f можно разделить на (p — c). Если принять за c2 корень f1, то f1 = (p — c 2)* f 2 (f 2 Є K [ p ]), а это значит что будет верным выражение: f = (p — c 1) * (p — c 2) * f2. Для длинного многочлена вида: f = (p — c 1) * (p — c 2) *…* (p — c) * s, где многочлен (s Є K [p]) не имеет решений.

Так как значения с1, с2… Cm — это все возможные корни f, то для любого поля будет верным: f (p) = (c — c1) * (c — c2)…(c — cm) * s (p). Учитывая, что s (p) не равно нулю, а f (p) = 0 только в том случае, если C равно некоторому числу I, величина корней многочлена f не может быть более значения m.

Таким образом, уравнение может иметь четыре, три, два, или одно решение. При этом есть вероятность, что ответа может совсем и не быть. Принцип, по которому решаются биквадратные уравнения, следующий:

Решение биквадратных уравнений примеры и их решение

  • вводят новую переменную y = p2;
  • подставляют используемую переменную в решаемое уравнение;
  • используя методы решения квадратных уравнений, находят корни равенства;
  • найденные величины подставляют в выражение y = p2 и вычисляют исходные корни.

Квадратные уравнения можно решать любым удобным способом. Типичная схема состоит всего из четырёх шагов и редко вызывает трудности понимания. Пожалуй, сложности могут возникнуть только при нахождении комплексных корней.

Видео:Биквадратные уравнения. 8 класс алгебра.Скачать

Биквадратные уравнения. 8 класс алгебра.

Решение равенств

Без знания методов нахождения корней в квадратных уравнениях решить самостоятельно биквадратное равенство не удастся, так как исходное неравенство в итоге приводится к виду квадратичного. Существует несколько способов, позволяющих быстро найти нужные корни или доказать невозможность существования равенства.

К основным относят:

Решение биквадратных уравнений примеры и их решение

  • разложение части уравнения с неизвестной на множители;
  • вынос за скобки полного квадрата;
  • использование специальных формул;
  • графический метод;
  • теорему Виета.

Разложение многочлена на множители основано на группировании и нахождении дискриминанта, то есть знака, по виду которого можно судить о существовании корней. Для решения используется формула: a * p 2 + b * p + c = a * (p — p 1) * (p — p 2), где p и являются корнями уравнения. Этот способ понятен и используется при обучении учащихся решению задач такого типа.

Нахождение корней методом выделения полного квадрата требует опыта использования формул сокращённого умножения, особенно если коэффициентами являются рациональные числа. При решении используется выражение: (a + b)2 = a 2 + 2* a * b + b 2 и (a — b)2 = a 2 — 2* a * b + b 2.

Решение биквадратных уравнений примеры и их решение

Существуют специальные формулы нахождения корней квадратного, а значит, и биквадратного уравнения. Выглядят они следующим образом: p 1 = (- b — (b 2— 4 ac)½) / (2* a) и p 2 = (- b + (b 2 + 4 ac)½) / (2* a). С их помощью можно решить любое уравнение. При этом часто для упрощения решения вводят замену подкоренному выражению (b 2— 4 ac) обозначая его буквой D — дискриминант. Если D больше нуля, то есть два корня, если меньше — решений нет. Если же D = 0, то существует только один корень.

Решение биквадратных уравнений примеры и их решение

Франсуа Виет, проводя математические исследования, смог обнаружить зависимость между корнями уравнения и его коэффициентами. Он установил, что если p1 и p2 являются решениями равенства, то их сумма будет равна второму коэффициенту с другим знаком, а произведение свободному члену. То есть для уравнения вида: p2 +r*p + k = 0, будет справедливо записать, что p1 + p2 = — r, p1 * p2 = k.

Графическое решение требует построения зависимостей. График первой представляет собой параболу, проходящую через начало координат, а второй — прямую. Для того чтобы выделить зависимости используют перенос. В результате получается две функции: y = a * p 2 и y = -(r * p+k). Построение функций и нахождение точек пересечения занимает много времени, поэтому этот метод практически никогда не используется.

Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Примеры уравнений

Решения любым из способов имеют свои достоинства и недостатки. По мнению математиков, проще решать уравнения, используя теорему Виета. Например, пусть дано выражение: 4p4 — 5p + 1 = 0, необходимо найти все бинарные корни. В первую очередь задание нужно привести к виду квадратного равенства. Для этого вводится переменная m = p2. Тогда заданное уравнение можно записать как 4 m2 — 5m + 1 = 0.

Решение биквадратных уравнений примеры и их решение

Теперь можно определить дискриминант: D = (-5)2 — 4 * 4 * 1 = 9. Используя формулы нахождения корней, вычисляют: m1 = (5+3) / 8 = 1, m2 = (5−3) / 8 = ¼. Оба ответа удовлетворяют условию, то есть больше нуля. Подставив полученные значения в исходные выражения, решают неполные квадратные уравнения: p1 = 1; p2 = -1; p3 = ½; p4 = -½. Это цифры и будут искомыми корнями.

Довольно легко решаются уравнения с помощью метода Виета. Вероятность допущения ошибки при определении корней в этом случае стремится к нулю. Например, p4 — 10 * p2 + 9 = 0. Чтобы избавиться от четвёртой степени, вводят переменную p. В результате уравнение принимает вид: p2 — 10 * p2 + 9 = 0. Теперь можно найти корни, используя обратную теорему Виета: p 1 = 9, p 2 = 1. Так как оба ответа больше нуля, то действительными корнями уравнения будут: p 1 = 3, p 2 = -3, p 3 = 1, p 2 = -1.

Определить, что решать биквадратное уравнение не имеет смысла, можно, используя комбинаторный анализ. Например, p4 + 11*p2 + 10 = 0. Для его решения необходимо расписать каждые члены уравнения, используя определение равенства. Так как каждый член p4, 11*p2, 10 должен быть больше либо равен нулю, то справедливым будет выражение: p4 + 11*p2 + 10 > 0.

Решение биквадратных уравнений примеры и их решение

Отсюда можно сделать вывод, что p4 + 11*p2 + 10 решения не имеет, ведь сумма неотрицательных чисел с положительным не может быть равной нулю. И также можно разложить и доказать бесперспективность поиска для задания с одними минусами, например, -2 p4 — 45 p2 — 12 = 0.

Но не всегда уравнение будет иметь четыре корня. Например, p 4 +4 *p 2 21=0. Если принять p2 = m, квадратное уравнение изменится до вида: m 2 +4*m -21=0, отсюда m 1 = -7, m 2 =3. Теперь нужно решить первоначальное уравнение. Первый ответ не имеет действительных корней, из второго же находят решение. Им будут корни: m 1 = (3)½ и m 2 = -(3)½.

Видео:Биквадратное уравнениеСкачать

Биквадратное уравнение

Разложение на множители

Самостоятельная работа, дающаяся в школе, часто предполагает решение биквадратных равенств методом разложения на множители. Связанно это с тем, что этот способ позволяет понять принцип нахождения корней для многочлена любой степени.

Решение биквадратных уравнений примеры и их решение

Например, нужно разложить уравнение p4 + p3 — 6p2 на множители. В первом действии неизвестное выносится за скобки p2 (p2 + p — 6). Во втором, используя формулу нахождения решений, вычисляют: p 1 = (-1 + (12 — 4 * (-6))½) / 2, p 2 = (-1 — (12 — 4 * (-6))½) / 2. Отсюда корни уравнения будут p1 = -3, p2 = 2. Подставив полученные значения в заданное выражение, можно записать: p 2 + p — 6 = (p — p 1)*(p — p 2) = (p + 3) * (p-2).

Пошагово описать разложение многочлена можно на следующем примере: p4 + 2p3 + 3p2 + 4p +2. Решают его в следующей последовательности:

Решение биквадратных уравнений примеры и их решение

  • Предположив, что решение имеет хотя бы один рациональный корень, можно утверждать, что он и будет делителем второго члена. Значит, он будет любым из цифр: -2, -1, 1, 2.
  • Подставив эти числа в уравнение, получим четыре ответа: 6, 0, 12, 54. То есть одним из корней будет -1.
  • Разделив многочлен на (p- p1), запишем уравнение p3 + p2 + 2p + 2.
  • Теперь можно составить равенство: p4 + 2p3 + 3p2 + 4p +2 = (p + 1) * (p 3 + p2 + 2p + 2).
  • Для решения уравнения, стоящего во второй части произведения, делают предположение, что кубический многочлен имеет целый корень числа 2, а значит, его ответом будет так же -1.
  • Сгруппировав члены, можно записать: (p + 1) * p2 + 2 * (p + 1) = (p + 1) * (p2 + 2).
  • Из-за того, что уравнение p2 + 2 = 0 не может иметь действительных корней, разложение будет иметь вид: p4 + 2p3 + 3p2 + 4p +2 = (p + 1)2 * (p2 + 2).

    Вычисление корней требует внимательности и усердия. Для проверки своих навыков можно использовать онлайн-калькуляторы. Это сервисы, использующие специальное программное обеспечение, часто написанное на Паскале, умеют быстро и безошибочно рассчитывать корни любого примера.

    Чтобы решить биквадратное уравнение онлайн, особых умений или знаний правил не нужно. Всё, что требуется — это ввести в предложенную форму параметры решаемого равенства. Из наиболее популярных интернет-порталов выделяют Allcalc. Используя его, можно проверить свои знания, исправить допущенные ошибки при самостоятельном расчёте. Причём свои услуги сайт предлагает совершенно бесплатно.

    Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

    Решение квадратных уравнений. Дискриминант. 8 класс.

    Биквадратные уравнения

    Биквадратное уравнение — уравнение, которое можно привести к виду:

    Для решения биквадратных уравнений x 2 заменяется на любую другую букву, например, на y, то есть:

    Следовательно, относительно y, уравнение является квадратным и решается по формуле корней квадратного уравнения, а затем вычисляются корни биквадратного уравнения, если они есть.

    Пример. Решить уравнение:

    Решение: Заменяем x 2 на y, чтобы получить квадратное уравнение:

    D = b 2 — 4ac = (-10) 2 — 4 · 1 · 9 = 100 — 36 = 64, D > 0.

    📸 Видео

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

    Биквадратное уравнениеСкачать

    Биквадратное уравнение

    БИКВАДРАТНОЕ УРАВНЕНИЕ класс математикаСкачать

    БИКВАДРАТНОЕ УРАВНЕНИЕ класс математика

    ОГЭ 2019 ЗАДАНИЕ 21. Биквадратное уравнение.Скачать

    ОГЭ 2019 ЗАДАНИЕ 21. Биквадратное уравнение.

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

    Неполные квадратные уравнения. Алгебра, 8 классСкачать

    Неполные квадратные уравнения. Алгебра, 8 класс

    Решение уравнений сводящихся к квадратным уравнениям. Биквадратные уравнения – 8 класс алгебраСкачать

    Решение уравнений сводящихся к квадратным уравнениям. Биквадратные уравнения – 8 класс алгебра

    Биквадратное уравнениеСкачать

    Биквадратное уравнение

    биквадратное уравнение пример 2Скачать

    биквадратное уравнение пример 2

    Как решать квадратные уравнения без дискриминантаСкачать

    Как решать квадратные уравнения без дискриминанта

    Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

    Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0
  • Поделиться или сохранить к себе: