Решение алгебраических уравнений неравенства 8 класс i

Решение линейных неравенств

Решение алгебраических уравнений неравенства 8 класс i

О чем эта статья:

Видео:8 класс, 40 урок, Решение линейных неравенствСкачать

8 класс, 40 урок, Решение линейных неравенств

Основные понятия

Алгебра не всем дается легко с первого раза. Чтобы не запутаться во всех темах и правилах, важно изучать темы последовательно и по чуть-чуть. Сегодня узнаем, как решать линейные неравенства.

Неравенство — это алгебраическое выражение, в котором используются знаки ≠, , ≤, ≥.

Линейные неравенства — это неравенства вида:

где a и b — любые числа, a ≠ 0, x — неизвестная переменная. Как решаются неравенства рассмотрим далее в статье.

Решение — значение переменной, при котором неравенство становится верным.

Решить неравенство значит найти все значения переменной, при которой неравенство верное.

Видео:Как решать неравенства? Часть 1| МатематикаСкачать

Как решать неравенства? Часть 1| Математика

Типы неравенств

  1. Строгие — используют только больше (>) или меньше ( b — это значит, что a больше, чем b.
  2. a > b и b > и

Видео:Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnlineСкачать

Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnline

Линейные неравенства: свойства и правила

Вспомним свойства числовых неравенств:

  1. Если а > b , то b а.
  2. Если а > b и b > c, то а > c. И также если а b, то а + c > b+ c (и а – c > b – c).

Если же а b и c > d, то а + c > b + d.

Если а 8 почленно вычесть 3 > 2, получим верный ответ 9 > 6. Если из 12 > 8 почленно вычесть 7 > 2, то полученное будет неверным.

Если а d, то а – c b, m — положительное число, то mа > mb и

Обе части можно умножить или разделить на одно положительное число (знак при этом остаётся тем же).

Если же а > b, n — отрицательное число, то nа

Обе части можно умножить или разделить на одно отрицательное число, при этом знак неравенства поменять на противоположный.

  1. Если а > b и c > d, где а, b, c, d > 0, то аc > bd.

Если а 0, то аc b, где а, b > 0, то а2 > b2, и если а b, где а, b > 0, то
b» height=»45″ src=»https://lh5.googleusercontent.com/MuRDPQeqxIZvVG_mHVaktFp6nlIEEbz8zdRs1ZW8CZbZacJrS4aKzrDyhKxXpJvc35TSAgiRpqr-63sGzL9_sPU80vFhR0ZDAmSmRFZtwEldDkWRttfSGuaJJIb7xWxZDugU3xTt»>

Решением неравенства с одной переменной называется значение переменной, которое трансформирует его в верное числовое неравенство.

Чтобы упростить процесс нахождения корней неравенства, нужно провести равносильные преобразования — то заменить данное неравенство более простым. При этом все решения должны быть сохранены без возникновения посторонних корней.

Свойства выше помогут нам использовать следующие правила.

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Правила линейных неравенств

  1. Любой член можно перенести из одной части в другую с противоположным знаком. Знак неравенства при этом не меняется.
  • 2x − 3 > 6 ⇒ 2x > 6 + 3 ⇒ 2x > 9.
  1. Обе части можно умножить или разделить на одно положительное число. Знак неравенства при этом не меняется.
  • Умножим обе части на пять 2x > 9 ⇒ 10x > 45.
  1. Обе части можно умножить или разделить на одно отрицательное число. Знак неравенства при этом меняется на противоположный.
  • Разделим обе части на минус два 2x > 9 ⇒ 2x : (–2) > 9 : (–2) ⇒ x

    Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

    Решение квадратных уравнений. Дискриминант. 8 класс.

    Решение линейных неравенств

    Линейные неравенства с одной переменной x выглядят так:

    где a и b — действительные числа. А на месте x может быть обычное число.

    Видео:Урок по теме РЕШЕНИЕ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕННОЙСкачать

    Урок по теме РЕШЕНИЕ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕННОЙ

    Равносильные преобразования

    Для решения ax + b , ≥) нужно применить равносильные преобразования неравенства. Рассмотрим два случая: когда коэффициент равен и не равен нулю.

    Алгоритм решения ax + b , ≥) является верным, когда исходное имеет решение при любом значении. Неверно тогда, когда исходное не имеет решений.

    Рассмотрим пример: 0 * x + 5 > 0.

    Как решаем:

    • Данное неравенство 0 * x + 5 > 0 может принимать любое значение x.
    • Получается верное числовое неравенство 5 > 0. Значит его решением может быть любое число.

    Видео:Алгебра 8 класс. Решение линейных неравенствСкачать

    Алгебра 8 класс.  Решение линейных неравенств

    Метод интервалов

    Метод интервалов можно применять для линейных неравенств, когда значение коэффициента x не равно нулю.

    Метод интервалов заключается в следующем:

    • вводим функцию y = ax + b;
    • ищем нули для разбиения области определения на промежутки;
    • отмечаем полученные корни на координатной прямой;
    • определяем знаки и отмечаем их на интервалах.

    Алгоритм решения ax + b , ≥) при a ≠ 0 с использованием метода интервалов:

    • найдем нули функции y = ax + b для решения уравнения ax + b = 0.

    Если a ≠ 0, тогда решением будет единственный корень — х₀;

    • начертим координатную прямую с изображением точки с координатой х₀, при строгом неравенстве точку рисуем выколотой, при нестрогом — закрашенной;
    • определим знаки функции y = ax + b на промежутках.

    Для этого найдем значения функции в точках на промежутке;

      если решение неравенства со знаками > или ≥ — добавляем штриховку над положительным промежутком на координатной прямой, если 0.

    Как решаем:

    В соответствии с алгоритмом, сначала найдем корень уравнения − 6x + 12 = 0,

    Изобразим координатную прямую с отмеченной выколотой точкой, так как неравенство является строгим.

    Решение алгебраических уравнений неравенства 8 класс i

    Определим знаки на промежутках.

    Чтобы определить на промежутке (−∞, 2), необходимо вычислить функцию y = −6x + 12 при х = 1. Получается, что −6 * 1 + 12 = 6, 6 > 0. Знак на промежутке является положительным.

    Определяем знак на промежутке (2, + ∞) , тогда подставляем значение х = 3. Получится, что −6 * 3 + 12 = − 6, − 6

    Видео:Алгебра 8 класс (Урок№41 - Решение неравенств с одной переменной.)Скачать

    Алгебра 8 класс (Урок№41 - Решение неравенств с одной переменной.)

    Графический способ

    Смысл графического решения неравенств заключается в том, чтобы найти промежутки, которые необходимо изобразить на графике.

    Алгоритм решения y = ax + b графическим способом

    • во время решения ax + b 0 определить промежуток, где график изображается выше Ох;
    • во время решения ax + b ≥ 0 определить промежуток, где график находится выше оси Ох или совпадает.

    Рассмотрим пример: −5 * x − √3 > 0.

    Как решаем

    • Так как коэффициент при x отрицательный, данная прямая является убывающей.
    • Координаты точки пересечения с Ох равны (−√3 : 5; 0).
    • Неравенство имеет знак >, значит нужно обратить внимание на промежуток выше оси Ох.
    • Поэтому открытый числовой луч (−∞, −√3 : 5) будет решением.

    Ответ: (−∞, −√3 : 5) или x

    Видео:Рациональные неравенства. 8 класс.Скачать

    Рациональные неравенства. 8 класс.

    Алгебра. Урок 8. Неравенства, системы неравенств.

    Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.

    Решение алгебраических уравнений неравенства 8 класс i

    Видео-уроки на канале Ёжику Понятно. Подпишись!

    Содержание страницы:

    • Неравенства
    • Линейные неравенства

    Видео:Как решить неравенства с модулем?Скачать

    Как решить неравенства с модулем?

    Неравенства

    Что такое неравенство? Если взять любое уравнение и знак = поменять на любой из знаков неравенства:

    ≥ больше или равно,

    ≤ меньше или равно,

    то получится неравенство.

    Линейные неравенства

    Линейные неравенства – это неравенства вида:

    a x b a x ≤ b a x > b a x ≥ b

    где a и b – любые числа, причем a ≠ 0, x – переменная.

    Примеры линейных неравенств:

    3 x 5 x − 2 ≥ 0 7 − 5 x 1 x ≤ 0

    Решить линейное неравенство – получить выражение вида:

    x c x ≤ c x > c x ≥ c

    где c – некоторое число.

    Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.

    • Если знак неравенства строгий > , , точка на оси будет выколотой (не закрашенной), а скобка, обнимающая точку – круглой .

    Смысл выколотой точки в том, что сама точка в ответ не входит.

    • Если знак неравенства нестрогий ≥ , ≤ , точка на оси будет жирной (закрашенной), а скобка, обнимающая точку – квадратной .

    Смысл жирной точки в том, что сама точка входит в ответ.

    • Скобка, которая обнимает знак бесконечности всегда круглая – не можем мы объять необъятное, как бы нам этого ни хотелось.

    Таблица числовых промежутков

    Решение алгебраических уравнений неравенства 8 класс i

    НеравенствоГрафическое решениеФорма записи ответа
    x cx ∈ ( − ∞ ; c )
    x ≤ cx ∈ ( − ∞ ; c ]
    x > cx ∈ ( c ; + ∞ )
    x ≥ c

    Алгоритм решения линейного неравенства

    1. Раскрыть скобки (если они есть), перенести иксы в левую часть, числа в правую и привести подобные слагаемые. Должно получиться неравенство одного из следующих видов:

    a x b a x ≤ b a x > b a x ≥ b

    1. Пусть получилось неравенство вида a x ≤ b. Для того, чтобы его решить, необходимо поделить левую и правую часть неравенства на коэффициент a.
    • Если a > 0 то неравенство приобретает вид x ≤ b a .
    • Если a 0 , то знак неравенства меняется на противоположный , неравенство приобретает вид x ≥ b a .
    1. Записываем ответ в соответствии с правилами, указанными в таблице числовых промежутков.

    Примеры решения линейных неравенств:

    №1. Решить неравенство 3 ( 2 − x ) > 18.

    Решение:

    Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

    − 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )

    Делим обе части неравенства на ( -3 ) – коэффициент, который стоит перед x . Так как − 3 0 , знак неравенства поменяется на противоположный . x 12 − 3 ⇒ x − 4 Остается записать ответ (см. таблицу числовых промежутков).

    Ответ: x ∈ ( − ∞ ; − 4 )

    №2. Решить неравество 6 x + 4 ≥ 3 ( x + 1 ) − 14.

    Решение:

    Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

    6 x + 4 ≥ 3 x + 3 − 14

    6 x − 3 x ≥ 3 − 14 − 4

    3 x ≥ − 15 | ÷ 3 Делим обе части неравенства на ( 3 ) – коэффициент, который стоит перед x . Так как 3 > 0, знак неравенства после деления меняться не будет.

    x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).

    Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).

    №1. Решить неравенство 6 x − 1 ≤ 2 ( 3 x − 0,5 ).

    Решение:

    Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

    6 x − 6 x ≤ − 1 + 1

    Получили верное неравенство, которое не зависит от переменной x . Возникает вопрос, какие значения может принимать переменная x , чтобы неравенство выполнялось? Любые! Какое бы значение мы ни взяли, оно все равно сократится и результат неравенства будет верным. Рассмотрим три варианта записи ответа.

    Ответ:

    1. x – любое число
    2. x ∈ ( − ∞ ; + ∞ )
    3. x ∈ ℝ

    №2. Решить неравенство x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).

    Решение:

    Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

    x + 6 − 9 x > − 8 x + 48

    − 8 x + 8 x > 48 − 6

    Получили неверное равенство, которое не зависит от переменной x . Какие бы значения мы ни подставляли в исходное неравенство, результат окажется одним и тем же – неверное неравенство. Ни при каких значениях x исходное неравенство не станет верным. Данное неравенство не имеет решений. Запишем ответ.

    Квадратные неравенства

    Квадратные неравенства – это неравенства вида: a x 2 + b x + c > 0 a x 2 + b x + c ≥ 0 a x 2 + b x + c 0 a x 2 + b x + c ≤ 0 где a, b, c — некоторые числа, причем a ≠ 0, x — переменная.

    Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.

    Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).

    Алгоритм решения квадратного неравенства методом интервалов

    1. Решить уравнение a x 2 + b x + c = 0 и найти корни x 1 и x 2 .
    1. Отметить на числовой прямой корни трехчлена.

    Если знак неравенства строгий > , , точки будут выколотые.

    Если знак неравенства нестрогий ≥ , ≤ , точки будут жирные (заштрихованный).

    1. Расставить знаки на интервалах. Для этого надо выбрать точку из любого промежутка (в примере взята точка A ) и подставить её значение в выражение a x 2 + b x + c вместо x .

    Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Точки жирные, если знак неравенства нестрогий.

    Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Точки жирные, если знак неравенства нестрогий.

    1. Выбрать подходящие интервалы (или интервал).

    Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.

    Если знак неравенства или ≤ в ответ выбираем интервалы со знаком -.

    Примеры решения квадратных неравенств:

    №1. Решить неравенство x 2 ≥ x + 12.

    Решение:

    Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    a = 1, b = − 1, c = − 12

    D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 1 ) ± 49 2 ⋅ 1 = 1 ± 7 2 = [ 1 + 7 2 = 8 2 = 4 1 − 7 2 = − 6 2 = − 3

    Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 6 . Подставляем эту точку в исходное выражение:

    x 2 − x − 1 = 6 2 − 6 − 1 = 29 > 0

    Это значит, что знак на интервале, в котором лежит точка 6 будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    В ответ пойдут два интервала. В математике для объединения нескольких интервалов используется знак объединения: ∪ .

    Точки -3 и 4 будут в квадратных скобках, так как они жирные.

    Ответ: x ∈ ( − ∞ ; − 3 ] ∪ [ 4 ; + ∞ )

    №2. Решить неравенство − 3 x − 2 ≥ x 2 .

    Решение:

    Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    a = − 1, b = − 3, c = − 2

    D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ ( − 2 ) = 9 − 8 = 1

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 1 2 ⋅ ( − 1 ) = 3 ± 1 − 2 = [ 3 + 1 − 2 = 4 − 2 = − 2 3 − 1 − 2 = 2 − 2 = − 1

    x 1 = − 2, x 2 = − 1

    Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0 . Подставляем эту точку в исходное выражение:

    − x 2 − 3 x − 2 = − ( 0 ) 2 − 3 ⋅ 0 − 2 = − 2 0

    Это значит, что знак на интервале, в котором лежит точка 0 будет − .

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Поскольку знак неравенства ≥ , выбираем в ответ интервал со знаком +.

    Точки -2 и -1 будут в квадратных скобках, так как они жирные.

    Ответ: x ∈ [ − 2 ; − 1 ]

    №3. Решить неравенство 4 x 2 + 3 x .

    Решение:

    Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    a = − 1, b = − 3, c = 4

    D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ 4 = 9 + 16 = 25

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 25 2 ⋅ ( − 1 ) = 3 ± 5 − 2 = [ 3 + 5 − 2 = 8 − 2 = − 4 3 − 5 − 2 = − 2 − 2 = 1

    Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение:

    − x 2 − 3 x + 4 = − ( 2 ) 2 − 3 ⋅ 2 + 4 = − 6 0

    Это значит, что знак на интервале, в котором лежит точка 2 , будет -.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Поскольку знак неравенства , выбираем в ответ интервалы со знаком − .

    Точки -4 и 1 будут в круглых скобках, так как они выколотые.

    Ответ: x ∈ ( − ∞ ; − 4 ) ∪ ( 1 ; + ∞ )

    №4. Решить неравенство x 2 − 5 x 6.

    Решение:

    Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    a = 1, b = − 5, c = − 6

    D = b 2 − 4 a c = ( − 5 ) 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 25 + 25 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 5 ) ± 49 2 ⋅ 1 = 5 ± 7 2 = [ 5 + 7 2 = 12 2 = 6 5 − 7 2 = − 2 2 = − 1

    Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 10. Подставляем эту точку в исходное выражение:

    x 2 − 5 x − 6 = 10 2 − 5 ⋅ 10 − 6 = 100 − 50 − 6 = 44 > 0

    Это значит, что знак на интервале, в котором лежит точка 10 будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Поскольку знак неравенства , выбираем в ответ интервал со знаком -.

    Точки -1 и 6 будут в круглых скобках, так как они выколотые

    Ответ: x ∈ ( − 1 ; 6 )

    №5. Решить неравенство x 2 4.

    Решение:

    Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.

    ( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0 [ x = 2 x = − 2

    Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 3 . Подставляем эту точку в исходное выражение:

    x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0

    Это значит, что знак на интервале, в котором лежит точка 3 будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Поскольку знак неравенства , выбираем в ответ интервал со знаком − .

    Точки -2 и 2 будут в круглых скобках, так как они выколотые.

    Ответ: x ∈ ( − 2 ; 2 )

    №6. Решить неравенство x 2 + x ≥ 0.

    Решение:

    Выносим общий множитель за скобку, находим корни уравнения x 2 + x = 0.

    x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1

    Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 1 . Подставляем эту точку в исходное выражение:

    x 2 + x = 1 2 + 1 = 2 > 0

    Это значит, что знак на интервале, в котором лежит точка 1 будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Поскольку знак неравенства ≥ , выбираем в ответ интервалы со знаком +.

    В ответ пойдут два интервала. Точки -1 и 0 будут в квадратных скобках, так как они жирные.

    Ответ: x ∈ ( − ∞ ; − 1 ] ∪ [ 0 ; + ∞ )

    Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.

    Дробно рациональные неравенства

    Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:

    f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

    Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).

    Примеры дробно рациональных неравенств:

    x − 1 x + 3 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3

    Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.

    Алгоритм решения дробно рациональных неравенств:

    1. Привести неравенство к одному из следующих видов (в зависимости от знака в исходном неравенстве):

    f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

    1. Приравнять числитель дроби к нулю f ( x ) = 0. Найти нули числителя .
    1. Приравнять знаменатель дроби к нулю g ( x ) = 0. Найти нули знаменателя .

    В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.

    1. Нанести нули числителя и нули знаменателя на ось x .

    Вне зависимости от знака неравенства
    при нанесении на ось x нули знаменателя всегда выколотые .

    Если знак неравенства строгий ,
    при нанесении на ось x нули числителя выколотые .

    Если знак неравенства нестрогий ,
    при нанесении на ось x нули числителя жирные .

    1. Расставить знаки на интервалах.
    1. Выбрать подходящие интервалы и записать ответ.

    Примеры решения дробно рациональных неравенств:

    №1. Решить неравенство x − 1 x + 3 > 0.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
    1. Приравниваем числитель к нулю f ( x ) = 0.

    x = 1 — это ноль числителя . Поскольку знак неравенства строгий, ноль числителя при нанесени на ось x будет выколотым. Запомним это.

    1. Приравниваем знаменатель к нулю g ( x ) = 0.

    x = − 3 — это ноль знаменателя . При нанесении на ось x точка будет всегда выколотой (вне зависимости от знака неравенства) .

    1. Наносим нули числителя и нули знаменателя на ось x .

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) : x − 1 x + 3 = 2 − 1 2 + 3 = 1 5 > 0,

    Это значит, что знак на интервале, в котором лежит точка 2 будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.

    В ответ пойдут два интервала. Точки -3 и 1 будут в круглых скобках, так как обе они выколотые.

    Ответ: x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )

    №2. Решить неравенство 3 ( x + 8 ) ≤ 5.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Привести неравенство к виду f ( x ) g ( x ) ≤ 0.

    3 ( x + 8 ) − 5 x + 8 ≤ 0

    3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0

    3 − 5 ( x + 8 ) x + 8 ≤ 0

    3 − 5 x − 40 x + 8 ≤ 0

    − 5 x − 37 x + 8 ≤ 0

    1. Приравнять числитель к нулю f ( x ) = 0.

    x = − 37 5 = − 37 5 = − 7,4

    x = − 7,4 — ноль числителя . Поскольку знак неравенства нестрогий, при нанесении этой точки на ось x точка будет жирной.

    1. Приравнять знаменатель к нулю g ( x ) = 0.

    x = − 8 — это ноль знаменателя . При нанесении на ось x , точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x .

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) :

    − 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 0

    Это значит, что знак на интервале, в котором лежит точка 0 будет -.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства ≤ , выбираем в ответ интервалы со знаком -.

    В ответ пойдут два интервала. Точка -8 будет в круглой скобке, так как она выколотая, точка -7,4 будет в квадратных скобках, так как она жирная.

    Ответ: x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )

    №3. Решить неравенство x 2 − 1 x > 0.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
    1. Приравнять числитель к нулю f ( x ) = 0.

    ( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1

    x 1 = 1, x 2 = − 1 — нули числителя . Поскольку знак неравенства строгий, при нанесении этих точек на ось x точки будут выколотыми.

    1. Приравнять знаменатель к нулю g ( x ) = 0.

    x = 0 — это ноль знаменателя . При нанесении на ось x , точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x .

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) :

    x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.

    В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.

    Ответ: x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )

    Системы неравенств

    Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.

    Пример системы неравенств:

    Алгоритм решения системы неравенств

    1. Решить первое неравенство системы, изобразить его графически на оси x .
    1. Решить второе неравенство системы, изобразить его графически на оси x .
    1. Нанести решения первого и второго неравенств на ось x .
    1. Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.

    Примеры решений систем неравенств:

    №1. Решить систему неравенств < 2 x − 3 ≤ 5 7 − 3 x ≤ 1

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    2 x ≤ 8 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

    Точка 4 на графике жирная, так как знак неравенства нестрогий.

    1. Решаем второе неравенство системы.

    − 3 x ≤ − 6 | ÷ ( − 3 ), поскольку − 3 0, знак неравенства после деления меняется на противоположный.

    Графическая интерпретация решения:

    Точка 2 на графике жирная, так как знак неравенства нестрогий.

    1. Наносим оба решения на ось x .
    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается на отрезке от 2 до 4 . Точки 2 и 4 в ответе буду в квадратных скобках, так как обе они жирные.

    №2. Решить систему неравенств < 2 x − 1 ≤ 5 1 − 3 x − 2

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    2 x ≤ 6 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

    Точка 3 на графике жирная, так как знак неравенства нестрогий.

    1. Решаем второе неравенство системы.

    3 x − 3 | ÷ 3 , поскольку 3 > 0, знак неравенства после деления сохраняется.

    Графическая интерпретация решения:

    Точка -1 на графике выколотая, так как знак неравенства строгий.

    1. Наносим оба решения на ось x .
    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается на самом левом участке. Точка -1 будет в ответе в круглых скобках, так как она выколотая.

    Ответ: x ∈ ( − ∞ ; − 1 )

    №3. Решить систему неравенств 5 − x

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    Графическая интерпретация решения:

    1. Решаем второе неравенство системы

    2 x > 12 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

    Графическая интерпретация решения:

    1. Наносим оба решения на ось x .
    1. Выбираем подходящие участки и записываем ответ.

    Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.

    №4. Решить систему неравенств 0 2 x + 3 ≤ x 2

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    Графическая интерпретация решения первого неравенства:

    1. Решаем второе неравенство системы

    Решаем методом интервалов.

    a = − 1, b = 2, c = 3

    D = b 2 − 4 a c = 2 2 − 4 ⋅ ( − 1 ) ⋅ 3 = 4 + 12 = 16

    D > 0 — два различных действительных корня.

    x 1,2 = − b ± D 2 a = − 2 ± 16 2 ⋅ ( − 1 ) = − 2 ± 4 − 2 = [ − 2 − 4 − 2 = − 6 − 2 = 3 − 2 + 4 − 2 = 2 − 2 = − 1

    Наносим точки на ось x и расставляем знаки на интервалах. Поскольку знак неравенства нестрогий, обе точки будут заштрихованными.

    Графическая интерпретация решения второго неравенства:

    1. Наносим оба решения на ось x .
    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается в двух интервалах. Для того, чтобы в ответе объединить два интервала, используется знак объединения ∪ .

    Точка -4 будет в круглой скобке, так как она выколотая, а точки -1 и 3 в квадратных, так как они жирные.

    Видео:Решение квадратных неравенств методом интервалов. 8 класс.Скачать

    Решение квадратных неравенств методом интервалов. 8 класс.

    Урок алгебры в 8-м классе по теме «Линейные уравнения и линейные неравенства: сравнительный анализ»

    Разделы: Математика

    Цели урока.

    • Повторение, закрепление основных понятий, свойств, способов решений.
    • Обобщение имеющихся знаний по теме.
    • Развитие мыслительных операций: сравнение, анализ, синтез, формирование навыков исследовательской деятельности.
    • Развитие речи.
    • Воспитание коммуникативных качеств личности.

    Место урока. После изучения темы «Решение линейных неравенств».

    Форма организации работы учащихся: работа в группах по 2 человека.

    Запись на доске.

    Найдём порядок в хаосе, который нас окружает.

    Сначала я открывал истины, известные многим, затем стал открывать истины, известные немногим, и, наконец, стал открывать истины, никому ещё неизвестные. Видимо, это и есть путь становления творческой стороны интеллекта, путь развития изобретательного таланта. (Циолковский К.Э.)

    Ход урока

    1. Организационный момент. Мобилизующее начало.

    Комментарий записей на доске и экране. Сообщение темы. Конкретизация предстоящей работы. Задачи урока. План работы.

    Задачи:

    • повторить определения и свойства, закрепить их практически;
    • обобщить все теоретические сведения, составить сводную таблицу;
    • найти в рассматриваемом материале общее, найти различие;
    • расставить акценты на важных особенностях;
    • разработать памятку для использования при решении линейных уравнений и неравенств..

    План работы на уроке.

    1. Повторение: теория и практика. Самостоятельно в группах.

    2. Совместное прослушивание итогов работы ( у доски). Индивидуальные ответы.

    3. Анализ полученной информации. Общее. Различие. Совместное обсуждение.

    4. Обсуждение важных моментов.

    5. Просмотр информационного проекта (Приложение 2) по теме «Больше, меньше и равно. Эволюция понятий».

    2. Домашнее задание (по усмотрению). Комментарий к выполнению.

    3. Начало работы.

    Группы получают задания (карточки №1 -№10) с учетом уровня подготовленности учащихся. Краткий комментарий к выполнению заданий. Оговаривается время выполнения и порядок ответов. Перечень всех теоретических вопросов на экране. т к учащиеся должны видеть вопросы, над которыми работают другие. (Слайд 2 приложение 1).

    1) Сформулировать определение линейного уравнения; линейного неравенства.

    2) Что значит решить уравнение? Что значит решить неравенство?

    3) Что такое корень уравнения? Что такое решение неравенства?

    4) Какие уравнения называют равносильными? Какие неравенства называют равносильными?

    5) Сформулировать свойства равносильности уравнений. Сформулировать свойства равносильности неравенств.

    4. Решения карточек №1 — №10.

    Выполняются у доски после некоторой предварительной подготовки на местах.

    Содержание заданий на карточках.

    1) Дать определение линейного уравнения; линейного неравенства.

    2) А) Выписать линейные уравнения и к ним сводящиеся.

    Б) Выписать линейные неравенства и к ним сводящиеся.

    • -17;
    • х 3 ;
    • 2х = 8;
    • -6 : 5 + 0,8;
    • 15 = 5*3;
    • ав = ва;
    • 1/х = 2;
    • -2(х — 2) 0;
    • -2 > 5; х 2 Решение алгебраических уравнений неравенства 8 класс i0;
    • 4(х — 6) + 3х = 0;

    1) Что такое корень уравнения? Что такое решение неравенства?

    2) Какое из чисел -1; 7; 3/7 является решением неравенства 3х > х + 2?

    3) Какое из чисел -1; 2; 0 является корнем уравнения 19х — 30 = 8?

    1) Какие уравнения называют равносильными?

    2) Можно ли считать указанные уравнения равносильными? Почему? Сформулировать свойства равносильности уравнений.

    А) Решение алгебраических уравнений неравенства 8 класс iх = 1 и х = Решение алгебраических уравнений неравенства 8 класс i;

    Б) 2х — 4 = 9 — 5х и 2х + 5х = 9 + 4.

    1) Какие неравенства называют равносильными?

    2) Можно ли считать неравенства равносильными? Почему? Сформулировать свойства равносильности неравенств.

    Б) 1,5х — 7 Решение алгебраических уравнений неравенства 8 класс i-6х и 1,5х + 6х Решение алгебраических уравнений неравенства 8 класс i7;

    В) Решение алгебраических уравнений неравенства 8 класс iи х Решение алгебраических уравнений неравенства 8 класс i10 .

    5 карточка. Случай, когда корней нет.

    Рассказать алгоритм решения линейного уравнения.

    Решить уравнение -2(х — 1) + 10 = — 0,5(4х + 6).

    6 карточка. Случай, когда корни — любые х.

    Решить уравнение 8х — 2(4х — 10 ) = 20.

    7 карточка. Случай, когда решений нет.

    Решить неравенство -2(х — 1) + 10 4;

  • -х >0.
  • 11. Задание для желающих (дополнительное, записано на доске).

    При каких значениях переменной х имеет смысл выражение Решение алгебраических уравнений неравенства 8 класс i?

    5. Прослушивание ответов по карточкам №1 — №4, просмотр решений.

    Содержание заданий и правильность решений некоторых заданий проверяется с помощью слайдов (слайды №3 -№8 приложение 1). Попутно осуществляется расстановка акцентов для заполнения таблицы, форма которой на доске.

    УравнениеНеравенство
    Определение
    Что значит решить:
    Что ищем в процессе решения
    Равносильные:
    Свойства равносильности

    После полного обсуждения таблица (таблица 1) выдаётся на парты и высвечивается на экране (слайд № 9 приложение 1)

    УравнениеНеравенство
    Определение линейногоУравнение вида ах =в, где а и в — числаНеравенство вида ах>в, (

    6. Работа с таблицей 1.

    Обсуждение содержания таблицы: сравнение, анализ общего, анализ различий.

    Прослушивание и обсуждение работ по карточкам №5 — №10.

    Акцентирование на важных особенностях после обсуждения карточек №4 -№8 (слайды № 12-№15приложение 1). Содержание карточки №9 и правильное решение (слайды№10 — №11 приложение 1).

    7. Создание памятки.

    Памятка будет полезна при решении уравнений и неравенств. Форма раздается каждому ученику для заполнения. Учащиеся предлагают возможные варианты полезных рекомендаций.

    ВажноЛинейные уравнения.Линейные неравенства.
    Алгоритм.
    Удобнее и быстрее
    Помни всегда
    Решая, решить!

    Как итог выполнения работы таблица 2 (Слайд №16). Таблицы выдаются учащимся.

    ВажноУравнениеНеравенство
    Алгоритм решения.1. Раскрыть скобки

    2. Перенести слагаемые

    3. Привести подобные

    4. Использовать свойство одновременного умножения или деления обеих частей уравнения.

    5. Записать ответ

    1. Раскрыть скобки

    2. Перенести слагаемые

    3. Привести подобные

    4. Использовать одно из свойств одновременного умножения или деления обеих частей неравенства.

    5. Записать ответ.

    Удобнее и быстрееЕсли а (множитель перед х) — обыкновенная дробь, то лучше использовать свойство умножения на обратное число.
    Помни всегдаПри делении или умножении частей неравенства на отрицательное число необходимо изменить знак неравенства на противоположный.
    Решая, решить

    Если в конечной записи переменная исчезла и осталось:

    :верное числовое равенство — то корнями являются любые х;

    :неверное числовое равенство — то корней нет

    :верное числовое неравенство — то решением являются любые х или Решение алгебраических уравнений неравенства 8 класс i

    :неверное числовое неравенство — тот решений нет Решение алгебраических уравнений неравенства 8 класс i

    Просмотр презентации (исследовательская работа ученицы). Приложение 2.

    Итоги урока. Отметки (желательно комментировать после ответов).

    🔥 Видео

    ЛИНЕЙНЫЕ НЕРАВЕНСТВА - Как решать линейные неравенства // Подготовка к ЕГЭ по МатематикеСкачать

    ЛИНЕЙНЫЕ НЕРАВЕНСТВА - Как решать линейные неравенства // Подготовка к ЕГЭ по Математике

    Числовые неравенства. Алгебра, 8 классСкачать

    Числовые неравенства. Алгебра, 8 класс

    Алгебра 8 класс : Решение линейных неравенствСкачать

    Алгебра 8 класс : Решение линейных неравенств

    СИСТЕМА НЕРАВЕНСТВ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

    СИСТЕМА НЕРАВЕНСТВ 😉 #егэ #математика #профильныйегэ #shorts #огэ

    Решение неравеств с одной переменной. Алгебра, 8 классСкачать

    Решение неравеств с одной переменной. Алгебра, 8 класс

    Решение квадратных неравенств | МатематикаСкачать

    Решение квадратных неравенств | Математика

    Решение неравенства методом интерваловСкачать

    Решение неравенства методом интервалов

    Дробно-рациональные уравнения. 8 класс.Скачать

    Дробно-рациональные уравнения. 8 класс.

    Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |Скачать

    Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |
Поделиться или сохранить к себе: