Разделы: Математика
В седьмом классе при изучении темы «Степень и ее свойства» можно один из уроков посвятить изучению показательных уравнений. Задания в учебнике, несмотря на их разнообразие, направлены в основном на механическую отработку свойств степени и о практическом применении нет речи. Познавательная активность в этом возрасте достаточно высока, и поэтому тема вводится легко. Разумеется, мы не будем называть уравнения показательными, а назовем урок «Решение уравнений, содержащих степени с натуральным показателем».
Ход урока
I. Ребята, сегодня вы сами определите тему урока, а для этого выполним следующее задание:
На доске записаны следующие степени:
Ребята, ответьте на вопрос: Какие свойства степени здесь перечислены?
Ученики называют свойства, которые параллельно оформляются на доске.
На доске появляется следующая таблица:
А теперь внимательно посмотрите на первую и вторую строку каждого столбца и назовите сходства и различия этих выражений.
Общее: в каждом из столбцов записано одно и то же свойство степени.
Различия: в первых строках переменная находится в показатели степени, во-вторых — в основании.
Вывод: при записи степени неизвестное может находиться как в показателе степени, так и в основании.
Ребята, ответьте на вопрос: что произойдет, если степень, содержащую переменную, прировнять к числу?
Получим равенство, содержащее переменную.
А как называют равенство, содержащее переменную?
Рассмотрим следующие уравнения:
Какое условие необходимо, чтобы равенство стало верным?
Чтобы показатели степени были равны.
Следовательно, х = 2.
Когда такое равенство будет верным?
Когда основания степени равны.
Следовательно, х = 7.
На основании данных примеров, мы можем сделать вывод, что степени а m = b n , при условии, что основания этих степеней равны, т.е. a = b и показатели их тоже равны, т.е. m = n.
Ребята, открывайте тетради, записывайте число и оставьте строчку для записи темы.
Продолжаем работать с таблицей.
Используя свойства степени, решим каждое уравнение.
Решение уравнений происходит в форме соревнования: первый, правильно решивший уравнение, записывает его решение на доске.
Итак, ребята, чем мы занимались на этом уроке?
Решали уравнения, содержащие степень.
А теперь, давайте попробуем сформулировать тему сегодняшнего урока.
Запишем ее в тетрадь.
Решим следующие уравнения (с последующей проверкой на доске):
1. 2.
Ответ х=3; Ответ х=36.
Уравнения для самостоятельной работы учащихся:
Подводится итог урока.
Домашнее задание дается в следующей форме: ребята получают работу с готовым решением и оценкой, они должны самостоятельно найти ошибку и исправить ее. Примеры заданий:
а)81к 4 =3 8
3 4 ·к 4 =3 4
(3к) 4 =(3 4 ) 4
3к=3 4
к=3 4 :3
к=3
Ответ: 3
а)120·5 n -100·5 n =500
5 n ·(120-100)=500
5 n ·20=500
5 n =500:20
5 n =125
5 n =5 3
n=3
Ответ: 3
б)х 3 ·х 2 =32
х 3 ·х 2 =2 5
х 5 =2 5
х=5
Ответ: 5
оценка 3
в) 2 n+7 :2 n+3 =(2 n+1 ) 2
2 n+7 :2 n+3 =2 2n+2
2 10 =2 2n+2
2 n+2 =10
2 n =8
n=4
Ответ: 4
Видео:КАК РЕШАТЬ УРАВНЕНИЯ СО СТЕПЕНЯМИ? Примеры | АЛГЕБРА 7 классСкачать
Степенные или показательные уравнения.
Для начала вспомним основные формулы степеней и их свойства.
Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a•a•…•a=a n
3. a n • a m = a n + m
5. a n b n = (ab) n
7. a n /a m = a n — m
Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.
Примеры показательных уравнений:
В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.
Приведем еще примеры показательных уравнений.
2 x *5=10
16 x — 4 x — 6=0
Теперь разберем как решаются показательные уравнения?
Возьмем простое уравнение:
Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:
Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.
Теперь подведем итоги нашего решения.
Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.
Теперь прорешаем несколько примеров:
Начнем с простого.
Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.
x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2
В следующем примере видно, что основания разные это 3 и 9.
Для начала переносим девятку в правую сторону, получаем:
Теперь нужно сделать одинаковые основания. Мы знаем что 9=3 2 . Воспользуемся формулой степеней (a n ) m = a nm .
Получим 9 х+8 =(3 2 ) х+8 =3 2х+16
3 3х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.
3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.
Смотрим следующий пример:
2 2х+4 — 10•4 х = 2 4
В первую очередь смотрим на основания, основания разные два и четыре. А нам нужно, чтобы были — одинаковые. Преобразовываем четверку по формуле (a n ) m = a nm .
4 х = (2 2 ) х = 2 2х
И еще используем одну формулу a n • a m = a n + m :
2 2х+4 = 2 2х •2 4
Добавляем в уравнение:
2 2х •2 4 — 10•2 2х = 24
Мы привели пример к одинаковым основаниям. Но нам мешают другие числа 10 и 24. Что с ними делать? Если приглядеться видно, что в левой части у нас повторяется 2 2х ,вот и ответ — 2 2х мы можем вынести за скобки:
2 2х (2 4 — 10) = 24
Посчитаем выражение в скобках:
2 4 — 10 = 16 — 10 = 6
Все уравнение делим на 6:
Представим 4=2 2 :
2 2х = 2 2 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.
9 х – 12*3 х +27= 0
Преобразуем:
9 х = (3 2 ) х = 3 2х
Получаем уравнение:
3 2х — 12•3 х +27 = 0
Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены. Число с наименьшей степенью заменяем:
Тогда 3 2х = (3 х ) 2 = t 2
Заменяем в уравнении все степени с иксами на t:
t 2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t1 = 9
t2 = 3
Возвращаемся к переменной x.
3 х = 9
3 х = 3 2
х1 = 2
Один корень нашли. Ищем второй, из t2:
t2 = 3 = 3 х
3 х = 3 1
х2 = 1
Ответ: х1 = 2; х2 = 1.
На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.
Видео:СТЕПЕНЬ С ЦЕЛЫМ ПОКАЗАТЕЛЕМ | алгебра 7 | ПОКАЗАТЕЛЬ СТЕПЕНИ | свойства степенейСкачать
Алгебра
План урока:
Видео:Алгебра 7 класс (Урок№45 - Уравнения первой степени с двумя неизвестными.)Скачать
Простейшие показательные уравнения а х = b
Его называют показательным уравнением, ведь переменная находится в показателе степени. Для его решения представим правую часть как степень числа 2:
Тогда уравнение будет выглядеть так:
Теперь и справа, и слева стоят степени двойки. Очевидно, что число 3 будет являться его корнем:
Является ли этот корень единственным? Да, в этом можно убедиться, если построить в координатной плоскости одновременно графики у = 2 х и у = 8. Второй график представляет собой горизонтальную линию.
Пересекаются эти графики только в одной точке, а потому найденное нами решение х = 3 является единственным.
Так как любая показательная функция является монотонной, то есть либо только возрастает (при основании, большем единицы), либо только убывает (при основании, меньшем единицы), то в общем случае ур-ние а х = b может иметь не более одного решения. Это является следствием известного свойства монотонных функций – горизонтальная линия пересекает их не более чем в одной точке.
Сразу отметим, что если в ур-нии вида а х = b число b не является положительным, то корней у ур-ния не будет вовсе. Это следует из того факта, что область значений показательной функции – промежуток (0; + ∞), ведь при возведении в степень любого положительного числа результат всё равно остается положительным. Можно проиллюстрировать это и графически:
Решая простейшее показательное уравнение
мы специально представляли правую часть как степень двойки:
После этого мы делали вывод, что если в обеих частях ур-ния стоят степени с равными основаниями (2 = 2), то у них должны быть равны и показатели. Это утверждение верно и в более общем случае. Если есть ур-ние вида
то его единственным решением является х = с.
Задание. Найдите решение показательного уравнения
Решение. У обоих частей равны основания, значит, равны и показатели:
Задание. Найдите корень уравнения
Решение. Заметим, что число 625 = 5 4 . Тогда ур-ние можно представить так:
Отсюда получаем, что х = 4.
Видно, что основной метод решения показательных уравнений основан на его преобразовании, при котором и в правой, и в левой части стоят степени с совпадающими основаниями.
Задание. При каком х справедливо равенство
Решение. Преобразуем число справа:
Теперь ур-ние можно решить:
Задание. Решите ур-ние
Решение. Любое число при возведении в нулевую степень дает единицу, а потому можно записать, что 1 = 127 0 . Заменим с учетом этого правую часть равенства:
Видео:Алгебра.7 класс (Урок№42 - Уравнения первой степени с одним неизвестным.)Скачать
Уравнения вида а f( x) = a g ( x)
Рассмотрим чуть более сложное показательное ур-ние
Для его решения заменим показатели степеней другими величинами:
Теперь наше ур-ние принимает вид
Такие ур-ния мы решать умеем. Надо лишь приравнять показатели степеней:
При решении подобных ур-ний введение новых переменных опускают. Можно сразу приравнять показатели степеней, если равны их основания:
В общем случае использованное правило можно сформулировать так:
Задание. Найдите корень ур-ния
Решение. Представим правую часть как степень двойки:
Тогда ур-ние примет вид
Теперь мы имеем право приравнять показатели:
Задание. Укажите значение х, для которого выполняется условие
Решение. Здесь удобнее преобразовать не правую, а левую часть. Заметим, что
С учетом этого можно записать
Основания у выражений слева и справа совпадают, а потому можно приравнять показатели:
Задание. Укажите корень показательного уравнения
Решение. Для перехода к одному основанию представим число 64 как квадрат восьми:
Тогда ур-ние примет вид:
Задание. Найдите корень ур-ния
Решение. Здесь ситуация чуть более сложная, ведь число 2 невозможно представить как степень пятерки, а пятерки не получится выразить как степень двойки. Однако у обеих степеней в ур-нии совпадают показатели. Напомним, что справедливы следующие правила работы со степенями:
С учетом этого поделим обе части ур-ния на выражения 5 3+х :
Задание. При каких х справедлива запись
Можно сделать преобразования, после которых в ур-нии останется только показательная функция 5 х . Для этого произведем следующие замены:
Перепишем исходное ур-ние с учетом этих замен:
Теперь множитель 5 х можно вынести за скобки:
Рассмотрим чуть более сложное ур-ние, которое может встретиться на ЕГЭ в задании повышенной сложности №13.
Задание. Найдите решение уравнения
Решение. Преобразуем левое слагаемое:
Перепишем начальное ур-ние, используя это преобразование
Теперь мы можем спокойно вынести множитель за скобки:
Получили одинаковые основания слева и справа. Значит, можно приравнять и показатели:
Это квадратное уравнение, решение которого не должно вызывать у десятиклассника проблем:
Видео:ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать
Задачи, сводящиеся к показательным уравнениям
Рассмотрим одну прикладную задачу, встречающуюся в ЕГЭ по математике.
Задание. Из-за радиоактивного распада масса слитка из изотопа уменьшается, причем изменение его массы описывается зависимостью m(t) = m0 • 2 – t/ T , где m0 – исходная масса слитка, Т – период полураспада, t – время. В начальный момент времени изотоп, чей период полураспада составляет 10 минут, весит 40 миллиграмм. Сколько времени нужно подождать, чтобы масса слитка уменьшилась до 5 миллиграмм.
Решение. Подставим в заданную формулу значения из условия:
m0 = 40 миллиграмм;
m(t) = 5 миллиграмм.
В результате мы получим ур-ние
из которого надо найти значение t. Поделим обе части на 40:
Далее решим чуть более сложную задачу, в которой фигурирует сразу 2 радиоактивных вещества.
Задание. На особо точных рычажных весах в лаборатории лежат два слитка из радиоактивных элементов. Первый из них весит в начале эксперимента 80 миллиграмм и имеет период полураспада, равный 10 минутам. Второй слиток весит 40 миллиграмм, и его период полураспада составляет 15 минут. Изначально весы наклонены в сторону более тяжелого слитка. Через сколько минут после начала эксперимента весы выровняются? Масса слитков меняется по закону m(t) = m0 • 2 – t/ T , где m0 и Т – это начальная масса слитка и период его полураспада соответственно.
Решение. Весы выровняются тогда, когда массы слитков будут равны. Если подставить в данную в задаче формулу условия, то получится, что масса первого слитка меняется по закону
а масса второго слитка описывается зависимостью
Приравняем обе формулы, чтобы найти момент времени, когда массы слитков совпадут (m1 = m2):
Делим обе части на 40:
Основания равны, а потому приравниваем показатели:
Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Уравнения с заменой переменных
В ряде случаев для решения показательного уравнения следует ввести новую переменную. В учебных заданиях такая замена чаще всего (но не всегда) приводит к квадратному ур-нию.
Задание. Решите уравнение методом замены переменной
Заметим, что в уравнении стоят степени тройки и девятки, но 3 2 = 9. Тогда введем новую переменную t = 3 x . Если возвести ее в квадрат, то получим, что
C учетом этого изначальное ур-ние можно переписать:
Получили обычное квадратное ур-ние. Решим его:
Мы нашли два значения t. Далее необходимо вернуться к прежней переменной, то есть к х:
Первое ур-ние не имеет решений, ведь показательная функция может принимать лишь положительные значения. Поэтому остается рассмотреть только второе ур-ние:
Задание. Найдите корни ур-ния
Решение. Здесь в одном ур-нии стоит сразу три показательных функции. Попытаемся упростить ситуацию и избавиться от одной из них. Для этого поделим ур-ние на выражение 4 4х+1 :
Так как 1 4х+1 = 1, мы можем записать:
Обратим внимание, что делить ур-ние на выражение с переменной можно лишь в том случае, если мы уверены, что оно не обращается в ноль ни при каких значениях х. В данном случае мы действительно можем быть в этом уверены, ведь величина 4 4х+1 строго положительна при любом х.
Вернемся к ур-нию. В нем стоят величины (9/4) 4х+1 и (3/2) 4х+1 . У них одинаковые показатели, но разные степени. Однако можно заметить, что
9/4 = (3/2) 2 , поэтому и (9/4) 4х+1 = ((3/2) 4х+1 ) 2 . Это значит, что перед нами уравнение с заменой переменных.
Произведем замену t = (3/2) 4х+1 , тогда (9/4) 4х+1 = ((3/2) 4х+1 ) 2 = t 2 . Далее перепишем ур-ние с новой переменной t:
Снова получили квадратное ур-ние.
Возвращаемся к переменной х:
И снова первое ур-ние не имеет корней, так как при возведении положительного числа в степень не может получится отрицательное число. Остается решить второе ур-ние:
Видео:Алгебра 7 класс с нуля | Математика | УмскулСкачать
Графическое решение показательных уравнений
Не всякое показательное уравнение легко или вообще возможно решить аналитическим способом. В таких случаях выручает графическое решение уравнений.
Задание. Найдите графическим способом значение х, для которого справедливо равенство
Решение. Построим в одной системе координат графики у = 3 х и у = 4 – х:
Видно, что графики пересекаются в одной точке с примерными координатами (1; 3). Так как графический метод не вполне точный, следует подставить х = 1 в ур-ние и убедиться, что это действительно корень ур-ния:
Получили верное равенство, значит, х = 1 – это действительно корень ур-ния.
Задание. Решите графически ур-ние
Решение. Перенесем вправо все слагаемые, кроме 2 х :
Слева стоит показательная функция, а справа – квадратичная. Построим их графики и найдем точки пересечения:
Видно, что у графиков есть две общие точки – это (0;1) и (1; 2). На всякий случай проверим себя, подставив х = 0 и х = 1 в исходное ур-ние:
Ноль подходит. Проверяем единицу:
И единица тоже подошла. В итоге имеем два корня, 0 и 1.
Видео:Возведение в степень произведения и степени. Алгебра, 7 классСкачать
Показательные неравенства
Рассмотрим координатную плоскость, в которой построен график некоторой показательной ф-ции у = а х , причем а > 0. Пусть на оси Ох отложены значения s и t, и t t и a s на оси Оу. Так как
является возрастающей функцией, то и величина a t окажется меньше, чем a s . Другими словами, точка a t на оси Оу будет лежать ниже точки а s (это наглядно видно на рисунке). Получается, что из условия t t s . Это значит, что эти два нер-ва являются равносильными.
С помощью этого правила можно решать некоторые простейшие показательные неравенства. Например, пусть дано нер-во
Представим восьмерку как степень двойки:
По только что сформулированному правилу можно заменить это нер-во на другое, которое ему равносильно:
Решением же этого линейного неравенства является промежуток (– ∞; 3).
Однако сформулированное нами правило работает тогда, когда основание показательной ф-ции больше единицы. А что же делать в том случае, если оно меньше единицы? Построим график такой ф-ции и снова отложим на оси Ох точки t и s, причем снова t будет меньше s, то есть эта точка будет лежать левее.
Так как показательная ф-ция у = а х при основании, меньшем единицы, является убывающей, то окажется, что на оси Оу точка a s лежит ниже, чем a t . То есть из условия t t > a s . Получается, что эти нер-ва равносильны.
Например, пусть надо решить показательное неравенство
Выразим число слева как степень 0,5:
Тогда нер-во примет вид
По рассмотренному нами правилу его можно заменить на равносильное нер-во
В более привычном виде, когда выражение с переменной стоит слева, нер-во будет выглядеть так:
а его решением будет промежуток (3; + ∞).
В общем случае мы видим, что если в показательном нер-ве вида
основание a больше единицы, то его можно заменить равносильным нер-вом
Грубо говоря, мы просто убираем основание степеней, а знак нер-ва остается неизменным. Если же основание а меньше единицы, то знак неравенства необходимо поменять на противоположный:
Это правило остается верным и в том случае, когда вместо чисел или переменных t и s используются произвольные функции f(x) и g(x). Сформулируем это правило:
Таким образом, для решения показательных неравенств их следует преобразовать к тому виду, при котором и справа, и слева стоят показательные ф-ции с одинаковыми показателями, после чего этот показатель можно просто отбросить. Однако надо помнить, что при таком отбрасывании знак нер-ва изменится на противоположный, если показатель меньше единицы.
Задание. Решите простейшее неравенство
Представим число 64 как степень двойки:
теперь и справа, и слева число 2 стоит в основании. Значит, его можно отбросить, причем знак нер-ва останется неизменным (ведь 2 > 1):
Задание. Найдите промежуток, на котором выполняется нер-во
Решение. Так как основание степеней, то есть число 0,345, меньше единицы, то при его «отбрасывании» знак нер-ва должен измениться на противоположный:
Это самое обычное квадратное неравенство. Для его решения нужно найти нули квадратичной функции, стоящей слева, после чего отметить их на числовой прямой и определить промежутки, на которых ф-ция будет положительна.
Нашли нули ф-ции. Далее отмечаем их на прямой, схематично показываем параболу и расставляем знаки промежутков:
Естественно, что в более сложных случаях могут использоваться всё те же методы решения нер-ва, которые применяются и в показательных ур-ниях. В частности, иногда приходится вводить новую переменную.
Задание. Найдите решение нер-ва
Решение. Для начала представим число 3 х+1 как произведение:
Теперь перепишем с учетом этого исходное нер-во:
Получили дробь, в которой есть одна показательная ф-ция 3 х . Заменим её новой переменной t = 3 x :
Это дробно-рациональное неравенство, которое можно заменить равносильным ему целым нер-вом:
которое, в свою очередь, решается методом интервалов. Для этого найдем нули выражения, стоящего слева
Отмечаем найденные нули на прямой и расставляем знаки:
Итак, мы видим, что переменная t должна принадлежать промежутку (1/3; 9), то есть
Теперь произведем обратную замену t = 3 x :
Так как основание 3 больше единицы, просто откидываем его:
Итак, мы узнали о показательных уравнениях и неравенствах и способах их решения. В большинстве случаев необходимо представить обе части равенства или неравенства в виде показательных степеней с одинаковыми основаниями. Данное действие иногда называют методом уравнивания показателей. Также в отдельных случаях может помочь графический способ решения ур-ний и замена переменной.
📹 Видео
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Математика| СтепениСкачать
Алгебра 7 класс. Сложные примеры со степенямиСкачать
Линейное уравнение с двумя переменными. 7 класс.Скачать
Степень.Свойства степени.Как решать примеры со степенью.Скачать
Степень с целым показателем. 7 класс.Скачать
Алгебра 7 класс. Степень с Натуральным Показателем и ее Свойства / Свойства СтепенейСкачать
Уравнение четвертой степениСкачать
Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнениеСкачать
Степень с натуральным показателем. Свойства степеней. 7 класс.Скачать
КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать
Вся алгебра за 7 класс! | Математика ОГЭ – Дядя АртемСкачать