Принцип относительности Эйнштейна утверждает инвариантность всех законов природы по отношению к переходу от одной инерциальной системе отсчета к другой. Отсюда следует, что уравнения, которые описывают законы природы, должны быть инвариантны относительно преобразований Лоренца.
- Импульс. Релятивистская масса
- Движение релятивистской частицы
- Связь между энергией и импульсом релятивистской частицы
- Релятивистская динамика
- Релятивистская энергия
- Релятивистский импульс.
- Связь энергии и импульса.
- Релятивистское уравнение движения.
- Основные формулы релятивистской механики
- Принцип относительности в релятивистской механике
- Готовые работы на аналогичную тему
- Релятивистский импульс
- Масса и энергия в релятивистской механике
- 🔍 Видео
Видео:18. Релятивистская динамикаСкачать
Импульс. Релятивистская масса
Во время создания СТО теории, удовлетворяющей данному условию, она подразумевала уже существующую теорию электродинамики Максвелла. Уравнения вышли неинвариантными относительно преобразований Лоренца, что требовало пересмотра и уточнения законов механики.
Для этого Эйнштейн основывался на требованиях выполнимости закона сохранения импульса и закона сохранения энергии в замкнутых системах. Чтобы он выполнялся во всех инерционных системах отсчета, следовало изменить определение импульса тела.
Классический импульс p → = m ν → заменяют релятивистским p → с массой m и скоростью движения ν → . Запись принимает вид:
p → = m ν → 1 — ν 2 c 2 = m ν → 1 — β 2 .
Если данное определение задействовать при решении, то закон сохранения суммарного импульса частиц выполнится во всех инерциальных системах, в которых есть связь с преобразованиями Лоренца. Когда β → 0 релятивистский импульс перейдет в классический.
Масса m считается фундаментальной характеристикой частицы. Она не зависит от выбора инерциальной системы отсчета, скорости движения.
Некоторые учебники трактуют это как массу покоя, обозначаемую m 0 . Позже вводилась релятивистская масса частицы m 0 1 — β 2 , которая зависела от скорости движения частицы. Современная физика отказывается от данных терминологий.
Запись основного закона релятивистской динамики материальной точки принимает вид, аналогичный второму закону Ньютона:
тогда p → примет значение релятивистского импульса частицы. Отсюда следует
F → = d d t m v → 1 — ν 2 c 2 .
Скорость частицы в релятивистской механике не пропорциональна релятивистскому импульсу, то есть скорость изменения не будет пропорциональна ускорению. Отсюда имеем, что сила постоянна по модулю и по направлению, причем не вызывает равноускоренного движения. Если существует одномерное движение вдоль О х , тогда ускорение частицы a = d ν d t с постоянной F равняется a = F m 1 — ν 2 c 2 3 2 .
Видео:Физика - импульс и закон сохранения импульсаСкачать
Движение релятивистской частицы
При росте скорости классической частицы под действием постоянной силы, скорость релятивистской частицы не превышает скорость света с в пустоте.
Это очевидно, так как выполняется закон сохранения энергии релятивистской частицы. Определение E k производится через работу внешней силы, которая необходима для сообщения телу заданной скорости. При разгоне частицы с массой m из состояния покоя до скорости ν 0 действует постоянная сила, совершающая работу
A = ∫ F · d x = ∫ F · ν · d t = ∫ m · α · ν · d t 1 — ν 2 c 2 3 2 .
Так как α d t = d ν , то запись примет вид E k = A = ∫ 0 v 0 m · ν · d ν 1 — ν 2 c 2 3 2 .
При вычислении интеграла произойдет упрощение выражения:
E k = m c 2 1 — ν 2 c 2 — m c 2 .
Интерпретация Эйнштейном первого члена правой части звучит как полная энергия Е движущейся частицы, а второго – энергией покоя E 0 :
E = m c 2 1 — ν 2 c 2 , E 0 = m c 2 .
Кинетической энергией E k считают разность между полной Е и энергией покоя E 0 . Запись принимает вид:
На рисунке 4 . 5 . 1 изображено изменение E k частицы, подчиняющейся классическому и релятивистскому законам.
Рисунок 4 . 5 . 1 . Зависимость кинетической энергии от скорости для релятивистской ( a ) и классической ( b ) частиц. При υ ≪ c оба закона совпадают.
Вывод релятивистской механики в том, что масса m, находящаяся в покое, содержит большое количество энергии. Это применяется при ядерной энергии. Если наблюдалось уменьшение массы частицы на ∆ m , тогда выделившаяся энергия примет вид ∆ E = ∆ m · c 2 . Проводимые эксперименты дают понять, что существование энергии покоя реальное. Первый, кто подтвердил это, был Эйнштейн. Он использовал отношение, связывающее массу и энергию, полученное при их сравнении. При бета-распаде свободного нейтрона появлялись протон, электрон и антинейтрино с нулевой массой:
Конечные продукты обладали суммарной кинетической энергией, равной 1 , 25 · 10 — 13 Д ж .
Масса нейтрона значительно превышает суммарную массу протона и электрона на ∆ m = 13 , 9 · 10 — 31 к г . Так как прослеживается уменьшение массы, необходимо использовать соответствующую энергию ∆ E = ∆ m · c 2 = 1 , 25 · 10 — 13 Д ж . Она равняется кинетической энергии релятивистской частицы.
Если взрывается 1 т тринитротолуола, то происходит освобождение энергии 4 , 2 · 10 9 Д ж , при взрыве мегатонной бомбы – 4 , 2 · 10 15 Д ж . Из формулы m = E c 2 выходит, что искомая масса – это 46 г . При взрыве ядерной бомбы m уменьшается на 50 г . То есть масса водородной бомбы при 1 мегатонне тринитротолуола имеет около 50 к г .
Видео:Урок 431. Элементы релятивистской динамикиСкачать
Связь между энергией и импульсом релятивистской частицы
Самым важным выводом СТО является закон пропорциональности массы и энергии. Они обладают различными свойствами материи. Масса тела говорит о его инертности или способности вступать в гравитационное взаимодействие с другими телами. Важное свойство энергии – это способность превращения из одной формы в другую во время различных физических процессов, что подтверждает закон сохранения энергии.
Масса и энергия пропорциональны и выражают внутреннюю сущность материи.
Получаем, что формула Эйнштейна E 0 = m c 2 выражает фундаментальный закон природы, называемый законом взаимосвязи массы и энергии.
Если скомбинировать выражения p → = m ν → 1 — ν 2 c 2 = m ν → 1 — β 2 и E = m c 2 1 — ν 2 c 2 , то придем к связывающему их соотношению.
Для этого следует переписать эти формулы в упрощенном виде
p 2 m c 2 = ν 2 c 2 1 — ν 2 c 2 ,
E m c 2 2 = 1 1 — ν 2 c 2 .
После почленного вычитания получаем E 2 = m c 2 2 + p c 2 .
Следовательно, что для покоящихся частиц энергия фиксируется как E = E 0 = m c 2 .
Исходя из соотношения становится понятно, что частица может обладать энергией и импульсом, но не иметь массы, то есть m = 0 . Она получила название безмассовой. Для нее используется формула связи энергии и импульса в виде E = p c .
К частицам, которые не имеют массы, относят фотоны, называемые квантами электромагнитного излучения, и нейтрино. Существование безмассовых частиц в покое невозможно, поэтому их движение характеризуется предельной скоростью с .
Видео:Связь между энергией и импульсом в Специальной теории относительностиСкачать
Релятивистская динамика
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: полная энергия, связь массы и энергии, энергия покоя.
В классической динамике мы начали с законов Ньютона, потом перешли к импульсу, а после него — к энергии. Здесь мы ради простоты изложения поступим ровно наоборот: начнём с энергии, затем перейдём к импульсу и закончим релятивистским уравнением движения — модификацией второго закона Ньютона для теории относительности.
Видео:Механика - Релятивистские эффекты. Релятивистская механикаСкачать
Релятивистская энергия
Предположим, что изолированное тело массы покоится в данной системе отсчёта. Одно из самых впечатляющих достижений теории относительности — это знаменитая формула Эйнштейна:
Здесь — энергия тела, — скорость света в вакууме. Поскольку тело покоится, энергия , вычиляемая по формуле (1) , называется энергией покоя.
Формула (1) утверждает, что каждое тело само по себе обладает энергией — просто потому, что оно существует в природе. Образно говоря, природа затратила определённые усилия на то, чтобы «собрать» данное тело из мельчайших частиц вещества, и мерой этих усилий служит энергия покоя тела. Энергия эта весьма велика; так, в одном килограмме вещества заключена энергия
Интересно, какое количество топлива нужно сжечь, чтобы выделилось столько энергии? Возьмём, например, дерево. Его удельная теплота сгорания равна Дж/кг, поэтому находим: кг . Это девять миллионов тонн!
Ещё для сравнения: такую энергию единая энергосистема России вырабатывает примерно за десять дней.
Почему столь грандиозная энергия, содержащаяся в теле, до сих пор оставалась нами незамеченной? Почему в нерелятивистских задачах, связанных с сохранением и превращением энергии, мы не учитывали энергию покоя? Скоро мы ответим на этот вопрос.
Поскольку энергия покоя тела прямо пропорциональна его массе, изменение энергии покоя на величину приводит к изменению массы тела на
Так, при нагревании тела возрастает его внутренняя энергия, и, стало быть, масса тела увеличивается! В повседневной жизни мы не замечаем этого эффекта ввиду его чрезвычайной малости. Например, для нагревания воды массой кг на (удельная теплоёмкость воды равна ) ей нужно передать количество теплоты:
Увеличение массы воды будет равно:
Столь ничтожное изменение массы невозможно заметить на фоне погрешностей измерительных приборов.
Формула ( 1 ) даёт энергию покоящегося тела. Что изменится, если тело движется?
Снова рассмотрим неподвижную систему отсчёта и систему , движущуюся относительно со скоростью . Пусть тело массы покоится в системе ; тогда энергия тела в системе есть энергия покоя, вычисляемая по формуле ( 1 ). Оказывается, при переходе в систему энергия преобразуется так же, как и время — а именно, энергия тела в системе , в которой тело движется со скоростью , равна:
Формула ( 2 ) была также установлена Эйнштейном. Величина — это полная энергия движущегося тела. Поскольку в данной формуле делится на «релятивистский корень», меньший единицы, полная энергия движущегося тела превышает энергию покоя. Полная энергия будет равна энергии покоя только при .
Выражение для полной энергии ( 2 ) позволяет сделать важные выводы о возможных скоростях движения объектов в природе.
1. Каждое массивное тело обладает определённой энергией, поэтому необходимо выполнение неравенства
Оно означает, что : скорость массивного тела всегда меньше скорости света.
2. В природе существуют безмассовые частицы (например, фотоны), несущие энергию. При подстановке в формулу ( 2 ) её числитель обращается в нуль. Но энергия-то фотона ненулевая!
Единственный способ избежать здесь противоречия — это принять, что безмассовая частица обязана двигаться со скоростью света. Тогда и знаменатель нашей формулы обратится в нуль, так что формула ( 2 ) попросту откажет. Нахождение формул для энергии безмассовых частиц не входит в компетенцию теории относительности. Так, выражение для энергии фотона устанавливается в квантовой физике.
Интуитивно чувствуется, что полная энергия ( 2 ) состоит из энергии покоя и собственно «энергии движения», т. е. кинетической энергии тела. При малых скоростях движения это показывается явным образом. Используем приближённые формулы, справедливые при :
С помощью этих формул последовательно получаем из ( 2 ):
Таким образом, при малых скоростях движения полная энергия сводится просто к сумме энергия покоя и кинетической энергии. Это служит мотивировкой для определения понятия кинетической энергии в теории относительности:
При формула ( 6 ) переходит в нерелятивистское выражение .
Теперь мы можем ответить на заданный выше вопрос о том, почему до сих пор не учитывалась энергия покоя в нерелятивистских энергетических соотношениях. Как видно из ( 5 ), при малых скоростях движения энергия покоя входит в полную энергию в качестве слагаемого. В задачах, например, механики и термодинамики изменения энергии тел составляют максимум несколько миллионов джоулей; эти изменения столь незначительны по сравнению с энергиями покоя рассматриваемых тел, что приводят к микроскопическим изменениям их масс. Поэтому с высокой точностью можно считать, что суммарная масса тел не меняется в ходе механических или тепловых процессов. В результате суммы энергий покоя тел в начале и в конце процесса попросту сокращаются в обеих частях закона сохранения энергии!
Но такое бывает не всегда. В других физических ситуациях изменения энергии тел могут приводить к более заметным изменениям суммарной массы. Мы увидим, например, что в ядерных реакциях отличия масс исходных и конечных продуктов обычно составляют доли процента.Скажем, при распаде ядра урана суммарная масса продуктов распада примерно на меньше массы исходного ядра. Эта одна тысячная доля массы ядра высвобождается в виде энергии, которая при взрыве атомной бомбы способна уничтожить город.
При неупругом столкновении часть кинетической энергии тел переходит в их внутренюю энергию. Релятивистский закон сохранения полной энергии учитывает этот факт: суммарная масса тел после столкновения увеличивается!
Рассмотрим в качестве примера два тела массы , летящих навстречу друг другу с одинаковой скоростью . В результате неупругого столкновения образуется тело массы , скорость которого равна нулю по закону сохранения импульса (об этом законе речь впереди). Согласно закону сохранения энергии получаем:
Мы видим, что, 2m’ alt=’M> 2m’ /> — масса образовавшегося тела превышает сумму масс тел до столкновения. Избыток массы, равный , возник за счёт перехода кинетической энергии сталкивающихся тел во внутреннюю энергию.
Видео:Якута А. А. - Механика - Релятивистский интервал. Диаграмма Минковского. Релятивистская динамикаСкачать
Релятивистский импульс.
Классическое выражение для импульса не годится в теории относительности — оно, в частности, не согласуется с релятивистским законом сложения скоростей. Давайте убедимся в этом на следующем простом примере.
Пусть система движется относительно системы со скоростью (рис. 1 ). Два тела массы в системе летят навстречу друг другу с одинаковой скоростью . Происходит неупругое столкновение.
Рис. 1. К закону сохранения импульса |
В системе тела после столкновения останавливаются. Давайте, как и выше, найдём массу образовавшегося тела:
Теперь посмотрим на процесс столкновения с точки зрения системы . До столкновения левое тело имеет скорость:
Правое тело имеет скорость:
Нерелятивистский импульс нашей системы до столкновения равен:
После столкновения получившееся тело массы двигается со скоростью .
Его нерелятивистский импульс равен:
Как видим, , то есть нерелятивистский импульс не сохраняется.
Оказывается, правильное выражение для импульса в теории относительности получается делением классического выражения на «релятивистский корень»: импульс тела массы , двигающегося со скоростью , равен:
Давайте вернёмся к только что рассмотренному примеру и убедимся, что теперь с законом сохранения импульса всё будет в порядке.
Импульс системы до столкновения:
Импульс после столкновения:
Вот теперь всё правильно: !
Видео:Уравнение движенияСкачать
Связь энергии и импульса.
Из формул ( 2 ) и ( 7 ) можно получить замечательное соотношение между энергией и импульсом в теории относительности. Возводим обе части этих формул в квадрат:
Это и есть искомое соотношение:
Данная формула позволяет выявить простую связь между энергией и импульсом фотона. Фотон имеет нулевую массу и движется со скоростью света. Как уже было замечено выше, сами по себе энергия и импульс фотона в СТО найдены быть не могут: при подстановке в формулы ( 2 ) и ( 7 ) значений и мы получим нули в числителе и знаменателе. Но зато с помощью ( 8 ) легко находим: , или
В квантовой физике устанавливается выражение для энергии фотона, после чего с помощью формулы ( 9 ) находится его импульс.
Видео:Физика - уравнения равноускоренного движенияСкачать
Релятивистское уравнение движения.
Рассмотрим тело массы , движущееся вдоль оси под действием силы . Уравнение движения тела в классической механике — это второй закон Ньютона: . Если за бесконечно малое время приращение скорости тела равно , то , и уравнение движения запишется в виде:
Теперь заметим, что — изменение нерелятивистского импульса тела. В результате получим «импульсную» форму записи второго закона Ньютона — производная импульса тела по времени равна силе, приложенной к телу:
Все эти вещи вам знакомы, но повторить никогда не помешает 😉
Классическое уравнение движения — второй закон Ньютона — является инвариантным относительно преобразований Галилея, которые в классической механике описывают переход из одной инерциальной системы отсчёта в другую (это означает, напомним, что при указанном переходе второй закон Ньютона сохраняет свой вид). Однако в СТО переход между инерциальными системами отсчёта описывается преобразованиями Лоренца, а относительно них второй закон Ньютона уже не является инвариантным. Следовательно, классическое уравнение движения должно быть заменено релятивистским, которое сохраняет свой вид под действием преобразований Лоренца.
То, что второй закон Ньютона ( 10 ) не может быть верным в СТО, хорошо видно на следующем простом примере. Допустим, что к телу приложена постоянная сила. Тогда согласно классической механике тело будет двигаться с постоянным ускорением; скорость тела будет линейно возрастать и с течением времени превысит скорость света. Но мы знаем, что на самом
деле это невозможно.
Правильное уравнение движения в теории относительности оказывается совсем не сложным.
Релятивистское уравнение движения имеет вид ( 11 ), где p — релятивистский импульс:
Производная релятивистского импульса по времени равна силе, приложенной к телу.
В теории относительности уравнение ( 12 ) приходит на смену второму закону Ньютона.
Давайте выясним, как же в действительности будет двигаться тело массы m под действием постоянной силы . При условии из формулы ( 12 ) получаем:
Остаётся выразить отсюда скорость:
Посмотрим, что даёт эта формула при малых и при больших временах движения.
Пользуемся приближёнными соотношениями при :
Формулы ( 14 ) и ( 15 ) отличаются от формул ( 3 ) и ( 4 ) только лишь знаком в левых частях. Очень рекомендую вам запомнить все эти четыре приближённых равенства — они часто используются в физике.
Итак, начинаем с малых времён движения. Преобразуем выражение ( 13 ) следующим образом:
При малых имеем:
Последовательно пользуясь нашими приближёнными формулами, получим:
Выражение в скобках почти не отличается от единицы, поэтому при малых имеем:
Здесь — ускорение тела. Мы получили результат, хорошо известный нам из классической механики: скорость тела линейно растёт со временем. Это и не удивительно — при малых временах движения скорость тела также невелика, поэтому мы можем пренебречь релятивистскими эффектами и пользоваться обычной механикой Ньютона.
Теперь переходим к большим временам. Преобразуем формулу ( 13 ) по-другому:
При больших значениях имеем:
Хорошо видно, что при скорость тела неуклонно приближается к скорости света , но всегда остаётся меньше — как того и требует теория относительности.
Зависимость скорости тела от времени, даваемая формулой ( 13 ), графически представлена на рис. 2 .
Рис. 2. Разгон тела под действием постоянной силы |
Начальный участок графика — почти линейный; здесь пока работает классическая механика. Впоследствии сказываются релятивистские поправки, график искривляется, и при больших временах наша кривая асимптотически приближается к прямой .
Видео:Релятивистские эффектыСкачать
Основные формулы релятивистской механики
Вы будете перенаправлены на Автор24
Релятивистская механика – это раздел механики, в который превращаются законы Ньютона в случае, если материальное тело движется со скоростью, максимально близкой к скорости света.
Рисунок 1. Релятивистская механика материальной точки. Автор24 — интернет-биржа студенческих работ
На таких сверхвысоких скоростях с физическими вещами начинают происходить совершенно неожиданные и волшебные процессы, такие как замедления времени и релятивистское сокращение длины.
В пределах исследования релятивистской механики меняются формулировки некоторых устоявшихся в физике физических величин.
Данная формула, которую знает практически каждый человек, показывает, что масса является абсолютной мерой энергии тела, а также демонстрирует принципиальную вероятность перехода энергетического потенциала вещества в энергию излучения.
Основной закон релятивистской механики в виде материальной точки записывается так же, как и второй закон Ньютона: $F=frac
Видео:Урок 104. Импульс. Закон сохранения импульсаСкачать
Принцип относительности в релятивистской механике
Рисунок 2. Постулаты теории относительности Эйнштейна. Автор24 — интернет-биржа студенческих работ
Принцип относительности Эйнштейна подразумевает инвариантность всех существующих законов природы по отношению к постепенному переходу от одной инерциальной концепции отсчета к другой. Это означает, что все описывающие природные законы формулы должны быть полностью инвариантны относительно преобразований Лоренца. К моменту возникновения СТО теория, удовлетворяющая данному условию, уже была представлена классическая электродинамика Максвелла. Однако все уравнения ньютоновской механики оказались абсолютно неинвариантными относительно других научных постулатов, и поэтому СТО требовала пересмотра и уточнения механических закономерностей.
Готовые работы на аналогичную тему
В основу такого важного пересмотра Эйнштейн озвучил требования выполнимости закона сохранения импульса и внутренней энергии, которые находятся в замкнутых системах. Для того, чтобы принципы нового учения выполнялся во всех инерциальных концепциях отсчета, оказалось важным и первостепенным изменить определение самого импульса физического тела.
Если принять и использовать такое определение, то закон сохранения конечного импульса взаимодействующих активных частиц (например, при внезапных соударениях) начнет выполняться во всех инерциальных системах, непосредственно связанных преобразованиями Лоренца. При $β → 0$ релятивистский внутренний импульс автоматически переходит в классический. Масса $m$, входящая в основное выражение для импульса, является фундаментальная характеристика мельчайшей частицы, не зависящая от дальнейшего выбора концепции отсчета, а, следовательно, и от коэффициента ее движения.
Видео:ЧК_МИФ_1_4_1_7_(L4)__ СТО: РЕЛЯТИВИСТСКОЕ УРАВНЕНИЕ ДВИЖЕНИЯСкачать
Релятивистский импульс
Рисунок 3. Релятивистский импульс. Автор24 — интернет-биржа студенческих работ
Релятивистский импульс не пропорционален начальной скорости частицы, а его изменения не зависят от возможного ускорения взаимодействующих в инерциальной системе отчета элементов. Поэтому постоянная по направлению и модулю сила не вызывает прямолинейного равноускоренного движения. Например, в случае одномерного и плавного движения вдоль центральной оси x ускорение всех частицы под воздействием постоянной силы оказывается равным:
Если скорость определенной классической частицы беспредельно увеличивается под действием стабильной силы, то скорость релятивистского вещества не может в итог превысить скорость света в абсолютной пустоте. В релятивистской механике, так же, как и в законах Ньютона, выполняется и реализуется закон сохранения энергии. Кинетическая энергия материального тела $Ek$ определяется через внешнюю работу силы, необходимую для сообщения в будущем заданной скорости. Чтобы разогнать элементарную частицу массы m из состояния покоя до скорости под влиянием постоянного параметра $F$, эта сила обязана совершить работу.
Чрезвычайно важный и полезный вывод релятивистской механики состоит в том, что находящаяся в постоянном покое масса $m$ содержит невероятный запас энергии. Это утверждение имеет различные практические применения, включая сферу ядерной энергии. Если масса любой частицы или системы элементов уменьшилась в несколько раз, то при этом должна выделиться энергия, равная $Delta E = Delta m • c^2. $
Многочисленные прямые исследования предоставляют убедительные факты существования энергии покоя. Первое экспериментальное доказательства правильности соотношения Эйнштейна, которое связывает объем и массу, было получено при сравнении внутренней энергии, высвобождающейся при мгновенном радиоактивном распаде, с разностью коэффициентов конечных продуктов и исходного ядра.
Видео:Урок 106. Реактивное движениеСкачать
Масса и энергия в релятивистской механике
Рисунок 4. Импульс и энергия в релятивистской механике. Автор24 — интернет-биржа студенческих работ
В классической механике масса тела не зависит от скорости движения. А в релятивистской она растёт с увеличением скорости. Это видно из формулы: $m=frac<√1-frac>$.
- $m_0$– масса материального тела в спокойном состоянии;
- $m$ – масса физического тела в той инерциальной концепции отсчёта, относительно которой оно движется со скоростью $v$;
- $с$ – скорость света в вакууме.
Отличие масс становится видным только при больших скоростях, приближающихся к скорости света.
Кинетическая энергия при конкретных скоростях, приближающихся к световой скорости, исчисляется как некая разность между кинетической энергией движущегося тела и кинетической энергией тела, находящегося в состоянии покоя:
При скоростях, значительно меньших скорости света, это выражение переходит в формулу кинетической энергии классической механики: $T=frac$.
Скорость света является всегда граничным значением. Быстрее света в принципе не может двигаться ни одно физическое тело.
Многие задачи и проблемы смогло бы решить человечество, если бы ученым удалось разработать универсальные аппараты, способные передвигаться со скоростью, приближающейся к скорости света. Пока же люди могут о таком чуде только мечтать. Но когда-нибудь полёт в космос или на другие планеты с релятивистской скоростью станет не вымыслом, а реальностью.
🔍 Видео
Релятивистская механика. Импульс, энергия. Преобразования Лоренца.Скачать
Урок 109. Момент импульса. Закон сохранения момента импульсаСкачать
Лекция 16 Релятивистская механикаСкачать
Зависимость массы от скорости. Элементы релятивистской динамики | Физика 11 класс #34 | ИнфоурокСкачать
Физика 11 класс (Урок№21 - Релятивистские эффекты.)Скачать
Физика - импульс силыСкачать
Консультация к устному экзамену. Механика. Часть 10: "Основы теории относительности"Скачать
Общая физика | Л15: Ускорение, импульс и сила в пр-ве Минковского. Рел. энергия. Реактивное движениеСкачать