В этом разделе вы найдете бесплатные примеры решений рекуррентных соотношений методом характеристического уравнения и подбора частного решения по правой части. Также приведены краткие алгоритмы решения для двух методов и пример их использования для последовательности Фибоначчи.
- Как решать рекуррентные соотношения?
- Метод производящих функций
- Метод характеристических функций
- Решение для последовательности чисел Фибоначчи
- Способ 1. Производящяя функция
- Способ 2. Характеристическое уравнение
- Примеры решений
- Применение многочленов от матриц для решения систем рекуррентных уравнений
- Алгоритм решения системы рекуррентных уравнений
- Дискретная математика — рекуррентное соотношение
- Определение
- Линейные рекуррентные отношения
- Как решить линейное рекуррентное соотношение
- 🎥 Видео
Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
Как решать рекуррентные соотношения?
Для решения рекуррентных соотношений применяют один из двух основных способов:
- Метод производящих функций
- Метод характеристического уравнения
В следующем разделе мы сравним, как выглядит процесс решения для одной и той же последовательности двумя методами.
Метод производящих функций
- Записать рекуррентное соотношение и начальные данные для него в следующем виде (если порядок соотношения равен $k$) $$a_ = …, \ a_ = …, \ a_ = …, \ … \ a_ = …, ngeqslant k$$
- Домножить каждую строчку на $z$ в соответствующей степени $z^ cdot a_$ и сложить все выражения для $n ge 0$. В левой части получится сумма $displaystylesum_^ a_nz^n$ — это производящая функция, назовем ее $G(z)$. Правую часть преобразовать так, чтобы она превратилась в выражение, включающее $G(z)$.
- Решить полученное уравнение относительно $G(z)$.
- Разложить $G(z)$ в степенной ряд, тогда коэффициент при $z_n$ будет искомым выражением для $a_n$.
Метод характеристических функций
Этот метод практически полностью аналогичен методу решения линейных неоднородных дифференциальных уравнений с постоянными коэффициентами, кратко алгоритм выглядит так:
- Записать соответствующее однородное рекуррентное уравнение (РУ): $$ p_ a_ + p_a_ + . + p_n a_n =f to \ to p_ a_ + p_a_ + . + p_n a_n =0. $$
- Выписать для него характеристическое уравнение и найти его корни $lambda_i$ $$ p_ lambda^ + p_lambda^ + . + p_lambda + p_n =0. $$
- Выписать согласно полученным корням $lambda_1, . lambda_k$ общее решение однородного рекуррентного соотношения (подробнее теорию см. по ссылке [1] ниже). $$ C_1 lambda_1^n +. +C_k lambda_k^n , mbox , $$ $$ C_1 lambda_1^n + C_2 nlambda_1^n +. +C_m n^m lambda_1^n+. +C_k lambda_k^n mbox , lambda_1 , , m. $$
- Подобрать частное решение неоднородного рекуррентного соотношения по виду правой части (особенно удобно для правых частей вида $mu^n*P(n)$, $P(n)$ — многочлен от $n$).
- Представить общее решение неоднородного РУ как сумму общего решения соответствующего однородного РУ и частного решения неоднородного РУ.
- Подставить начальные условия $a_0, a_1, . a_$ и получить значения констант $C_1, . C_k$.
Видео:Решение рекуррентных уравненийСкачать
Решение для последовательности чисел Фибоначчи
Последовательность чисел Фибоначи — это последовательность, каждый элемент которой (кроме нулевого и первого) равен сумме двух предыдущих:
$$ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 , . $$
Числа Фибоначчи растут быстро: $f_=55$, $f_=6765$, а $f_=354224848179261915075$.
Общая формула данной рекуррентной последовательности имеет вид6
Способ 1. Производящяя функция
Начинаем с второго шага алгоритма, домножаем на $z^n$:
$$begin 1cdot f_0 &= &0cdot 1,\ zcdot f_1 &= &1cdot z,\ zcdot f_n & = &(f_+f_)cdot z^n, quad ngeq2.\ end $$
Складываем все строчки:
На третьем шаге алгоритма приводим все суммы к замкнутому виду:
откуда выводим искомое выражение для производящей функции:
Теперь разложим ее в степенной ряд. Для этого сначала разложим знаменатель на множители. Найдем корни уравнения:
Чтобы разложить данные дроби в ряды, используем известное разложение для дроби:
Рассмотрим первую дробь и поделим в ней числитель и знаменатель на $z_1$:
Аналогично (но с делением на $z_2$) действуем со второй дробью:
Преобразуем данное выражение, используя то, что
$$1/z_1=-z_2, quad 1/z_2 = -z_1, quad z_1-z_2=sqrt $$ $$f_n=frac<sqrt>left( biggl( frac<1+sqrt> biggr)^n — biggl( frac<1-sqrt> biggr)^n right). $$
Способ 2. Характеристическое уравнение
Запишем характеристический многочлен для $f_n=f_+f_$, и найдем его корни:
Тогда общее решение однородного рекуррентного уравнения имеет вид:
Осталось найти значения произвольных постоянных $C_1, C_2$ из начальных условий $f_0=0, f_1=1$.
Решая систему, найдем
Итоговое выражение для последовательности чисел Фибоначчи:
Результаты обоих методов совпали, решение вторым методом оказалось проще и короче.
Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать
Примеры решений
Задача 1. Решить рекуррентное соотношение $f(n+2)=-6f(n+1)+7f(n)+n-3$ с начальными условиями $f(0)=2$ и $f(1)=4$, сделать проверку
Задача 2. Решить рекуррентное соотношение $f(n+2)=-2f(n+1)+3f(n)-3^n$ с начальными условиями $f(0)=1$, $f(1)=3$ и сделать проверку
Задача 3. 1. Решить рекуррентное соотношение $f(n+2) =-5f(n+1) -4f(n) + 3n^2$ с начальными условиями $f(0) = 2$, $f(1) = 3$.
2. Проверить, удовлетворяет ли найденное решение начальным условиям и обращает ли оно рекуррентное соотношение в справедливое тождество.
Задача 4. Найти последовательность $$, удовлетворяющую рекуррентному соотношению $a_ + 4 a_ + 3 a_ = 0$ и начальным условиям $a_1=2$, $a_2=4$.
Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать
Применение многочленов от матриц для решения систем рекуррентных уравнений
Рассмотрим систему линейных рекуррентных уравнений
где — коэффициенты системы , — заданные, а — неизвестные функции дискретного аргумента , . При описании дискретных динамических систем аргумент в (7.47) называют дискретным временем .
Систему (7.47) можно записать в матричном виде:
где — квадратная матрица (n-го порядка) коэффициентов системы рекуррентных уравнений, — столбец заданных функций, a — столбец неизвестных.
Решением системы (7.48) называется последовательность столбцов , при подстановке которых в (7.48) получаются верные равенства для всех .
Поставим задачу нахождения решения системы (7.48), удовлетворяющего начальным условиям
где — заданный столбец.
Рассмотрим сначала однородную систему с постоянными коэффициентами
Записывая (7.50) для , последовательно получаем
Следовательно, решение однородной системы (7.50), удовлетворяющее начальным условиям (7.49), имеет вид:
Получим теперь решение системы (7.48). Учитывая (7.49), запишем (7.48) для
и т.д. Следовательно, решение системы (7.48) имеет вид
Первое слагаемое в (7.52) — решение однородной системы (7.50) с начальными условиями (7.49), второе слагаемое — решение системы (7.48) с нулевыми начальными условиями (т.е. при ).
Видео:21.04 - дискра, рекуррентные соотношенияСкачать
Алгоритм решения системы рекуррентных уравнений
Для нахождения решения системы (7.48) с начальными условиями (7.49) требуется выполнить следующие действия.
1. Найти выражение для степени матрицы одним из способов, рассмотренных ранее.
2. Записать по формуле (7.52) искомое решение.
1. Линейное рекуррентное уравнение с постоянными коэффициентами:
может быть сведено к эквивалентной системе рекуррентных уравнений вида (7.47). Действительно, используя обозначения
или в матричной форме (7.48): с матрицами и
Пример 7.19. Найти решение рекуррентного уравнения с начальными условиями
Решение. В соответствии с пункту 1 замечаний 7.11 составим систему уравнений
где . Требуется найти решение этой системы, удовлетворяющее начальным условиям: .
1. Составим матрицу системы и найдем ее степень , используя второй способ. Характеристический многочлен имеет вторую степень и два простых корня: . Поэтому многочлен (7.44) — линейный: . Для его коэффициентов записываем систему (7.46):
Отсюда . Таким образом,
2. По формуле (7.52) записываем решение системы (учитывая, что ):
Нас интересует только первый элемент этого столбца:
Решение совпадает с найденным в примере 2.15.
Пример 7.20. Найти решение системы рекуррентных уравнений с начальными условиями
Решение. Запишем систему в матричной форме (7.48) и начальные условия
1. Выражение для степени матрицы найдено в примерах 7.17 и 7.18:
2. Выражение, полученное для , справедливо только при 1″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAC8AAAAQCAMAAACx1dbmAAAAM1BMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbQS4qAAAAEHRSTlMAiXFYMbEhAcBBoPDQoeAQ0I3cqgAAALZJREFUKM+VktsSwyAIRDWKiFf+/2uLSZvEhkxaXnTGs7KsGvN3UYrwC+ffa3D8zCMlxo+QlyfcNmg7v7A/t7VBux/jzkOe54lJURw8ZrHvop0UdM8P+3axGc89aqQ7XuxbjzybMkEUqPLAIPP6/u0g1OYUHnMpTQs02KLxq/0p0Y1O0al+RvqOCcv51CeZF1UeJBjhacoT6PJehTd9k/R7gdgPul7ei3itcWeYPp/sqv4fRhnzAuOaBpbDogV3AAAAAElFTkSuQmCC» style=»vertical-align: middle;» /> (см. пример 7.18). Поэтому для формулу (7.52) нельзя использовать. Найдем непосредственно из системы (7.53)
Далее записываем искомое решение для , выделяя в формуле (7.52) слагаемые с и
В последней сумме слагаемые не зависят от индекса суммирования, т.е. это сумма одинаковых слагаемых. Поэтому, приводя подобные члены, получаем
Таким образом, решением заданной системы является последовательность столбцов:
Видео:Решение систем уравнений методом подстановкиСкачать
Дискретная математика — рекуррентное соотношение
В этой главе мы обсудим, как рекурсивные методы могут выводить последовательности и использоваться для решения задач подсчета. Процедура поиска членов последовательности рекурсивным способом называется рекуррентным отношением . Мы изучаем теорию линейных рекуррентных соотношений и их решения. Наконец, мы вводим производящие функции для решения рекуррентных отношений.
Видео:Метод Гаусса решения систем линейных уравненийСкачать
Определение
Рекуррентное отношение — это уравнение, которое рекурсивно определяет последовательность, в которой следующий член является функцией предыдущих членов (выражая F n как некоторую комбинацию F i с i n ).
Пример — ряд Фибоначчи — F n = F n − 1 + F n − 2 , Ханойская башня — F n = 2 F n − 1 + 1
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Линейные рекуррентные отношения
Линейное рекуррентное уравнение степени k или порядка k — это рекуррентное уравнение в формате x n = A 1 x n − 1 + A 2 x n − 1 + A 3 x n − 1 + d o t s A k x n k ( A n — константа, а A k n e q 0 ) на последовательности чисел как полинома первой степени.
Вот некоторые примеры линейных рекуррентных уравнений —
Рецидив отношений | Начальные значения | Решения |
---|---|---|
F n = F n-1 + F n-2 | a 1 = a 2 = 1 | Число Фибоначчи |
F n = F n-1 + F n-2 | а 1 = 1, а 2 = 3 | Номер Лукаса |
F n = F n-2 + F n-3 | a 1 = a 2 = a 3 = 1 | Падовская последовательность |
F n = 2F n-1 + F n-2 | a 1 = 0, a 2 = 1 | Число Пелла |
Как решить линейное рекуррентное соотношение
Предположим, что два упорядоченных линейных рекуррентных соотношения имеют вид — F n = A F n − 1 + B F n − 2 , где A и B — действительные числа.
Характеристическое уравнение для вышеуказанного рекуррентного соотношения —
x 2 − A x e − B = 0
Три случая могут возникнуть при поиске корней —
Случай 1 — Если это уравнение учитывается как ( x − x 1 ) ( x − x 1 ) = 0 и оно дает два различных реальных корня x 1 и x 2 , то F n = a x n 1 + b x n 2 является решение. [Здесь a и b являются константами]
Случай 2 — Если это уравнение вычисляется как ( x − x 1 ) 2 = 0 , и оно порождает один действительный корень x 1 , то решением является F n = a x n 1 + b n x n 1 .
Случай 3 — Если уравнение дает два различных комплексных корня, x 1 и x 2 в полярной форме x 1 = r a n g l e t h e t a и x 2 = r a n g l e ( − t h e t a ) , то F n = r n ( a c o s ( n t h e t a ) + b s i n ( n t h e t a ) ) является решением.
Решите рекуррентное соотношение F n = 5 F n − 1 − 6 F n − 2 , где F 0 = 1 и F 1 = 4 .
Характеристическое уравнение рекуррентного соотношения —
Итак, ( x − 3 ) ( x − 2 ) = 0
x 1 = 3 и x 2 = 2
Корни реальны и различны. Итак, это в форме дела 1
F n = a x n 1 + b x n 2
Здесь F n = a 3 n + b 2 n ( A s x 1 = 3 a n d x 2 = 2 )
1 = F 0 = a 3 0 + b 2 0 = a + b
4 = F 1 = a 3 1 + b 2 1 = 3 a + 2 b
Решая эти два уравнения, мы получаем a = 2 и b = − 1
Следовательно, окончательное решение —
$$ F_n = 2,3 ^ n + (-1). 2 ^ n = 2,3 ^ n — 2 ^ n $$
Решите рекуррентное соотношение — F n = 10 F n − 1 − 25 F n − 2 , где F 0 = 3 и F 1 = 17 .
Характеристическое уравнение рекуррентного соотношения —
x 2 − 10 x − 25 = 0
Итак, ( x − 5 ) 2 = 0
Следовательно, существует один действительный корень x 1 = 5
Поскольку существует единый действительный корень, он имеет вид случая 2
F n = a x n 1 + b n x n 1
3 = F 0 = a .5 0 + b .0 .5 0 = a
17 = F 1 = a .5 1 + b .1 .5 1 = 5 a + 5 b
Решая эти два уравнения, мы получаем a = 3 и b = 2 / 5
Следовательно, окончательное решение — F n = 3.5 n + ( 2 / 5 ) . n .2 n
Решите рекуррентное соотношение F n = 2 F n − 1 − 2 F n − 2 , где F 0 = 1 и F 1 = 3
Характеристическое уравнение рекуррентного соотношения —
🎥 Видео
6 способов в одном видеоСкачать
Решение систем уравнений второго порядка. 8 класс.Скачать
9 класс, 11 урок, Методы решения систем уравненийСкачать
Матричный метод решения систем уравненийСкачать
Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Рекуррентное вычисление определителя порядка nСкачать
Решение систем уравнений методом сложенияСкачать
ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать
Решение системы уравнений методом обратной матрицы - bezbotvyСкачать
Решение системы уравнений методом ГауссаСкачать
Система линейных уравнений. Общее решение. Метод ГауссаСкачать