Основные типы уравнений
К основным уравнениям математической физики относятся следующие дифференциальные уравнения в частных производных второго порядка.
1. Волновое уравнение:
.
Это уравнение является простейшим уравнением гиперболического типа. К его исследованию приводит изучение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводах и т. д.
2. Уравнение теплопроводности, или уравнение Фурье:
.
Это уравнение является простейшим уравнением параболического типа. К его исследованию приводит рассмотрение процессов распространения тепла, фильтрации жидкости и газа в пористой среде, изучение некоторых вопросов теории вероятностей и т. д.
3. Уравнение Лапласа:
.
Это уравнение относится к простейшим уравнениям эллиптического типа. К его исследованию приводит изучение задач об электрических и магнитных полях, о стационарном тепловом состоянии, задач гидродинамики и т. д.
В выписанных уравнениях искомая функция u зависит от двух переменных t, x или x, y. Рассматриваются также уравнения и для функций с большим числом переменных. Например, волновое уравнение с тремя независимыми переменными имеет вид
,
и уравнение Лапласа
.
Уравнение колебаний струны.
Видео:Аналитическая теория дифференциальных уравнений. Лекция 2. Ильяшенко Ю. С.Скачать
Формулировка краевой задачи
В математической физике струной называют гибкую упругую нить. Пусть струна в начальный момент времени расположена на отрезке 0≤x≤l оси Ox. Предположим, что ее концы закреплены в точках x=0 и x=l. Если струну отклонить от первоначального положения, а потом предоставить самой себе или придать ее точкам некоторую скорость, то точки струны будут совершать движение. Задача заключается в определении формы струны в любой момент времени и в определении закона движения каждой точки струны в зависимости от времени.
Если предположить, что движение точек струны происходит перпендикулярно оси Ox и в одной плоскости, то процесс колебания струны описывается одной функцией u(x,t), которая определяет величину перемещения точки струны с абсциссой x в момент t.
Доказано, что при отсутствии внешней силы функция u(x,t) должна удовлетворять дифференциальному уравнению в частных производных второго порядка
.
Для полного определения движения струны одного уравнения недостаточно. Искомая функция u(x,t) должна удовлетворять граничным условиям, указывающим, что делается на концах струны (при x=0 и x=l), и начальным условиям, описывающим состояние струны в начальный момент (t=0). Совокупность граничных и начальных условий называется краевыми условиями.
Пусть, например, концы струны при x=0 и x=l неподвижны. Тогда при любом t должны выполняться равенства
Это – граничные условия для рассматриваемой задачи. В начальный момент t=0 струна имеет определенную форму, которую мы ей придали. Пусть эта форма определяется функцией f(x), т. е.
Далее в начальный момент должна быть задана скорость в каждой точке струны, которая определяется функцией φ(x), т. е.
.
Эти два условия называются начальными условиями.
Колебания бесконечной струны.
Формула Даламбера решения задачи Коши
для волнового уравнения
Прежде чем решать задачу о колебаниях закрепленной струны, рассмотрим более простую задачу – о колебаниях бесконечной струны. Если представить очень длинную струну, то ясно, что на колебания, возникающие в ее средней части, концы струны не будут оказывать заметного влияния.
Рассматривая свободные колебания, мы должны решить однородное уравнение
при начальных условиях
, ,
где функции f(x) и g(x) заданы на всей числовой оси. Такая задача называется задачей с начальными условиями или задачей Коши.
Преобразуем волновое уравнение к каноническому виду, содержащему смешанную производную. Уравнение характеристик
распадается на два уравнения:
интегралами которых служат прямые
Введем новые переменные ξ=x – at, η=x + at и запишем волновое уравнение для переменных ξ и η.
, ,
,
,
и подставляя их в исходное уравнение, видим, что уравнение колебания струны в новых координатах будет
.
Интегрируя полученное равенство по η при фиксированном ξ, придем к равенству . Интегрируя это равенство по ξ при фиксированном η, получим
,
где φ и ψ являются функциями только переменных ξ и η соответственно. Следовательно, общим решением исходного уравнения является функция
. (8)
Найдем функции φ и ψ так, чтобы удовлетворялись начальные условия:
.
,
.
Интегрируя последнее равенство, получим:
,
где х0 и С – постоянные. Из системы уравнений
Таким образом, мы определили функции φ и ψ через заданные функции f и g, причем полученные равенства должны иметь место для любого значения аргумента. Подставляя в (8) найденные значения φ и ψ, будем иметь
.
Найденное решение называется формулой Даламбера решения задачи Коши для волнового уравнения
Пример. Решить уравнение при начальных условиях , .
Видео:Как распознать талантливого математикаСкачать
Используя формулу Даламбера, сразу получаем
.
Решение волнового уравнения
методом разделения переменных
Метод разделения переменных применяется для решения многих задач математической физики. Пусть требуется найти решение волнового уравнения
, (9)
удовлетворяющее краевым условиям
u(x,0)=f(x), . (12),(13)
Частное решение уравнения (9), удовлетворяющее граничным условиям (10) и (11), ищут в виде произведения двух функций:
Подставляя функцию u(x,t) в уравнение (9) и преобразовывая его, получим
.
В левой части этого уравнения стоит функция, которая не зависит от x, а в правой – функция, не зависящая от t. Равенство возможно только в том случае, когда левая и правая части не зависят ни от x, ни от t, т. е. равны постоянному числу. Обозначим
, где λ>0. (14)
Из этих уравнений получаем два однородных дифференциальных уравнения второго порядка с постоянными коэффициентами
и . (15)
Общее решение этих уравнений
,
,
где A, B, C, D – произвольные постоянные.
Постоянные A и B подбирают так, чтобы выполнялись условия (10) и (11), из которых следует, что X(0)=X(l)=0, так как T(t)≠0 (в противном случае u(x,t)=0). Учитывая полученные равенства, находим
А=0 и .
Так как B≠0 (иначе, было бы X=0 и u=0, что противоречит условию), то должно выполняться равенство
,
.
Найденные значения λ называют собственными значениями для данной краевой задачи. Соответствующие им функции X(x) называются собственными функциями.
Заметим, что, если в равенстве (14) вместо – λ взять число λ (λ>0), то первое из уравнений (15) будет иметь решение в виде
.
Отличное от нуля решение в такой форме не может удовлетворять граничным условиям (10) и (11).
Зная , можем записать
.
Для каждого n получаем решение уравнения (9)
.
Так как исходное уравнение (9) линейное и однородное, то сумма решений также является решением, и потому функция
(16)
будет решением дифференциального уравнения (9), удовлетворяющим граничным условиям (10) и (11).
Найденное частное решение должно еще удовлетворять начальным условиям (12) и (13). Из условия (12) получим
.
Далее, дифференцируя члены ряда (16) по переменной t, из условия (13) будем иметь
.
Правые части двух последних равенств есть ряды Фурье для функций f(x) и φ(x), разложенных по синусам на интервале (0, l). Поэтому
. (17)
Итак, ряд (16), для которого коэффициенты Cn и Dn определяются по выписанным формулам, если он допускает двукратное почленное дифференцирование, представляет решение уравнения (9), удовлетворяющее граничным и начальным условиям.
Пример. Найти решение краевой задачи для волнового уравнения
, 0
Видео:Родители не представляют, как сложно учиться на ФизтехеСкачать
Уравнения и формулы математической физики
Вы будете перенаправлены на Автор24
Математическая физика (МФ) – это гипотеза математических моделей физических явлений, которые изучают сложные задачи на математическом уровне, а результаты исследований представляются в виде графиков, теорем и таблиц.
В математической физике характерно, что практически все общие методы, используемые для решения задач МФ, развились из способов решения физических заданий и в своем первоначальном виде не имели достаточной завершенности и математического обоснования. Все это относится к таким известным принципам решения задач МФ, как методы Галеркина и Ритца. Эффективное использование данных методов является причиной для их математического обобщения и обоснования.
Основным уравнением в математической физике принято считать дифференциальные показатели с частным производимым второго порядка. Например, формула волновой теории будет записываться следующим образом: $ LARGE frac
Уравнение теплопроводности ученые обозначают так: $LARGE frac
В создании формул физики изначально тщательно рассматривают элементы электромагнитного поля, а также его стационарное тепловое состояние.
Постановка задач в МФ заключается в построении математических моделей, которые описывают основные закономерности изучаемого класса физических явлений. Хорошим примером этого явления выступает уравнение Лапласа: $LARGE frac + frac = 0$.
Подобная постановка состоит из формул (интегральных, дифференциальных, алгебраических или интегро-дифференциальных), которые удовлетворяют величины, более тщательно характеризующие физический процесс.
Уравнения математической физики
Уравнения с частными производными первого порядка включают в себя: нелинейные уравнения с производными первого порядка; квазилинейные уравнения с производными первого порядка.
Линейные уравнения МФ:
- линейные задачи МФ для уравнений параболического типа;
- некоторые формулы, определения, решения и методы;
- линейные задачи МФ для уравнений эллиптического типа;
- линейные задачи МФ для уравнений гиперболического типа.
Готовые работы на аналогичную тему
Нелинейные уравнения МФ:
- преобразования уравнений МФ;
- автомодельные решения и решения типа бегущей волны;
- метод подобия;
- метод функционального разделения переменных МФ;
- метод обобщенного разделения переменных МФ;
- классический метод исследования симметрий уравнений МФ;
- решение дифференциальных уравнений при помощи инвариантов;
- метод дифференциальных связей.
В целом, обобщённые функции в математической физике обладают рядом важных свойств, расширяющих возможности классического анализа.
Любая целостная функция оказывается бесконечно дифференцируемой и сходится в ряды из обобщённых понятий, которые возможно по отдельности дифференцировать бесконечное количество раз. Преобразование этого процесса всегда существует, поэтому применение техники комплексных функций существенно расширяет круг исследуемых задач и к тому же приводит к значительным упрощениям, автоматизируя элементарные операции.
Влияние математической физики на науку
Воздействие математической физики на разные разделы математики проявляется в том, что общее развитие математической физики, которая отражает в своих идеях требования естественных наук и часто меняющееся запросы практики, автоматически влечет за собой переориентацию направленности научных исследований в сложившихся разделах математики. Правильная постановка задач изучаемого течения в науке напрямую связана с разработкой новых моделей реальных физических процессов, и привела к кардинальному изменению главной проблематики гипотезы дифференциальных формул в стабильных производных. В результате появилась теория краевых задач, которая позволила ученым связать интегральные уравнения и вариационные методы, а также дифференциальные уравнения в частных производных.
Исследование математических моделей физики различными способами не только позволяет получить основные характеристики физических явлений, а еще и рассчитать с максимальной точностью ход реальных процессов, которые глубоко проникают в самую суть скрытых закономерностей, предсказания уникальных эффектов.
Стремление к более детализированному изучению физических явлений приводит физиков ко все большему усложнению математических моделей, которые способны описать происходящие процессы с помощью применения аналитических методов построения этих моделей. Это возможно объяснить еще и тем, что модели реальных физических процессов являются нелинейными. Для проведения точного исследования таких концепций успешно используются прямые количественные способы с применением компьютеров. Для типичных физических задач изучение численных методов сводится к частичной замене уравнений математической физики для обобщенных функций непрерывного аргумента посредством сеточных показателей, заданных на дискретном множестве точек. Другими словами, вместо непрерывной и стабильной модели внешней среды вводится ее дискретный аналог.
Применение таких методов в ряде случаев позволяет заменить трудоемкий и дорогостоящий эксперимент значительно более экономичным исследованием. Результативное математическое изучение является базой для выбора наиболее подходящих условий реального физического опыта, выбора правильных параметров сложных физических установок, выявление подходящих условий ля новых научных эффектов. Таким образом, численные методы в уравнениях математической физики расширяют сферу эффективного применения моделей физических явлений.
Решения уравнений математической физики
Для решения уравнений математической физики сначала необходимо рассмотреть структуру квазилинейной формулы в частных производных: $LARGE a frac + 2b(х,у)$ $LARGE frac =F (x,y,w dw/dx)$
Для получения общего и правильного решения уравнения исследователи рассматривают характеристическую концепцию обыкновенных дифференциальных уравнений: $LARGE frac = frac = frac $.
Сама дифференциальная формула содержит в себе только самую общую информацию об исследуемом процессе. Необходимо заранее получить задание граничных и начальных условий, для общей конкретизации.
На сегодняшний день ученые выделяют три основных типа дифференциальных уравнений, для которых поиск решения имеет существенные различия: уравнения гиперболического, параболического и эллиптического типов.
Большое количество физических процессов и явлений можно описать посредством дифференциальных уравнений в исследуемых частных производных. Это непосредственно связано с тем, что фундаментальные законы современной физики – принципы сохранения – записываются в определениях вторых производных. Способы решения задач математической физики зависят от конкретного типа, которому принадлежит само рассматриваемое уравнение.