Реакция троммера с глюкозой уравнение реакции

Видео:Качественные реакции на глюкозуСкачать

Качественные реакции на глюкозу

Указания к лабораторной работе №13.

Тема: Углеводы. Моносахариды.

Опыт №1. Реакция Троммера.

Ход исследования: В пробирку вносят 5-6 капель 1% раствора глюкозы добавляют 2-3 капли 10% едкого натра NaOH и по каплям добавляют 5% раствор сульфата меди до образования легкой неисчезающей мути. Пробирку осторожно нагревают, сначала появляется желтое окрашивание жидкости, а затем образуется желтый или кирпично-красный осадок. В реакции Троммера окислителем является гидрат окиси меди Cu(OH)2, который при восстановлении постепенно переходит в гидрат закиси меди, а затем в закись меди. Химизм реакции:

Укажите, какие свойства проявляет в этой реакции глюкоза.

Сделать вывод о проделанной работе.

Опыт №2. Реакция Фелинга.

Реакция Фелинга является видоизменением реакции Троммера и отличается от нее тем, что для окисления глю­козы применяют реактив Фелинга, в состав которого входят сульфат меди (II) CuSO4, сегнетова соль и NaOH. В этом реак­тиве медь находится в виде соединения с сегнетовой солью, благодаря чему гидрат окиси меди не выпадает в осадок.

Ход исследования: В пробирку вносят 5-6 капель 1% раствора глюкозы, добавляют 3-5 капель реактива Фелинга и нагревают. Появляется желтое окрашивание, затем образуется желтый или кирпично-красный осадок.

Реакция протекает аналогично реакции Троммера. Запишите уравнения реакции. Укажите, какие свойства проявляет глюкоза в этой реакции. Сделайте вывод о проделанной работе.

Опыт №3. Реакция Селиванова на фруктозу.

Ход исследования: В пробирку вносят 5-6 капель фруктозы и добавляют 2-3 капли реактива Селиванова (0,5 г резорцина в 100 мл 20% соляной кислоты). Содержимое пробирки кипятят 2-3 минуты или нагревают в кипящей водяной бане в течение 5-7 минут. Постепенно образуется вишнево-красное окрашивание.

Кетогексозы при нагревании с соляной кислотой или серной теряют три молекулы воды с образованием продукты конденсации вишнево-красного цвета.

Реакция троммера с глюкозой уравнение реакции

Сделать вывод о проделанной работе.

Опыт №4. Реакции на пентозы

Ход исследования: В пробирку вносят щепотку древесных опилок или соломы, в которых содержатся полисахариды – пентозаны. Опилки или солому смачивают концентрированной соляной кислотой после чего добавляют несколько кристалликов флороглюцина. Появляется малиново-красное окрашивание. Пентозаны, содержащиеся в опилках и соломе, под влиянием соляной кислоты расщепляются до пентоз. Пентозы под действием соляной кислоты теряют воду и образуют фурфурал.

Реакция троммера с глюкозой уравнение реакции

Пентозаны → пентоза → фурфурол + флороглюцин → малиновое окрашивание

Фурфурол с флороглюцином дает продукт конденсации малинового цвета.

Опыт №1. Изучение восстанавливающих свойств дисахаридов.

Ход исследования: В три пробирки раздельно вносят по 5-6 капель 1% раствора сахарозы, мальтозы и лактозы. Затем со всеми тремя растворами проделывают реакцию Фелинга и отмечают в таблице 1, какие дисахариды восстанавливают гидроксид меди.

Реакция Фелинга является видоизменением реакции Троммера и отличается от нее тем, что для окисления глю­козы применяют реактив Фелинга, в состав которого входят сульфат меди (II) CuSO4, сегнетова соль и NaOH. В этом реак­тиве медь находится в виде соединения с сегнетовой солью, благодаря чему гидрат окиси меди не выпадает в осадок.

В пробирку вносят 5-6 капель 1% раствора глюкозы, добавляют 3-5 капель реактива Фелинга и нагревают. Появляется желтое окрашивание, затем образуется желтый или кирпично-красный осадок.

ДисахаридыРеакция ФелингаРеакция СеливановаВосстанавливающий или невосстанавливающий дисахарид
Мальтоза
Лактоза
Сахароза

Объяснить причину разного отношения дисахаридов к реактиву Фелинга. Записать формулы оксо-формы восстанавливающих дисахаридов

Сделать вывод о проделанной работе.

Опыт №2. Реакция Селиванова с дисахаридами.

Ход исследования: В три пробирки раздельно вносят по 5-6 капель 1% растворов сахарозы, мальтозы, лактозы и проделывают с этими растворами реакцию Селиванова. В пробирку вносят 5-6 капель фруктозы и добавляют 2-3 капли реактива Селиванова (0,5 г резорцина в 100 мл 20% соляной кислоты). Содержимое пробирки кипятят 2-3 минуты или нагревают в кипящей водяной бане в течение 5-7 минут. Постепенно образуется вишнево-красное окрашивание.

Реакция троммера с глюкозой уравнение реакции

Кетогексозы при нагревании с соляной кислотой или серной теряют три молекулы воды с образованием продукты конденсации вишнево-красного цвета.

Реакция троммера с глюкозой уравнение реакции

Сравнивают полученные результаты и делают вывод, в каких дисахаридах содержится фруктоза. Результаты исследований, произведенных с дисахаридами, заносят в таблицу 1 и делают заключение о свойствах дисахаридов. Положительный результат реакции обозначают знаком (+), а отрицательный знаком (-)

Записать формулу дисахарида, содержащего фруктозу. Сделать вывод о проделанной работе

Опыт №3. Кислотный гидролиз (декстринизация) крахмала.

Ход исследования: В пробирку наливают около 3 мм 1% раствора крахмала, добавляют около 1 мм 10% раствора серной кислоты и оставляют в кипящей водяной бане. Через 2-3 мин. после начала нагревания на водяной бане стеклянной палочкой берут одну каплю жидкости из пробирки и смешивают ее с каплей взятой другой палочкой реактива Люголя на стекле с подложенным под него листом белой бумаги. Последующие пробы проделывают через каждую минуту. Отмечают, какое при этом образуется окрашивание, и сразу записывают полученный результат в таблицу 2. Взятие проб продолжают до тех пор, пока последние капли гидролизата не перестанут изменять цвет реактива Люголя. Затем оставшуюся в пробирке жидкость охлаждают, нейтрализуют по лакмусу 10% раствором щелочи и проделывают реакцию Фелинга (занятие №13) Наблюдают образование кирпично–красного осадка закиси меди. По полученным данным составляют таблицу цветного ряда декстринов.

№ пробы
Цвет жидкости
Название декстринов

При гидролизе крахмал распадается на ряд промежуточных продуктов. В целом гидролиз крахмала можно выразить следующей схемой:

Цветной ряд декстринов, образующихся при гидролизе крахмала:

Крахмал с йодом дает синее окрашивание

Амилодекстрины – с йодом дают окрашивание от сине-фиолетового до темно-фиолетового

Флаводекстрины — с йодом дают желто-оранжевое окрашивание

Эритродекстрины — с йодом дают окрашивание от красно-бурого до красно- оранжевого

Видео:Качественная реакция глюкозы с гидроксидом меди (II)Скачать

Качественная реакция глюкозы с гидроксидом меди (II)

Опыт 4. Обнаружение моносахаридов реактивом Толленса

МОНОСАХАРИДЫ

Цель работы. Сопоставить свойства альдоз и кетоз, познакомиться с их качественными реакциями.

Опыт 1. Проба Троммера на глюкозу

Здесь последовательно осуществляются две качественные реакции на глюкозу: (а) доказательство наличия в молекуле глюкозы нескольких ОН-групп по образованию синего раствора гликоната меди (II) и (б) доказательство наличия в молекуле глюкозы альдогруппы, — реакция «медного зеркала».

(а) Качественная реакция на a-гликольный фрагмент

В большой пробирке смешивают 1 мл 1 %-го раствора глюкозы и 0,5 мл 10 %-го раствора гидроксида натрия. Затем по каплям добавляют 5 %-й раствор CuSO4. Образующийся вначале голубой осадок гидроксида меди(II) при встряхивании растворяется и получается синий прозрачный раствор сахарата меди:

Реакция троммера с глюкозой уравнение реакции

2 СuOH ® Cu2O¯ + H2O

(б) Окисление моносахаридов гидроксидом меди(II) – качественная реакция на альдогруппу (проба Троммера)

Реакция троммера с глюкозой уравнение реакцииК полученному в предыдущем опыте раствору глюкозата меди(II) добавьте воды (до высоты слоя жидкости в пробирке

3/4 высоты пробирки), перемешайте. Пробирку сильно наклоните и грейте только в верхней части раствора (см. рис. 7). Нагрейте до кипения, но не кипятите (при кипячении начнет разлагаться нерастворившийся осадок Cu(OH)2 с образованием черного CuO, что «затемнит» внешний эффект). Через несколько секунд нагретая часть раствора изменит цвет на оранжево-желтый – образуется осадок CuOH. При избытке щелочи или более длительном нагреве может образоваться желто-красный осадок Cu2O.

Cu 2+ из состава сахарата восстанавливается до Cu 1+ (в составе CuOH или Cu2O), а глюкоза окисляется до глюконовой кислоты:

Опыт 2. Эпимеризация кетозы в альдозу

Фруктоза, не имеющая альдогруппы, тем не менее, тоже дает положительную пробу Троммера. Это обусловлено явлением эпимеризации – стереоизомеризацией кетозы в альдозу при нагреве в щелочной среде. Этот процесс проходит через стадию “енолизации” (образования ендиола):

Реакция троммера с глюкозой уравнение реакции

Восстановительная способность фруктозы (кетозы) связана с предварительным ее превращением (эпимеризацией) в альдозу, которая, собственно, и дает положительную реакцию Троммера.

Опыт с фруктозой проводится аналогично опыту 1, только требует более длительного нагревания. Напишите реакцию образования фруктоната меди (II) (взаимодействия Cu(OH)2 с фруктозой).

Опыт 3. Обнаружение моносахаридов реактивом

Фелинга

Реактивом Фелинга легко окисляются как альдозы, так и кетозы.

В две пробирки наливают по 1 мл 1 %-го раствора глюкозы и фруктозы. В каждую из них добавляют по 1 мл реактива Фелинга. Содержимое пробирок тщательно перемешивают и нагревают верхнюю часть раствора до начинающегося кипения (или на водяной бане в течение 5 мин). В обоих пробирках в верхней части жидкости появляется желтый осадок гидроксида меди(I) CuOH, переходящий в красно-оранжевый осадок оксида меди(I) Cu2O. Цвет нижней части пробирок не изменяется.

Реакция троммера с глюкозой уравнение реакции

Опыт 4. Обнаружение моносахаридов реактивом Толленса

(реакция “серебряного зеркала ”)

В две чистые и сухие пробирки наливают по 2-3 мл реактива Толленса (получение – см. стр.13). В одну из них добавляют 1-2 мл 1 %-го раствора глюкозы, а во вторую – столько же 1 %-го раствора фруктозы. Пробирки нагревают на водяной бане (70-80 °С) 10 минут. (Во время нагревания пробирки нельзя встряхивать, иначе серебро выпадет в виде черного осадка.)

Металлическое серебро выделяется на стенках обеих пробирок в виде зеркального налета.

Реакция троммера с глюкозой уравнение реакции

Объясните, почему кетоны не дают реакцию серебряного и медного зеркала, а кетозы дают такую реакцию?

Видео:Проба Троммера для качественных реакцийСкачать

Проба Троммера для качественных реакций

Специфичность действия ферментов

Ферменты обладают высокой специфичностью действия. Специфичность действия фермента предопределяется строгим соответствием пространственной конфигурации субстрата и активного центра фермента.

Формирование активного центра фермента начинается уже на ранних этапах синтеза белка – на рибосоме, когда линейная одномерная структура пептидной цепи превращается в трехмерное тело строго определенной конфигурации.

Основной движущей силой в возникновении трехмерной структуры является взаимодействие радикалов аминокислот в водной среде приопределенных значениях ионной силы, рН раствора и температуры и т.д. При этом неполярные гидрофобные радикалы аминокислот как бы погружаются внутрь белковой молекулы, образуя там сухие зоны, в то время как полярные радикалы оказываются ориентированными в сторону воды. В какой–то момент возникает термодинамически наиболее выгодная стабильная биологически активная конформация молекулы белка.

При уникальном сочетании нескольких аминокислотных остатков, расположенных в разных точках полипептидной цепи формируется каталитический центр фермента. Чаще всего в каталитических центрах однокомпонентных ферментов встречаются остатки сер, гис, три, арг, цис, асп, глу и тир, содержащие в радикале группы –ОН, –СООН,–NН2, –НS.

Так как каталитический центр однокомпонентного фермента возникает в тот момент, когда молекула приобретает присущую ей третичную структуру, то третичной структуры фермента под влиянием тех или иных факторов может привести к деформации каталитического центра и изменению ферментативной активности. У двухкомпонентных ферментов в состав каталитического центра еще входят группа небелковой природы. Добавочную группу, прочно связанную с белком называют простетической группой; легко отделяемую от белка и способную к самостоятельному существованию – коферментом.

В активном центре условно различают каталитический центр, непосредственно вступающий в химическое взаимодействие с субстратом и связывающий центр, обеспечивающий специфическое сродство к субстрату и формировании его комплекса с ферментом. В свою очередь молекула субстрата также содержит функционально различные участки: одну специфическую связь (или группу атомов), подвергающуюся атаке со стороны фермента, и один или несколько участков, избирательно связываемых ферментом.

Пространственное соответствие структуры субстрата и активного центра фермента создается в момент их взаимодействия друг с другом, что может быть выражено формулой «перчаткарука». При этом в субстрате уже деформируются некоторые валентные связи и он, таким образом, подготавливается к дальнейшему каталитическому видоизменению, а в молекуле фермента происходят конформационные перестройки. В настоящее время гипотеза Кошланда постепенно дополняется гипотезой топохимического соответствия. Сохраняя основные положения гипотезы взаимоиндуцированной настройки субстрата и фермента, она фиксирует внимание на том, что специфичность действия ферментов объясняется в первую очередь узнаванием той части субстрата, которая не изменяется при катализе. Между этой частью субстрата и субстратным центром фермента возникают многочисленные точечные гидрофобные взаимодействия и водородные связи.

Реакция троммера с глюкозой уравнение реакции

Рисунок 1 – Схема активного центра фермента

Различают групповую и абсолютную специфичность. При групповой специфичности фермент катализирует реакции одного типа более чем с одним структуроподобным субстратом. Например, триацилглицероллипаза расщепляет жиры (сложноэфирную связь), включающие разные жирно-кислотные остатки. Другой пример, – действие ферментов, гидролизующих пептиды и белки: они расщепляют пептидные связи, образованные разными аминокислотами. При абсолютной специфичности фермент каталитически ускоряет одну единственную реакцию. Примером таких ферментов могут служить аргиназа, гидролитически расщепляющая аргинин на орнитин и мочевину, уреаза, катализирующая распад мочевины на СО2 и NH3.

Существует еще и стереоспецифичность, когда фермент катализирует превращение определенного оптического изомера – L- или D- или геометрического – цис- или транс-.

Например, фумараза катализирует превращение только фумаровой кислоты (транс-изомер), но не действует на малеиновую кислоту (цис-изомер).

Реакция троммера с глюкозой уравнение реакции

фумаровая кислота малеиновая кислота

Свойство специфичности можно установить на примере действия ферментов a– амилазы – (1,4–a–глюкан–4–глюканогидролаза) и сахаразы (a–D – глюкопиранозил– (1®2) –b–D – фруктофуранозид).

a–Амилаза катализирует гидролиз 1,4–гликозидных связей в молекуле крахмала и гликогена без какого–либо определенного порядка с образованием небольшого количества олигосахаридов, декстринов и мальтозы. В зависи-мости от состава и свойств декстрины делятся на:

¾ амилодекстрины, окрашивающиеся раствором йода в фиолетовосиний цвет;

¾ эритродекстрины, окрашивающиеся йодом в красно–бурый цвет;

¾ ахродекстрины, окрашиваются в желтый цвет;

¾ мальтодекстрины, не окрашивающиеся йодом;

Сахараза расщепляет сахарозу на a–D–глюкозу и b–D фруктозу.

Реакция троммера с глюкозой уравнение реакции

Принцип метода.Действие a–амилазы на крахмал обнаруживают по реакции с йодом: нерасщепленный крахмал с йодом дает синее окрашивание, а расщепленный окрашивается в цвет в зависимости от глубины гидролиза: от сине–фиолетового до желтого.

Действие сахаразы на сахарозу можно установить по реакции Троммера. Сахароза не содержит свободный полуацетальный гидроксил альдегидной группы, поэтому не дает реакции Троммера. Реакция Троммера может быть положительной, только в том случае, если сахароза расщепляется на свои составные части a–D– глюкозу и b–D–фруктозу под действием фермента сахаразы.

Реакция троммера с глюкозой уравнение реакции

2-(a-D-глюкопиранозил)-b-D-фруктофуранозид a-D-глюкоза b-d-фруктоза

Реакция Троммера заключается на способности свободной альдегидной или кетонной группы молекулы сахара (глюкозы и фруктозы) взаимодействовать со щелочным раствором окисной меди (II) и восстанавливать ее до оксида меди (I), выпадающего в виде осадка красного цвета.

Реакция троммера с глюкозой уравнение реакции

Ход работы. Приготовление растворов ферментов.

5 г хлебопекарных дрожжей растирают в ступке с битым стеклом, прибавляют понемногу 10 мл дистиллированной воды и оставляют стоять на 30 мин. при 37 °С при периодическом помешивании, затем фильтруют. Фильтрат является источником сахаразы.

Берут 4 пробирки, нумеруют. В первые две наливают по 1 мл 0,1 % –го раствора крахмала, в две другие – по 2 мл 1 %-го раствора сахарозы. В первую и четвертую добавляют по 1 мл раствора амилазы (слюна, разведенная в 10 раз), во вторую и третью – 1 мл сахаразы. Содержимое пробирок хорошо перемешивают и выдерживают в термостате при 37–40 °С 10 минут. Затем пробирки охлаждают водопроводной водой. В пробирки с крахмалом вносят несколько капель раствора Люголя; в пробирках с сахарозой проводят реакцию Троммера, для чего добавляют равный объем 10 % раствора едкого натра. Затем по каплям добавляют 5 % раствор сернокислой меди до появления неисчезающей мути гидроокиси меди. Осторожно нагревают содержимое пробирок. Появление красного осадка (оксида меди (I)) указывает на положительную реакцию Троммера.

Дата добавления: 2015-04-18 ; просмотров: 38 ; Нарушение авторских прав

🎬 Видео

Якісна реакція на глюкозуСкачать

Якісна реакція на глюкозу

Аэробный и анаэробный гликолиз. Реакции катаболизма глюкозы. Расчет выхода АТФ в гликолизеСкачать

Аэробный и анаэробный гликолиз. Реакции катаболизма глюкозы. Расчет выхода АТФ в гликолизе

Реакция глюкозы с гидроксидом меди (II)Скачать

Реакция глюкозы с гидроксидом меди (II)

25. Схема реакции и химическое уравнениеСкачать

25. Схема реакции и химическое уравнение

Реакция серебряного зеркала с глюкозой | Качественная реакция глюкозы на альдегидную группу |Скачать

Реакция серебряного зеркала с глюкозой | Качественная реакция глюкозы на альдегидную группу |

Опыты по химии. Взаимодействие глюкозы с оксидом серебраСкачать

Опыты по химии. Взаимодействие глюкозы с оксидом серебра

Качественная реакция на глюкозу. Реакция глюкозы с гидроксидом меди (ll)Скачать

Качественная реакция на глюкозу. Реакция глюкозы с гидроксидом меди (ll)

Опыты по химии. Обнаружение глюкозы в виноградном соке и медеСкачать

Опыты по химии. Обнаружение глюкозы в виноградном соке и меде

Реакция глюкозы с аммиачным раствором оксида серебраСкачать

Реакция глюкозы с аммиачным раствором оксида серебра

Reaction of Glucose with HCN (hydrogen cyanide)Скачать

Reaction of Glucose with HCN (hydrogen cyanide)

Качественная реакция на глюкозуСкачать

Качественная реакция на глюкозу

Качественные реакции на глюкозу.Скачать

Качественные реакции на глюкозу.

Качественная реакция на альдегиды с гидроксидом медиСкачать

Качественная реакция на альдегиды с гидроксидом меди

Свойства глюкозы. 11 класс.Скачать

Свойства глюкозы. 11 класс.

Общие свойства углеводов. Реактив Фелинга, Фруктоза, Сахароза, Крахмал.Скачать

Общие свойства углеводов. Реактив Фелинга, Фруктоза, Сахароза, Крахмал.

97. Глюкоза (структурные формулы)Скачать

97. Глюкоза (структурные формулы)

качественная реакция глюкозы с гидроксидом меди.wmvСкачать

качественная реакция глюкозы с гидроксидом меди.wmv
Поделиться или сохранить к себе:
Читайте также:

  1. SCADA-система. ОРС. Организация взаимодействия с контроллерами.
  2. Автотрансформаторы, особенности конструкции, принцип действия, характеристики
  3. Аккультурация в межкультурных взаимодействиях
  4. Активирование и ингибирование ферментов
  5. Акты и действия, посягающие на свободу конкуренции и предпринимательства на рынке.
  6. Алгоритм действия мед. Сестры при проведении УВЧ терапии.
  7. Алгоритм действия медсестры при проведении УВЧ терапии.
  8. Алгоритм действия спасателей до извлечения пострадавшего
  9. Антидоты: определение. Основные механизмы антидотного действия
  10. Антитела, иммуноглобулины, их основные свойства. Специфичность антител.