Реакция меди с водой уравнение

Содержание
  1. Медь. Химия меди и ее соединений
  2. Положение в периодической системе химических элементов
  3. Электронное строение меди
  4. Физические свойства
  5. Нахождение в природе
  6. Способы получения меди
  7. Качественные реакции на ионы меди (II)
  8. Химические свойства меди
  9. Оксид меди (II)
  10. Способы получения оксида меди (II)
  11. Химические свойства оксида меди (II)
  12. Оксид меди (I)
  13. Способы получения оксида меди (I)
  14. Химические свойства оксида меди (I)
  15. Гидроксид меди (II)
  16. Способы получения гидроксида меди (II)
  17. Химические свойства
  18. Соли меди
  19. Соли меди (I)
  20. Соли меди (II)
  21. Медь и соединения меди
  22. 2.2.4. Химические свойства переходных металлов (меди, цинка, хрома, железа).
  23. Химические свойства меди
  24. Взаимодействие с простыми веществами
  25. с кислородом
  26. с серой
  27. с галогенами
  28. Взаимодействие со сложными веществами
  29. с кислотами-неокислителями
  30. с кислотами-окислителями
  31. — концентрированной серной кислотой
  32. — с разбавленной азотной кислотой
  33. — с концентрированной азотной кислотой
  34. с оксидами неметаллов
  35. с оксидами металлов
  36. с солями металлов
  37. Коррозия меди
  38. Химические свойства цинка
  39. Химические свойства хрома
  40. Взаимодействие с неметаллами
  41. с кислородом
  42. с галогенами
  43. с азотом
  44. с серой
  45. Взаимодействие со сложными веществами
  46. Взаимодействие с водой
  47. Взаимодействие с кислотами
  48. Химические свойства железа
  49. Взаимодействие с простыми веществами
  50. С кислородом
  51. С серой
  52. С галогенами
  53. С водородом
  54. Взаимодействие со сложными веществами
  55. Взаимодействие с кислотами
  56. Коррозия (ржавление) железа
  57. Взаимодействует ли медь с водой
  58. All Metals
  59. Химические свойства
  60. Оксид меди (I, II, III): свойства, получение, применение
  61. Оксид меди (I)
  62. Оксид меди (II)
  63. Оксид меди (III)
  64. Заключение
  65. Медь (Cu)
  66. Медь в питьевой воде: опасность и способы устранения
  67. Соединения меди
  68. Оксид меди
  69. Получение и применение меди
  70. 📹 Видео

Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Медь. Химия меди и ее соединений

Реакция меди с водой уравнение

Положение в периодической системе химических элементов

Медь расположена в 11 группе (или в побочной подгруппе II группы в короткопериодной ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение меди

Электронная конфигурация меди в основном состоянии :

+29Cu 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 1s Реакция меди с водой уравнение 2sРеакция меди с водой уравнение 2pРеакция меди с водой уравнение

3s Реакция меди с водой уравнение 3p Реакция меди с водой уравнение 4s Реакция меди с водой уравнение 3d Реакция меди с водой уравнение

У атома меди уже в основном энергетическом состоянии происходит провал (проскок) электрона с 4s-подуровня на 3d-подуровень.

Физические свойства

Медь – твердый металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). Медь относительно легко поддается механической обработке. В природе встречается в том числе в чистом виде и широко применяется в различных отраслях науки, техники и производства.

Реакция меди с водой уравнение

Изображение с портала zen.yandex.com/media/id/5d426107ae56cc00ad977411/uralskaia-boginia-liubvi-5d6bcceda660d700b075a12d

Температура плавления 1083,4 о С, температура кипения 2567 о С, плотность меди 8,92 г/см 3 .

Реакция меди с водой уравнение

Медь — ценный металл в сфере вторичной переработки. Сдав лом меди в пункт приема, Вы можете получить хорошее денежное вознаграждение. Подробнее про прием лома меди.

Нахождение в природе

Медь встречается в земной коре (0,0047-0,0055 масс.%), в речной и морской воде. В природе медь встречается как в соединениях, так и в самородном виде. В промышленности используют халькопирит CuFeS2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Также распространены и другие минералы меди: ковеллин CuS, куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2 (OH) 2 CO 3 . Иногда медь встречается в самородном виде, масса которых может достигать 400 тонн .

Способы получения меди

Медь получают из медных руд и минералов. Основные методы получения меди — электролиз, пирометаллургический и гидрометаллургический.

  • Гидрометаллургический метод: р астворение медных минералов в разбавленных растворах серной кислоты, с последующим вытеснением металлическим железом.

Например , вытеснение меди из сульфата железом:

CuSO4 + Fe = Cu + FeSO4

  • Пирометаллургический метод : получение меди из сульфидных руд. Это сложный процесс, который включает большое количество реакций. Основные стадии процесса:

1) Обжиг сульфидов:

2CuS + 3O2 = 2CuO + 2SO2

2) восстановление меди из оксида, например, водородом:

CuO + H2 = Cu + H2O

  • Электролиз растворов солей меди:

Качественные реакции на ионы меди (II)

Качественная реакция на ионы меди +2 – взаимодействие солей меди (II) с щелочами . При этом образуется голубой осадок гидроксида меди(II).

Например , сульфат меди (II) взаимодействует с гидроксидом натрия:

Реакция меди с водой уравнение

Соли меди (II) окрашивают пламя в зеленый цвет.

Реакция меди с водой уравнение

Химические свойства меди

В соединениях медь может проявлять степени окисления +1 и +2.

1. Медь — химически малоактивный металл. При нагревании медь может реагировать с некоторыми неметаллами: кислородом, серой, галогенами.

1.1. При нагревании медь реагирует с достаточно сильными окислителями , например , с кислородом , образуя CuО, Cu2О в зависимости от условий:

2Cu + О2 → 2CuО

1.2. Медь реагирует с серой с образованием сульфида меди (II):

Cu + S → CuS

1.3. Медь взаимодействует с галогенами . При этом образуются галогениды меди (II):

Но, обратите внимание:

2Cu + I2 = 2CuI

1.4. С азотом, углеродом и кремнием медь не реагирует:

Cu + N2

Cu + C

Cu + Si

1.5. Медь не взаимодействует с водородом.

1.6. Медь взаимодействует с кислородом с образованием оксида:

2Cu + O2 → 2CuO

2. Медь взаимодействует и со сложными веществами:

2.1. Медь в сухом воздухе и при комнатной температуре не окисляется, но во влажном воздухе, в присутствии оксида углерода (IV) покрывается зеленым налетом карбоната гидроксомеди (II):

2.2. В ряду напряжений медь находится правее водорода и поэтому не может вытеснить водород из растворов минеральных кислот (разбавленной серной кислоты и др.).

Например , медь не реагирует с разбавленной серной кислотой :

2.3. При этом медь реагирует при нагревании с концентрированной серной кислотой . При нагревании реакция идет, образуются оксид серы (IV), сульфат меди (II) и вода:

2.4. Медь реагирует даже при обычных условиях с азотной кислотой .

С концентрированной азотной кислотой:

С разбавленной азотной кислотой:

Реакция меди с водой уравнение

Реакция меди с азотной кислотой

2.5. Растворы щелочей на медь практически не действуют.

2.6. Медь вытесняет металлы, стоящие правее в ряду напряжений, из растворов их солей .

Например , медь реагирует с нитратом ртути (II) с образованием нитрата меди (II) и ртути:

Hg(NO 3 ) 2 + Cu = Cu(NO 3 ) 2 + Hg

2.7. Медь окисляется оксидом азота (IV) и солями железа (III)

2Cu + NO2 = Cu2O + NO

Оксид меди (II)

Оксид меди (II) CuO – твердое кристаллическое вещество черного цвета.

Способы получения оксида меди (II)

Оксид меди (II) можно получить различными методами :

1. Термическим разложением гидроксида меди (II) при 200°С :

2. В лаборатории оксид меди (II) получают окислением меди при нагревании на воздухе при 400–500°С:

2Cu + O2 2CuO

3. В лаборатории оксид меди (II) также получают прокаливанием солей (CuOH)2CO3, Cu(NO3)2:

Химические свойства оксида меди (II)

Оксид меди (II) – основный оксид (при этом у него есть слабо выраженные амфотерные свойства) . При этом он является довольно сильным окислителем.

1. При взаимодействии оксида меди (II) с сильными и растворимыми кислотами образуются соли.

Например , оксид меди (II) взаимодействует с соляной кислотой:

СuO + 2HBr = CuBr2 + H2O

CuO + 2HCl = CuCl2 + H2O

2. Оксид меди (II) вступает в реакцию с кислотными оксидами.

Например , оксид меди (II) взаимодействует с оксидом серы (VI) с образованием сульфата меди (II):

3. Оксид меди (II) не взаимодействует с водой.

4. В окислительно-восстановительных реакциях соединения меди (II) проявляют окислительные свойства:

Например , оксид меди (II) окисляет аммиак :

3CuO + 2NH3 → 3Cu + N2 + 3H2O

Оксид меди (II) можно восстановить углеродом, водородом или угарным газом при нагревании:

СuO + C → Cu + CO

Более активные металлы вытесняют медь из оксида.

Например , алюминий восстанавливает оксид меди (II):

3CuO + 2Al = 3Cu + Al2O3

Оксид меди (I)

Оксид меди (I) Cu2O – твердое кристаллическое вещество коричнево-красного цвета.

Способы получения оксида меди (I)

В лаборатории оксид меди (I) получают восстановлением свежеосажденного гидроксида меди (II), например, альдегидами или глюкозой:

Химические свойства оксида меди (I)

1. Оксид меди (I) обладает основными свойствами.

При действии на оксид меди (I) галогеноводородных кислот получают галогениды меди (I) и воду:

Например , соляная кислота с оксидом меди (I) образует хлорид меди (I):

Cu2O + 2HCl = 2CuCl↓ + H2O

2. При растворении Cu2O в концентрированной серной, азотной кислотах образуются только соли меди (II):

3. Устойчивыми соединениями меди (I) являются нерастворимые соединения (CuCl, Cu2S) или комплексные соединения [Cu(NH3)2] + . Последние получают растворением в концентрированном растворе аммиака оксида меди (I), хлорида меди (I):

Аммиачные растворы солей меди (I) взаимодействуют с ацетиленом :

СH ≡ CH + 2[Cu(NH3)2]Cl → СuC ≡ CCu + 2NH4Cl

4. В окислительно-восстановительных реакциях соединения меди (I) проявляют окислительно-восстановительную двойственность:

Например , при взаимодействии с угарным газом, более активными металлами или водородом оксид меди (II) проявляет свойства окислителя :

Cu2O + CO = 2Cu + CO2

А под действием окислителей, например, кислорода свойства восстановителя :

Гидроксид меди (II)

Способы получения гидроксида меди (II)

1. Гидроксид меди (II) можно получить действием раствора щелочи на соли меди (II).

Например , хлорид меди (II) реагирует с водным раствором гидроксида натрия с образованием гидроксида меди (II) и хлорида натрия:

CuCl2 + 2NaOH → Cu(OH)2 + 2NaCl

Химические свойства

Гидроксид меди (II) Сu(OН)2 проявляет слабо выраженные амфотерные свойства (с преобладанием основных ).

1. Взаимодействует с кислотами .

Например , взаимодействует с бромоводородной кислотой с образованием бромида меди (II) и воды:

2. Гидроксид меди (II) легко взаимодействует с раствором аммиака , образуя сине-фиолетовое комплексное соединение:

3. При взаимодействии гидроксида меди (II) с концентрированными (более 40%) растворами щелочей образуется комплексное соединение:

Но этой реакции в ЕГЭ по химии пока нет!

4. При нагревании гидроксид меди (II) разлагается :

Соли меди

Соли меди (I)

В окислительно-восстановительных реакциях соединения меди (I) проявляют окислительно-восстановительную двойственность . Как восстановители они реагируют с окислителями.

Например , хлорид меди (I) окисляется концентрированной азотной кислотой :

Также хлорид меди (I) реагирует с хлором :

2CuCl + Cl2 = 2CuCl2

Хлорид меди (I) окисляется кислородом в присутствии соляной кислоты:

4CuCl + O2 + 4HCl = 4CuCl2 + 2H2O

Прочие галогениды меди (I) также легко окисляются другими сильными окислителями:

Иодид меди (I) реагирует с концентрированной серной кислотой :

Сульфид меди (I) реагирует с азотной кислотой. При этом образуются различные продукты окисления серы на холоде и при нагревании:

Для соединений меди (I) возможна реакция диспропорционирования :

2CuCl = Cu + CuCl2

Комплексные соединения типа [Cu(NH3)2] + получают растворением в концентрированном растворе аммиака :

Соли меди (II)

В окислительно-восстановительных реакциях соединения меди (II) проявляют окислительные свойства.

Например , соли меди (II) окисляют иодиды и сульфиты :

2CuCl2 + 4KI = 2CuI + I2 + 4KCl

Бромиды и иодиды меди (II) можно окислить перманганатом калия :

Соли меди (II) также окисляют сульфиты :

Более активные металлы вытесняют медь из солей.

Например , сульфат меди (II) реагирует с железом :

CuSO4 + Fe = FeSO4 + Cu

Сульфид меди (II) можно окислить концентрированной азотной кислотой . При нагревании возможно образование сульфата меди (II):

Еще одна форма этой реакции:

CuS + 10HNO 3( конц .) = Cu(NO 3 ) 2 + H 2 SO 4 + 8NO 2 ↑ + 4H 2 O

При горении сульфида меди (II) образуется оксид меди (II) и диоксид серы:

2CuS + 3O2 2CuO + 2SO2

Соли меди (II) вступают в обменные реакции, как и все соли.

Например , растворимые соли меди (II) реагируют с сульфидами:

CuBr2 + Na2S = CuS↓ + 2NaBr

При взаимодействии солей меди (II) с щелочами образуется голубой осадок гидроксида меди (II):

CuSO 4 + 2NaOH = Cu(OH) 2 ↓ + Na 2 SO 4

Электролиз раствора нитрата меди (II):

Некоторые соли меди при нагревании разлагаются , например , нитрат меди (II):

Основный карбонат меди разлагается на оксид меди (II), углекислый газ и воду:

При взаимодействии солей меди (II) с избытком аммиака образуются аммиачные комплексы:

При смешивании растворов солей меди (II) и карбонатов происходит гидролиз и по катиону слабого основания, и по аниону слабой кислоты:

Видео:Реакции металлов с кислородом и водой. 8 класс.Скачать

Реакции металлов с кислородом и водой. 8 класс.

Медь и соединения меди

1) Через раствор хлорида меди (II) с помощью графитовых электродов пропускали постоянный электрический ток. Выделившийся на катоде продукт электролиза растворили в концентрированной азотной кислоте. Образовавшийся при этом газ собрали и пропустили через раствор гидроксида натрия. Выделившийся на аноде газообразный продукт электролиза пропустили через горячий раствор гидроксида натрия. Напишите уравнения описанных реакций.

2) Вещество, полученное на катоде при электролизе расплава хлорида меди (II), реагирует с серой. Полученный продукт обработали концентрированной азотной кислотой, и выделившийся газ пропустили через раствор гидроксида бария. Напишите уравнения описанных реакций.

3) Неизвестная соль бесцветна и окрашивает пламя в желтый цвет. При легком нагревании этой соли с концентрированной серной кислотой отгоняется жидкость, в которой растворяется медь; последнее превращение сопровождается выделением бурого газа и образованием соли меди. При термическом распаде обеих солей одним из продуктов разложения является кислород. Напишите уравнения описанных реакций.

4) При взаимодействии раствора соли А со щелочью было получено студенистое нерастворимое в воде вещество голубого цвета, которое растворили в бесцветной жидкости Б с образованием раствора синего цвета. Твердый продукт, оставшийся после осторожного выпаривания раствора, прокалили; при этом выделились два газа, один из которых бурого цвета, а второй входит в состав атмосферного воздуха, и осталось твердое вещество черного цвета, которое растворяется в жидкости Б с образованием вещества А. Напишите уравнения описанных реакций.

5) Медную стружку растворили в разбавленной азотной кислоте, и раствор нейтрализовали едким кали. Выделившееся вещество голубого цвета отделили, прокалили (цвет вещества изменился на черный), смешали с коксом и повторно прокалили. Напишите уравнения описанных реакций.

6) В раствор нитрата ртути (II) добавили медную стружку. После окончания реакции раствор профильтровали, и фильтрат по каплям прибавляли к раствору, содержащему едкий натр и гидроксид аммония. При этом наблюдали кратковременное образование осадка, который растворился с образованием раствора ярко-синего цвета. При добавлении в полученный раствор избытка раствора серной кислоты происходило изменение цвета. Напишите уравнения описанных реакций.

7) Оксид меди (I) обработали концентрированной азотной кислотой, раствор осторожно выпарили и твердый остаток прокалили. Газообразные продукты реакции пропустили через большое количество воды и в образовавшийся раствор добавили магниевую стружку, в результате выделился газ, используемый в медицине. Напишите уравнения описанных реакций.

8) Твердое вещество, образующееся при нагревании малахита, нагрели в атмосфере водорода. Продукт реакции обработали концентрированной серной кислотой, внесли в раствор хлорида натрия, содержащий медные опилки, в результате образовался осадок. Напишите уравнения описанных реакций.

9) Соль, полученную при растворении меди в разбавленной азотной кислоте, подвергли электролизу, используя графитовые электроды. Вещество, выделившееся на аноде, ввели во взаимодействие с натрием, а полученный продукт реакции поместили в сосуд с углекислым газом. Напишите уравнения описанных реакций.

10) Твердый продукт термического разложения малахита растворили при нагревании в концентрированной азотной кислоте. Раствор осторожно выпарили, и твердый остаток прокалили, получив вещество черного цвета, которое нагрели в избытке аммиака (газ). Напишите уравнения описанных реакций.

11) К порошкообразному веществу черного цвета добавили раствор разбавленной серной кислоты и нагрели. В полученный раствор голубого цвета приливали раствор едкого натра до прекращения выделения осадка. Осадок отфильтровали и нагрели. Продукт реакции нагревали в атмосфере водорода, в результате чего получилось вещество красного цвета. Напишите уравнения описанных реакций.

12) Неизвестное вещество красного цвета нагрели в хлоре, и продукт реакции растворили в воде. В полученный раствор добавили щелочь, выпавший осадок голубого цвета отфильтровали и прокалили. При нагревании продукта прокаливании, который имеет черный цвет, с коксом было получено исходное вещество красного цвета. Напишите уравнения описанных реакций.

13) Раствор, полученный при взаимодействии меди с концентрированной азотной кислотой, выпарили и осадок прокалили. Газообразные продукты полностью поглощены водой, а над твердым остатком пропустили водород. Напишите уравнения описанных реакций.

14) Черный порошок, который образовался при сжигании металла красного цвета в избытке воздуха, растворили в 10%-серной кислоте. В полученный раствор добавили щелочь, и выпавший осадок голубого цвета отделили и растворили в избытке раствора аммиака. Напишите уравнения описанных реакций.

15) Вещество черного цвета получили, прокаливая осадок, который образуется при взаимодействии гидроксида натрия и сульфата меди (II). При нагревании этого вещества с углем получают металл красного цвета, который растворяется в концентрированной серной кислоте. Напишите уравнения описанных реакций.

16) Металлическую медь обработали при нагревании йодом. Полученный продукт растворили в концентрированной серной кислоте при нагревании. Образовавшийся раствор обработали раствором гидроксидом калия. Выпавший осадок прокалили. Напишите уравнения описанных реакций.

17) К раствору хлорида меди (II) добавили избыток раствора соды. Выпавший осадок прокалили, а полученный продукт нагрели в атмосфере водорода. Полученный порошок растворили в разбавленной азотной кислоте. Напишите уравнения описанных реакций.

18) Медь растворили в разбавленной азотной кислоте. К полученному раствору добавили избыток раствора аммиака, наблюдая сначала образование осадка, а затем – его полное растворение с образованием темно-синего раствора. Полученный раствор обработали серной кислотой до появления характерной голубой окраски солей меди. Напишите уравнения описанных реакций.

19) Медь растворили в концентрированной азотной кислоте. К полученному раствору добавили избыток раствора аммиака, наблюдая сначала образование осадка, а затем – его полное растворение с образованием темно-синего раствора. Полученный раствор обработали избытком соляной кислоты. Напишите уравнения описанных реакций.

20) Газ, полученный при взаимодействии железных опилок с раствором соляной кислоты, пропустили над нагретым оксидом меди (II) до полного восстановления металла. полученный металл растворили в концентрированной азотной кислоте. Образовавшийся раствор подвергли электролизу с инертными электродами. Напишите уравнения описанных реакций.

21) Йод поместили в пробирку с концентрированной горячей азотной кислотой. Выделившийся газ пропустили через воду в присутствии кислорода. В полученный раствор добавили гидроксид меди (II). Образовавшийся раствор выпарили и сухой твердый остаток прокалили. Напишите уравнения описанных реакций.

22) Оранжевый оксид меди поместили в концентрированную серную кислоту и нагрели. К полученному голубому раствору прилили избыток раствора гидроксида калия. выпавший синий осадок отфильтровали, просушили и прокалили. Полученное при этом твердое черное вещество в стеклянную трубку, нагрели и пропустили над ним аммиак. Напишите уравнения описанных реакций.

23) Оксид меди (II) обработали раствором серной кислоты. При электролизе образующегося раствора на инертном аноде выделяется газ. Газ смешали с оксидом азота (IV) и поглотили с водой. К разбавленному раствору полученной кислоты добавили магний, в результате чего в растворе образовалось две соли, а выделение газообразного продукта не происходило. Напишите уравнения описанных реакций.

24) Оксид меди (II) нагрели в токе угарного газа. Полученное вещество сожгли в атмосфере хлора. Продукт реакции растворили в в воде. Полученный раствор разделили на две части. К одной части добавили раствор иодида калия, ко второй – раствор нитрата серебра. И в том, и в другом случае наблюдали образование осадка. Напишите уравнения описанных реакций.

25) Нитрат меди (II) прокалили, образовавшееся твердое вещество растворили в разбавленной серной кислоте. Раствор полученной соли подвергли электролизу. Выделившееся на катоде вещество растворили в концентрированной азотной кислоте. Растворение протекает с выделением бурого газа. Напишите уравнения описанных реакций.

26) Щавелевую кислоту нагрели с небольшим количеством концентрированной серной кислоты. Выделившийся газ пропустили через раствор гидроксида кальция. В котором выпал осадок. Часть газа не поглотилась, его пропустили над твердым веществом черного цвета, полученным при прокаливании нитрата меди (II). В результате образовалось твердое вещество темно-красного цвета. Напишите уравнения описанных реакций.

27) Концентрированная серная кислота прореагировала с медью. Выделившийся при газ полностью поглотили избытком раствора гидроксида калия. Продукт окисления меди смешали с расчетным количеством гидроксида натрия до прекращения выпадения осадка. Последний растворили в избытке соляной кислоты. Напишите уравнения описанных реакций.

Видео:РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

2.2.4. Химические свойства переходных металлов (меди, цинка, хрома, железа).

Видео:Химические свойства воды/часть 1/химия 8 классСкачать

Химические свойства воды/часть 1/химия 8 класс

Химические свойства меди

Медь (Cu) относится к d-элементам и расположена в IB группе периодической таблицы Д.И.Менделеева. Электронная конфигурация атома меди в основном состоянии записывается виде 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 вместо предполагаемой формулы 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 . Другими словами, в случае атома меди наблюдается так называемый «проскок электрона» с 4s-подуровня на 3d-подуровень. Для меди, кроме нуля, возможны степени окисления +1 и +2. Степень окисления +1 склонна к диспропорционированию и стабильна лишь в нерастворимых соединениях типа CuI, CuCl, Cu2O и т. д., а также в комплексных соединениях, например, [Cu(NH3)2]Cl и [Cu(NH3)2]OH. Соединения меди в степени окисления +1 не имеют конкретной окраски. Так, оксид меди (I) в зависимости от размеров кристаллов может быть темно-красный (крупные кристаллы) и желтый (мелкие кристаллы), CuCl и CuI — белыe, а Cu2S — черно-синий. Более химически устойчивой является степень окисления меди, равная +2. Соли, содержащие медь в данной степени окисления, имеют синюю и сине-зеленую окраску.

Медь является очень мягким, ковким и пластичным металлом с высокой электро- и теплопроводностью. Окраска металлической меди красно-розовая. Медь находится в ряду активности металлов правее водорода, т.е. относится к малоактивным металлам.

Взаимодействие с простыми веществами

с кислородом

В обычных условиях медь с кислородом не взаимодействует. Для протекания реакции между ними требуется нагрев. В зависимости от избытка или недостатка кислорода и температурных условий может образовать оксид меди (II) и оксид меди (I):

Реакция меди с водой уравнение

с серой

Реакция серы с медью в зависимости от условий проведения может приводить к образованию как сульфида меди (I), так и сульфида меди (II). При нагревании смеси порошкообразных Cu и S до температуры 300-400 о С образуется сульфид меди (I):

Реакция меди с водой уравнение

При избытке серы и проведении реакции при температуре более 400 о С образуется сульфид меди (II). Однако, более простым способом получения сульфида меди (II) из простых веществ является взаимодействие меди с серой, растворенной в сероуглероде:

Реакция меди с водой уравнение

Данная реакция протекает при комнатной температуре.

с галогенами

С фтором, хлором и бромом медь реагирует, образуя галогениды с общей формулой CuHal2, где Hal – F, Cl или Br:

В случае с йодом — самым слабым окислителем среди галогенов — образуется иодид меди (I):

Реакция меди с водой уравнение

С водородом, азотом, углеродом и кремнием медь не взаимодействует.

Взаимодействие со сложными веществами

с кислотами-неокислителями

Кислотами-неокислителями являются практически все кислоты, кроме концентрированной серной кислоты и азотной кислоты любой концентрации. Поскольку кислоты-неокислители в состоянии окислить только металлы, находящиеся в ряду активности до водорода; это означает, что медь с такими кислотами не реагирует.

Реакция меди с водой уравнение

с кислотами-окислителями

— концентрированной серной кислотой

С концентрированной серной кислотой медь реагирует как при нагревании, так и при комнатной температуре. При нагревании реакция протекает в соответствии с уравнением: Реакция меди с водой уравнение

Поскольку медь не является сильным восстановителем, сера восстанавливается в данной реакции только до степени окисления +4 (в SO2).

— с разбавленной азотной кислотой

Реакция меди с разбавленной HNO3 приводит к образованию нитрата меди (II) и монооксида азота:

— с концентрированной азотной кислотой

Концентрированная HNO3 легко реагирует с медью при обычных условиях. Отличие реакции меди с концентрированной азотной кислотой от взаимодействия с разбавленной азотной кислотой заключается в продукте восстановления азота. В случае концентрированной HNO3 азот восстанавливается в меньшей степени: вместо оксида азота (II) образуется оксид азота (IV), что связано с большей конкуренцией между молекулами азотной кислоты в концентрированной кислоте за электроны восстановителя (Cu):

с оксидами неметаллов

Медь реагирует с некоторыми оксидами неметаллов. Например, с такими оксидами, как NO2, NO, N2O медь окисляется до оксида меди (II), а азот восстанавливается до степени окисления 0, т.е. образуется простое вещество N2:

Реакция меди с водой уравнение

В случае диоксида серы, вместо простого вещества (серы) образуется сульфид меди(I). Связано это с тем, что медь с серой, в отличие от азота, реагирует:

Реакция меди с водой уравнение

с оксидами металлов

При спекании металлической меди с оксидом меди (II) при температуре 1000-2000 о С может быть получен оксид меди (I):

Реакция меди с водой уравнение

Также металлическая медь может восстановить при прокаливании оксид железа (III) до оксида железа (II):

Реакция меди с водой уравнение

с солями металлов

Медь вытесняет менее активные металлы (правее нее в ряду активности) из растворов их солей:

Также имеет место интересная реакция, в которой медь растворяется в соли более активного металла – железа в степени окисления +3. Однако противоречий нет, т.к. медь не вытесняет железо из его соли, а лишь восстанавливает его со степени окисления +3 до степени окисления +2:

Последняя реакция используется при производстве микросхем на стадии травления медных плат.

Коррозия меди

Медь со временем подвергается коррозии при контакте с влагой, углекислым газом и кислородом воздуха:

В результате протекания данной реакции медные изделия покрываются рыхлым сине-зеленым налетом гидроксокарбоната меди (II).

Видео:Взаимодействие алюминия с водойСкачать

Взаимодействие алюминия с водой

Химические свойства цинка

Цинк Zn находится в IIБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов химического элемента в основном состоянии 3d 10 4s 2 . Для цинка возможна только одна единственная степень окисления, равная +2. Оксид цинка ZnO и гидроксид цинка Zn(ОН)2 обладают ярко выраженными амфотерными свойствами.

Цинк при хранении на воздухе тускнеет, покрываясь тонким слоем оксида ZnO. Особенно легко окисление протекает при высокой влажности и в присутствии углекислого газа вследствие протекания реакции:

Пар цинка горит на воздухе, а тонкая полоска цинка после накаливания в пламени горелки сгорает в нем зеленоватым пламенем:

Реакция меди с водой уравнение

При нагревании металлический цинк также взаимодействует с галогенами, серой, фосфором:

Реакция меди с водой уравнение

С водородом, азотом, углеродом, кремнием и бором цинк непосредственно не реагирует.

Цинк реагирует с кислотами-неокислителями с выделением водорода:

Особенно легко растворяется в кислотах технический цинк, поскольку содержит в себе примеси других менее активных металлов, в частности, кадмия и меди. Высокочистый цинк по определенным причинам устойчив к воздействию кислот. Для того чтобы ускорить реакцию, образец цинка высокой степени чистоты приводят в соприкосновение с медью или добавляют в раствор кислоты немного соли меди.

При температуре 800-900 o C (красное каление) металлический цинк, находясь в расплавленном состоянии, взаимодействует с перегретым водяным паром, выделяя из него водород:

Цинк реагирует также и с кислотами-окислителями: серной концентрированной и азотной.

Цинк как активный металл может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу и даже сероводород.

Состав продуктов восстановления азотной кислоты определяется концентрацией раствора:

На направление протекания процесса влияют также температура, количество кислоты, чистота металла, время проведения реакции.

Цинк реагирует с растворами щелочей, при этом образуются тетрагидроксоцинкаты и водород:

С безводными щелочами цинк при сплавлении образует цинкаты и водород:

Реакция меди с водой уравнение

В сильнощелочной среде цинк является крайне сильным восстановителем, способным восстанавливать азот в нитратах и нитритах до аммиака:

Благодаря комплексообразованию цинк медленно растворяется в растворе аммиака, восстанавливая водород:

Также цинк восстанавливает менее активные металлы (правее него в ряду активности) из водных растворов их солей:

Видео:Составление уравнений химических реакций. 1 часть. 8 класс.Скачать

Составление уравнений химических реакций.  1 часть. 8 класс.

Химические свойства хрома

Хром — элемент VIB группы таблицы Менделеева. Электронная конфигурация атома хрома записывается как 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 , т.е. в случае хрома, также как и в случае атома меди, наблюдается так называемый «проскок электрона»

Наиболее часто проявляемыми степенями окисления хрома являются значения +2, +3 и +6. Их следует запомнить, и в рамках программы ЕГЭ по химии можно считать, что других степеней окисления хром не имеет.

При обычных условиях хром устойчив к коррозии как на воздухе, так и в воде.

Взаимодействие с неметаллами

с кислородом

Раскаленный до температуры более 600 o С порошкообразный металлический хром сгорает в чистом кислороде образуя окcид хрома (III):

с галогенами

С хлором и фтором хром реагирует при более низких температурах, чем с кислородом (250 и 300 o C соответственно):

С бромом же хром реагирует при температуре красного каления (850-900 o C):

с азотом

С азотом металлический хром взаимодействует при температурах более 1000 o С:

с серой

С серой хром может образовывать как сульфид хрома (II) так и сульфид хрома (III), что зависит от пропорций серы и хрома:

С водородом хром не реагирует.

Взаимодействие со сложными веществами

Взаимодействие с водой

Хром относится к металлам средней активности (расположен в ряду активности металлов между алюминием и водородом). Это означает, что реакция протекает между раскаленным до красного каления хромом и перегретым водяным паром:

Взаимодействие с кислотами

Хром при обычных условиях пассивируется концентрированными серной и азотной кислотами, однако, растворяется в них при кипячении, при этом окисляясь до степени окисления +3:

В случае разбавленной азотной кислоты основным продуктом восстановления азота является простое вещество N2:

Хром расположен в ряду активности левее водорода, а это значит, что он способен выделять H2 из растворов кислот-неокислителей. В ходе таких реакций в отсутствие доступа кислорода воздуха образуются соли хрома (II):

При проведении же реакции на открытом воздухе, двухвалентный хром мгновенно окисляется содержащимся в воздухе кислородом до степени окисления +3. При этом, например, уравнение с соляной кислотой примет вид:

При сплавлении металлического хрома с сильными окислителями в присутствии щелочей хром окисляется до степени окисления +6, образуя хроматы:

Реакция меди с водой уравнение

Видео:Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

Химические свойства железа

Железо Fe, химический элемент, находящийся в VIIIB группе и имеющий порядковый номер 26 в таблице Менделеева. Распределение электронов в атоме железа следующее 26Fe1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 , то есть железо относится к d-элементам, поскольку заполняемым в его случае является d-подуровень. Для него наиболее характерны две степени окисления +2 и +3. У оксида FeO и гидроксида Fe(OH)2 преобладают основные свойства, у оксида Fe2O3 и гидроксида Fe(OH)3 заметно выражены амфотерные. Так оксид и гидроксид железа (lll) в некоторой степени растворяются при кипячении в концентрированных растворах щелочей, а также реагируют с безводными щелочами при сплавлении. Следует отметить что степень окисления железа +2 весьма неустойчива, и легко переходит в степень окисления +3. Также известны соединения железа в редкой степени окисления +6 – ферраты, соли не существующей «железной кислоты» H2FeO4. Указанные соединения относительно устойчивы лишь в твердом состоянии, либо в сильнощелочных растворах. При недостаточной щелочности среды ферраты довольно быстро окисляют даже воду, выделяя из нее кислород.

Взаимодействие с простыми веществами

С кислородом

При сгорании в чистом кислороде железо образует, так называемую, железную окалину, имеющую формулу Fe3O4 и фактически представляющую собой смешанный оксид, состав которого условно можно представить формулой FeO∙Fe2O3. Реакция горения железа имеет вид:

С серой

При нагревании железо реагирует с серой, образуя сульфид двухвалентого железа:

Либо же при избытке серы дисульфид железа:

С галогенами

Всеми галогенами кроме йода металлическое железо окисляется до степени окисления +3, образуя галогениды железа (lll):

2Fe + 3F2 =t o => 2FeF3 – фторид железа (lll)

2Fe + 3Cl2 =t o => 2FeCl3 – хлорид железа (lll)

2Fe + 3Br2 =t o => 2FeBr3 – бромид железа (lll)

Йод же, как наиболее слабый окислитель среди галогенов, окисляет железо лишь до степени окисления +2:

Следует отметить, что соединения трехвалентного железа легко окисляют иодид-ионы в водном растворе до свободного йода I2 при этом восстанавливаясь до степени окисления +2. Примеры, подобных реакций из банка ФИПИ:

С водородом

Железо с водородом не реагирует (с водородом из металлов реагируют только щелочные металлы и щелочноземельные):

Реакция меди с водой уравнение

Взаимодействие со сложными веществами

Взаимодействие с кислотами

С кислотами-неокислителями

Так как железо расположено в ряду активности левее водорода, это значит, что оно способно вытеснять водород из кислот-неокислителей (почти все кислоты кроме H2SO4 (конц.) и HNO3 любой концентрации):

Нужно обратить внимание на такую уловку в заданиях ЕГЭ, как вопрос на тему того до какой степени окисления окислится железо при действии на него разбавленной и концентрированной соляной кислоты. Правильный ответ – до +2 в обоих случаях.

Ловушка здесь заключается в интуитивном ожидании более глубокого окисления железа (до с.о. +3) в случае его взаимодействия с концентрированной соляной кислотой.

Взаимодействие с кислотами-окислителями

С концентрированными серной и азотной кислотами в обычных условиях железо не реагирует по причине пассивации. Однако, реагирует с ними при кипячении:

Обратите внимание на то, что разбавленная серная кислота окисляет железо до степени окисления +2, а концентрированная до +3.

Коррозия (ржавление) железа

На влажном воздухе железо весьма быстро подвергается ржавлению:

С водой в отсутствие кислорода железо не реагирует ни в обычных условиях, ни при кипячении. Реакция с водой протекает лишь при температуре выше температуры красного каления (>800 о С). т.е.:

Видео:ЭлектролизСкачать

Электролиз

Взаимодействует ли медь с водой

Видео:Взаимодействие щелочных металлов с водойСкачать

Взаимодействие щелочных металлов с водой

All Metals

Металлы и Металлургия

Алюминий
Ванадий
Вольфрам
Германий
Железо
Золото
Кобальт
Магний
Марганец
Молибден
Никель
Ниобий
Олово
Палладий
Платина
Плутоний
Свинец
Серебро
Тантал
Титан
Цирконий
  1. Металлургия России
  2. О металлах
  3. Медь
  4. Химические свойства

Видео:Качественная реакция на водуСкачать

Качественная реакция на воду

Химические свойства

Химическая активность меди невелика. В сухой атмосфере медь практически не изменяется. Во влажном воздухе на поверхности меди в присутствии углекислого газа образуется зеленоватая пленка состава Cu(OH)2·CuCO3. Так как в воздухе всегда имеются следы сернистого газа и сероводорода, то в составе поверхностной пленки на металлической меди обычно имеются и сернистые соединения меди. Такая пленка, возникающая с течением времени на изделиях из меди и ее сплавов, называется патиной. Патина предохраняет металл от дальнейшего разрушения.

При нагревании на воздухе медь тускнеет и в конце концов чернеет из-за образования на поверхности оксидного слоя. Сначала образуется оксид Cu2O, затем — оксид CuO.

В сухом воздухе и кислороде при нормальных условиях медь не окисляется. Но она достаточно легко вступает в реакции: уже при комнатной температуре с галогенами, например с влажным хлором образует хлорид CuCl2, при нагревании с серой образует сульфид Cu2S, с селеном. Но с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют, например, соляная и разбавленная серная кислоты. Но в присутствии кислорода воздуха медь растворяется в этих кислотах с образованием соответствующих солей:

Кроме того, медь можно перевести в раствор действием водных растворов цианидов или аммиака:

При нагревании металла на воздухе или в кислороде образуются оксиды меди: желтый или красный Cu2O и черный CuO. Повышение температуры способствует образованию преимущественно оксида меди(I) Cu2O. В лаборатории этот оксид удобно получать восстановлением щелочного раствора соли меди(II) глюкозой, гидразином или гидроксиламином:

Эта реакция – основа чувствительного теста Фелинга на сахара и другие восстановители. К испытываемому веществу добавляют раствор соли меди(II) в щелочном растворе. Если вещество является восстановителем, появляется характерный красный осадок.

Поскольку катион Cu+ в водном растворе неустойчив, при действии кислот на Cu2O происходит либо дисмутация, либо комплексообразование:

Оксид Cu2O заметно взаимодействует со щелочами. При этом образуется комплекс:

Оксиды меди не растворимы в воде и не реагируют с ней. Единственный гидроксид меди Cu(OH)2 обычно получают добавлением щелочи к водному раствору соли меди(II). Бледно-голубой осадок гидроксида меди(II), проявляющий амфотерные свойства (способность химических соединений проявлять либо основные, либо кислотные свойства), можно растворить не только в кислотах, но и в концентрированных щелочах. При этом образуются темно-синие растворы, содержащие частицы типа [Cu(OH)4] 2– . Гидроксид меди(II) растворяется также в растворе аммиака:

Гидроксид меди(II) термически неустойчив и при нагревании разлагается:

Большой интерес к химии оксидов меди в последние два десятилетия связан с получением высокотемпературных сверхпроводников, из которых наиболее известен YBa2Cu3O7. В 1987 было показано, что при температуре жидкого азота это соединение является сверхпроводником. Главные проблемы, препятствующие его широкомасштабному практическому применению, лежат в области обработки материала. Сейчас наиболее перспективным считается изготовление тонких пленок.

Многие из халькогенидов меди – нестехиометрические соединения. Сульфид меди(I) Cu2S образуется при сильном нагревании меди в парах серы или в среде сероводорода. При пропускании сероводорода через водные растворы, содержащие катионы Cu 2+ , выделяется коллоидный осадок состава CuS. Однако, CuS – не простое соединение меди(II). Оно содержит группу S2 и лучше описывается формулой Cu I 2Cu II (S2)S. Селениды и теллуриды меди проявляют металлические свойства, а CuSe2, CuTe2, CuS и CuS2 при низких температурах являются сверхпроводниками.

Практическое значение имеет способность меди реагировать с растворами солей железа (III), причем медь переходит в раствор, а железо (III) восстанавливается до железа (II):

Этот процесс травления меди хлоридом железа (III) используют, в частности, при необходимости удалить в определенных местах слой напыленной на пластмассу меди.

Ионы меди Cu 2+ легко образуют комплексы с аммиаком, например, состава [Cu(NH3)] 2+ . При пропускании через аммиачные растворы солей меди ацетилена С2Н2 в осадок выпадает карбид (точнее, ацетиленид) меди CuC2.

Видео:Как решать 29 задание ЕГЭ по Химии 2024?Скачать

Как решать 29 задание ЕГЭ по Химии 2024?

Оксид меди (I, II, III): свойства, получение, применение

Как вам известно, в химии существует четыре класса неорганических соединений. Веществ, представляющих каждый из них, очень много, но лидирующее положение, несомненно, занимают оксиды. У одного химического элемента может быть сразу несколько разных бинарных соединений с кислородом. Такое свойство имеет и медь. У нее существует три оксида. Давайте рассмотрим их детальнее.

Оксид меди (I)

Его формула — Cu2O. В некоторых источниках данное соединение могут называть гемиоксидом меди, оксидом димеди или закисью меди.

Свойства

Является кристаллическим веществом, имеющим коричнево-красный цвет. Этот оксид не растворяется в воде и этиловом спирте. Может плавиться, не разлагаясь, при температуре чуть больше 1240оС. Данное вещество не взаимодействует с водой, но может переводиться в раствор, если участниками реакции с ним будут концентрированные хлоровородная кислота, щелочь, азотная кислота, гидрат аммиака, соли аммония, серная кислота.

Получение оксида меди (I)

Его можно получить, нагрев металлическую медь, или в такой среде, где кислород имеет малую концентрацию, а также в токе некоторых оксидов азота и вместе с оксидом меди (II). Кроме того, он может стать продуктом реакции термического разложения последнего. Оксид меди (I) получится и в том случае, если нагреть сульфид меди (I) в токе кислорода. Есть и другие, более сложные способы его получения (например, восстановление одного из гидроксидов меди, ионный обмен любой соли одновалентной меди с щелочью и т.п.), но их практикуют только в лабораториях.

Применение

Нужен в качестве пигмента, когда окрашивают керамику, стекло; компонента красок, которые защищают подводную часть судна от обрастания. Используется также как фунгицид. Без него не обходятся и меднозакисные вентили.

Оксид меди (II)

Его формула — CuO. Во многих источниках может встречаться под названием окиси меди.

Свойства

Это высший оксид меди. Вещество имеет вид черных кристаллов, которые почти не растворяются в воде. Взаимодействует с кислотой и при этой реакции образует соответствующую соль двухвалентной меди, а также воду. При его сплавлении с щелочью продукты реакции представлены купратами. Разложение оксида меди (II) происходит при температуре около 1100оС. Аммиак, монооксид углерода, водород и уголь способны извлекать из этого соединения металлическую медь.

Получение

Его можно получить при нагревании металлической меди в воздушной среде при одном условии — температура нагревания должна быть ниже 1100оС. Также оксид меди (II) может получиться, если нагреть карбонат, нитрат, двухвалентный гидроксид меди.

Применение

С помощью данного оксида окрашивают в зеленый или синий цвет эмаль и стекло, а также производят медно-рубиновую разновидность последнего. В лаборатории этим оксидом обнаруживают восстановительные свойства веществ.

Реакция меди с водой уравнение

Оксид меди (III)

Его формула — Cu2O3. Имеет традиционное название, которое звучит, наверное, немного необычно — окисел медь.

Свойства

Имеет вид красных кристаллов, не растворяющихся в воде. Разложение этого вещества происходит при температуре 400оС, продукты данной реакции — оксид меди (II) и кислород.

Получение

Его можно получить, окисляя двухвалентный гидроксид меди с помощью пероксидисульфата калия. Необходимое условие реакции — щелочная среда, в которой она должна происходить.

Применение

Данное вещество само по себе не используется. В науке и промышленности более широкое распространение находят продукты его разложения — оксид меди (II) и кислород.

Заключение

Вот и все оксиды меди. Их несколько из-за того, что медь имеет переменную валентность. Существуют и другие элементы, у которых есть по несколько оксидов, но о них поговорим в другой раз.

Видео:Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

Медь (Cu)

Медь (купрум, свое название получила в честь острова Кипр, где было открытое крупное медное месторождение) является одним из первых металлов, который освоил человек – Медный век (эпоха, когда в обиходе человека преобладали медные орудия) охватывает период IV—III тысячелетия до н. э.

Сплав меди с оловом (бронза) был получен на Ближнем Востоке за 3000 лет до н. э. Бронза была предпочтительней меди, поскольку была более прочна и лучше поддавалась ковке.

Среднее содержание меди в земной коре составляет 4,7-5,5·10 -3 % по массе. Медь присутствует в природе, как в виде самородков, так и в соединений, наибольшее промышленное значение из которых имеют медный колчедан (CuFeS2), халькозин Cu2S и борнит Cu5FeS4. Разработка медных месторождений ведется открытым способом.

Видео:ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIVСкачать

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIV

Медь в питьевой воде: опасность и способы устранения

Различные соединения меди, а также и сама медь, довольно распространены в окружающей среде, в том числе и в природных водах, которые служат источниками для водопроводной воды, поступающей в наши дома и квартиры.

В большинстве случаев концентрация меди в природных водах не превышает десятой доли мг/л, а вот в водопроводной воде она может быть существенно увеличена. Повышенное содержание меди в питьевой воде, а точнее в водопроводной, можно объяснить вымыванием этого металла из труб и арматуры.

Решения BWT для промышленной и бытовой очистки воды:

Фильтры механической очистки

Фильтр с активированным углем

Реакция меди с водой уравнение
Удаление железа и марганца

Реакция меди с водой уравнение
Фильтры под мойку

Повышение количества меди в питьевой воде характеризуется неприятным вяжущим привкусом, кроме того она пагубно влияет на состояние человеческого организма. Когда концентрация меди достигает 1,0 мг/л в обязательном порядке требуется проводить очистку питьевой воды с использованием специальных систем водоочистки и водоподготовки.

Сточные воды служат основным источником поступления меди и других небезопасных веществ в природные воды, особенно, если речь идет о стоках химических предприятий или крупных организаций металлургической промышленности. Кроме того, в роли загрязнителя окружающих вод, который насыщает их медью, выступают так называемые альдегидные реагенты, применяемые с целью уничтожения водорослей.

Для того что определить, есть ли медь в питьевой воде, нужно обращать внимание на следующие признаки:

  • Даже в случае низкой концентрации меди жидкость приобретает вяжущий малоприятный вкус;
  • Вода имеет голубоватый оттенок;
  • При регулярном мытье головы водой с повышенным содержанием меди светлые волосы начинают приобретать зеленоватый оттенок;
  • На сантехнических устройствах, произведенных из нержавеющей стали, образуется несмываемый темный налет.

Еще одним доказательством того, что в воде содержится медь, является образование коррозии на медных составляющих элементах водопровода. Правда, стоит отметить, что этот признак не столь очевиден, как предыдущие.

Кроме того, что медь оказывает негативное влияние на водопроводные и сантехнические устройства, не стоит также забывать о том, что повышенное содержание этого металла в жидкости является опасной для человеческого здоровья. Специалисты относят медь к веществам третьего класса опасности, это свидетельствует о том, что концентрация этого метала свыше 1,0 мг/л является предельно допустимой.

В целях предотвращения пищевых отравлений различные предметы, изготовленные из меди, например, кастрюли или чайники, покрывают изнутри специальным защитным слоем, который не позволяет меди растворяться в подогреваемой воде. Хроническая интоксикация меди является губительной для организма, ее причисляют к одной из основных причин серьезных нарушений нервной системы, а также неправильного функционирования печени и почек, более того она может приводить к аллергодерматозам и перфорации носовой перегородки.

Все вышеперечисленное дает право говорить об острой необходимости водоочистки питьевой воды с использованием специально предназначенного оборудования, если содержание в ней меди превышает допустимую норму. Существует несколько распространенных способов, применяемых в случаях, когда есть медь в питьевой воде. Выбор способа, в первую очередь, зависит от количества опасного для здоровья вещества в жидкости. Наиболее часто специалисты рекомендуют использовать обратный осмос для решения проблемы повышенного содержания меди в жидкости.

Очистка питьевой и просто водопроводной воды от меди с использованием метода обратного осмоса воды требует применения блока химической промывки, фильтра тонкой очистки, блока различных фильтрующих модулей, а кроме того необходима система реагентной подготовки. Стоит отметить, что этот метод получил широкое распространение не только благодаря своей высокой эффективности, но также и благодаря своей экономичности, к тому же бытовые обратноосмотические фильтрующие установки отличаются небольшими габаритами и простотой монтажа и использования.

Когда содержание меди в жидкости существенно превышает предельно допустимую норму необходимо применение метода ионного обмена, этот метод не так экономичен, как предыдущий, поскольку требуется больше реагентов, поэтому возрастают и эксплуатационные расходы.

Видео:Кислотный оксид + вода = ??? Основной оксид + вода = ???Скачать

Кислотный оксид + вода = ??? Основной оксид + вода = ???

Соединения меди

Оксид меди CuO (II):

  • твердое вещество красно-коричневого цвета, не растворимое в воде, проявляет основные свойства;
  • при нагревании в присутствии восстановителей дает свободную медь: CuO + H2 = Cu + H2O;
  • оксид меди получают взаимодействием меди с кислородом или разложением гидроксида меди (II): O2 + 2Cu = 2CuO; Cu(OH)2 = CuO + H2O.

Гидроксид меди Cu(OH2)(II):

  • кристаллическое или аморфное вещество голубого цвета, нерастворимое в воде;
  • разлагается на воду и оксид меди при нагревании;
  • реагирует с кислотами, образуя соответствующие соли: Cu(OH2) + H2SO4 = CuSO4 + 2H2O;
  • реагирует с растворами щелочей, образуя купраты – комплексные сооединения ярко-синего цвета: Cu(OH2) + 2KOH = K2[Cu(OH)4].

Более подробно о соединениях меди см. Оксиды меди.

Видео:Электрохимическая коррозия (алюминий — медь)Скачать

Электрохимическая коррозия (алюминий — медь)

Оксид меди

Cuprum (Cu) относится к числу малоактивных металлов. Для него характерно образование химических соединений со степенями окисления +1 и +2. Так, например, два окисла, представляющих собой соединение из двух элементов Cu и кислорода O: со степенью окисления +1 — закись меди Cu2O и степенью окисления +2 — окись меди CuO. Несмотря на то, что состоят они из одинаковых химических элементов, но каждый из них имеет свои особые характеристики. На холоде металл очень слабо взаимодействует с кислородом воздуха, покрываясь пленкой, представляющей собой оксид меди, который препятствует дельнейшему окислению cuprum. При нагревании это простое вещество с порядковым номером 29 в таблице Менделеева полностью окисляется. При этом образуется также оксид меди (II): 2Cu + O2 → 2CuO.

Закись представляет собой коричневато-красное твердое вещество с молярной массой 143,1 г/моль. Соединение имеет температуру плавления 1235°С, температуру кипения 1800°С. Оно не растворяется в воде, но растворяется в кислотах. Разводится оксид меди (I) в растворе аммиака (концентрированном), при этом образуется бесцветный комплекс +, который легко окисляется на воздухе до аммиачного комплекса сине-фиолетового цвета 2+, растворяющегося в соляной кислоте с образованием CuCl2. В истории полупроводниковой физики Cu2O является одним из наиболее изученных материалов.

Оксид меди (I), известный также как гемиоксид, обладает основными свойствами. Он может быть получен окислением металла: 4Cu + O2 → 2 Cu2O. Примеси, такие как вода и кислоты, влияют на скорость этого процесса, а также дальнейшее окисление до двухвалентного оксида. Закись меди может растворяться в серной кислоте, при этом образуется чистый металл и соль: H2SO4 + Cu2O → Cu + CuSO4 + H2O. По аналогичной схеме происходит взаимодействие окисла со степенью окисления металла +1 с другими кислородосодержащими кислотами. При взаимодействии гемиоксида с галогенсодержащими кислотами образуются соли одновалентного металла: 2HCl + Cu2O → 2CuCl + H2O.

Встречается оксид меди (I) в природе в виде красной руды (это устаревшее название, наряду с таким как рубиновая Cu), называемой минералом «Куприт». На его образование требуется длительное время. Он может быть получен искусственно при высоких температурах или под высоким давлением кислорода. Гемиоксид обычно используется как фунгицид, как пигмент, как противообрастающее средство в подводной или морской краске, и применяется также в качестве катализатора.

Однако воздействие этого вещества с химической формулой Cu2O на организм может быть опасным. При вдыхании вызывает одышку, кашель, а также изъязвление и перфорацию дыхательных путей. При попадании внутрь раздражает желудочно-кишечный тракт, что сопровождается рвотой, болью и диареей.

Высший оксид меди по внешнему виду представляет собой порошок от коричневого до черного цвета. В природе в чистом виде встречается как минерал «Тенорит». Температура его плавления 1326°С, температура кипения 2000°С. Он нерастворим в воде, спирте, гидроксиде аммония, растворе карбоната аммония. Растворим в водных растворах хлорида аммония и цианистого калия. Это черное твердое вещество может быть получено при нагревании Cu на воздухе. Однако в данном случае образуется также закись Cu. Получение оксида меди CuO возможно при нагревании соединений:

  • меди (II) нитрата 2Cu(NO3)2 → 4 NO2+ O2 + 2CuO;
  • меди (II) гидроксида Cu(OH)2 → H2O + CuO;
  • меди (II) карбоната CuCO3 → CO2 + CuO.

Cuprum (II) оксид является основным, поэтому он растворяется в минеральных кислотах (соляной, серной и азотной) с получением соответствующей соли двухвалентной Cu:

  • 2HCl + CuO → CuCl2 + H2O;
  • H2SO4 + CuO → CuSO4 + H2O;
  • 2HNO3 + CuO → Cu(NO3)2 + H2O.

Реагирует оксид меди (II) с концентрированной щелочью с образованием соли: 2 KOH + CuO + H2O → K2.

Окисел также может быть восстановлен до металлической Cu при взаимодействии с водородом или окисью углерода:

  • H2 + CuO → Cu + H2O;
  • CO + CuO → Cu + CO2.

Используется оксид меди (II) в керамике (как пигмент) для получения глазури (синей, зеленой и красной, а иногда и розовой, серой или черной). Он также применяется в качестве пищевой добавки у животных с целью уменьшения дефицита cuprum в организме. Это абразивный материал, который необходим для полировки оптического оборудования. Он используется для производства сухих батарей, для получения других солей Cu. Соединение CuO также применяется при сварке медных сплавов.

Воздействие химического соединения CuO также может быть опасным для организма человека. При вдыхании вызывает раздражение легких. Оксид меди (II) может вызвать лихорадку металлических паров (MFF). Окись Cu провоцирует изменение цвета кожи, могут появиться проблемы со зрением. При попадании в организм, как и гемиоксид, приводит к отравлению, которое сопровождается симптомами в виде рвоты и болевых ощущений.

Видео:Как составлять ХИМИЧЕСКИЕ УРАВНЕНИЯ | 4 лайфхака - 95 ВСЕХ РЕАКЦИЙ в химии!Скачать

Как составлять ХИМИЧЕСКИЕ УРАВНЕНИЯ | 4 лайфхака - 95 ВСЕХ РЕАКЦИЙ в химии!

Получение и применение меди

  • пирометаллургическим методом медь получают из сульфидных руд при высоких температурах: CuFeS2 + O2 + SiO2 → Cu + FeSiO3 + SO2;
  • оксид меди восстанавливается до металлической меди водородом, угарным газом, активными металлами: Cu2O + H2 = 2Cu + H2O; Cu2O + CO = 2Cu + CO2; Cu2O + Mg = 2Cu + MgO.

Применение меди обусловливается ее высокой электро- и теплопроводностью, а также пластичностью:

  • изготовление электрических проводов и кабелей;
  • в теплообменной аппаратуре;
  • в металлургии для получения сплавов: бронзы, латуни, мельхиора;
  • в радиоэлектронике.

Если вам понравился сайт, будем благодарны за его популяризацию

📹 Видео

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

Химические уравнения. СЕКРЕТНЫЙ СПОСОБ: Как составлять химические уравнения? Химия 8 классСкачать

Химические уравнения. СЕКРЕТНЫЙ СПОСОБ: Как составлять химические уравнения? Химия 8 класс

ОСНОВАНИЯ В ХИМИИ — Химические свойства оснований. Реакции оснований с кислотами и солямиСкачать

ОСНОВАНИЯ В ХИМИИ — Химические свойства оснований. Реакции оснований с кислотами и солями

Опыты по химии. Взаимодействие угля и оксида меди (II)Скачать

Опыты по химии. Взаимодействие угля и оксида меди (II)
Поделиться или сохранить к себе: