Реагенты загружаются в начале операции. При этом процесс слагается из трех стадий: загрузки сырья, его обработки (химическое превращение) и выгрузка готового продукта. После проведения всех этих операций они повторяются вновь. Продолжительность одного цикла, проводимого в периодическом реакторе, определяется по уравнению
где τп — полное время цикла;
τ – рабочее время, затрачиваемое на проведение химической реакции;
τвсп – вспомогательное время
Реактор идеального смешения периодический называемый сокращенно РИС – П, представляет собой аппарат с мешалкой, в который периодически загружаются реагенты. В таком реакторе создается весьма интенсивное перемешивание, поэтому в любой момент времени концентрация реагентов одинакова во всем объеме аппарата и изменяется лишь во времени, по мере протекания химической реакции. Такое перемешивание можно считать идеальным, отсюда и название реактора.
Реактор идеального смешения периодический
Изменение концентрации исходного реагента А во времени и в объеме в РИС – П
Здесь NA,0 начальное количество исходного реагента А;
XA,0 – начальная степень превращения реагента А;
CA,0 – начальная концентрация реагента А в исходной смеси.
у – пространственная координата (координата места).
Периодические химические процессы по своей природе всегда являются нестационарными (т. е. неустановившимися) , т. к. в ходе химической реакции изменяются параметры процесса во времени (например, концентрация веществ), т. к. происходит накопление продуктов реакции.
Для расчета реактора надо знать его уравнение, позволяющее определить рабочее время τ, необходимое для достижения заданной степени превращения ХА, при известной начальной концентрации вещества СА,0 и известной кинетике процесса, т. е. при известной скорости химической реакции ωА .
Основанием для получения уравнения реактора любого типа является материальный баланс, составленный по одному из компонентов реакционной смеси.
В общем случае, когда концентрация компонента непостоянна в различных точках реактора или непостоянна во времени, материальный баланс составляют в дифференциальной форме для элементарного объема реактора. При этом исходят из уравнения конвективного массообмена, в которое вводят дополнительный член ωА , учитывающий протекание химической реакции.
,
где СА – концентрация реагента в реакционной смеси;
x, y, z – пространственные координаты;
D – коэффициент молекулярной и конвективной диффузии;
ωA – скорость химической реакции.
Исходя из того, что в РИС – П вследствие интенсивного перемешивания все параметры одинаковы во всем объеме реактора в любой момент времени. В этом случае производная любого порядка от концентрации по осям x, y, z равны 0, тогда
Поэтому уравнение можно записать
Если реакция протекает без изменения объема, то текущая концентрация исходного вещества будет выражаться
или
,
где знак “-” указывает на убыль вещества А.
Интегрируя это выражение в пределах изменения времени от 0 до τ и степени превращения от 0 до Х получим уравнение РИС – П
Уравнение является математическим описанием РИС – П. Исходя из этого уравнения можно определить — размеры реактора, а также исследовать эту модель с точки зрения нахождения оптимальных значений всех входящих в него параметров.
Реакторы периодического действия просты по конструкции, требуют небольшого вспомогательного оборудования. Поэтому они удобны для проведения опытных работ, изучения химической кинетики. В промышленности они обычно используются в малотоннажных производствах, для переработки дорогостоящих продуктов
Дата добавления: 2017-01-08 ; просмотров: 5635 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Видео:Химические реакторыСкачать
Реактор идеального смешения
Для модели идеального смешения принимается ряд допущений. Допускается, что в результате интенсивного перемешивания устанавливаются абсолютно одинаковые условия в любой точке реактора: концентрации реагентов и продуктов, степени превращения реагентов, температура, скорость химической реакции и т. д. Например, в некоторый момент времени τj во всех точках ректора (рис. 5.1) выполняются следующие условия:
где x, у, z – пространственные координаты.
В проточном реакторе идеального смешения концентрации элементов реакции в выходном потоке в рассматриваемый момент времени τi строго равны концентрациям тех же веществ в реакторе.
Чтобы перечисленные допущения могли быть выполнены, необходимо принять еще одно допущение: переход от одной концентрации к другой в реакторе идеального смешения не должен иметь протяженности во времени. Изменение концентрации исходного реагента от начальной cJ,0 во входном потоке в данный момент времени τi до концентрации в реакторе сJ в этот же момент времени должно происходить мгновенно (скачкообразно).
Приблизиться к режиму идеального смешения можно, обеспечив интенсивное перемешивание реакционной смеси механическими мешалками разного типа или циркуляционными насосами, создающими высокую кратность циркуляции. Смешение, близкое к идеальному смешению, легче выполнить в емкостных аппаратах с приблизительно равным диаметром и высотой.
Так как в реакторе идеального смешения концентрации элементов реакции равномерно распределены по объему, то уравнение материального баланса (4.7), выведенное для элементарного объема, можно распространить на полный объем реактора.
Рассмотрим два частных случая: периодический реактор идеального смешения и проточный реактор идеального смешения, работающий в стационарном режиме.
Периодический реактор идеального смешения.В периодический реактор все реагенты вводят до начала реакции, а все продукты выводят из него только по окончании процесса. В ходе реакционного цикла никаких веществ в реактор не вводят и из него не выводят, так что общая масса реакционной смеси в реакторе остается постоянной, изменяется лишь ее состав. При составлении математического описания принимают, что реакционная смесь однородна по объему аппарата и ее состав зависит только от времени пребывания в периодическом реакторе.
Рис. 5.1. Схемы реакторов идеального смешения
с механическим перемешивающим устройством (а)
и циркуляционным контуром (б)
Из общего уравнения материального баланса (4.7) в случае периодического реактора идеального смешения можно исключить два первых оператора, описывающих явления конвективного и диффузионного переноса вещества в аппарате. При отсутствии перемещения потока через реактор в произвольный момент времени между началом и окончанием процесса средняя линейная скорость элемента потока равна нулю, следовательно, и конвективный перенос в непроточном реакторе отсутствует. Заключение об отсутствии диффузионного переноса вытекает из допущений модели идеального смешения, так как диффузия возможна лишь при наличии градиента концентраций, а при равномерном распределении концентраций по объему он равен нулю. (Этот вывод справедлив не только для периодического, но и для проточного реактора идеального смешения.)
Следовательно, уравнение материального баланса для периодического реактора идеального смешения примет вид
(5.1)
В уравнении (5.1) частная производная заменена на полную, так как в соответствии с допущениями идеального смешения концентрация с внутри реактора является функцией только одной переменной – времени.
Уравнение материального баланса периодического реактора идеального смешения (5.1) совпадает с уравнением (3.2), дающим определение скорости химического превращения. Из одинакового вида уравнений косвенно можно сделать вывод, что гидродинамическая обстановка в периодическом реакторе идеального смешения не накладывает ограничений на химическую кинетику.
Для проведения расчетов по уравнению (5.1) в его левую часть вместо wrJ(cJ)вводят конкретное кинетическое уравнение. Тогда можно рассчитать, например, время реакционного цикла, необходимое для достижения заданной глубины превращения (заданной конечной концентрации сJ,f):
(5.2)
Если вещество J – исходный реагент, то концентрацию cs можно выразить через его степень превращения:
и уравнение (5.2) примет вид
(5.3)
Уравнения (5.2) и (5.3) позволяют также рассчитать зависимость концентрации реагента сJ или его степени превращения хJ от времени пребывания в реакторе (продолжительности реакционного цикла). В разные моменты времени условия в периодическом реакторе различные (концентрация реагентов, продуктов, скорость реакции и т. д.), однако в каждый данный момент времени из-за допущения об идеальности эти параметры строго одинаковы в объеме реактора (рис. 5.2).
Время, рассчитанное по уравнению (5.2) или (5.3), является «чистым» временем, необходимым для проведения химического превращения. Однако для осуществления процесса в периодическом реакторе кроме этого «реакционного» времени нужно затратить вспомогательное время на загрузку реагентов, выведение реактора на нужный технологический режим, разгрузку и очистку. Полное время одного цикла работы периодического реактора суммируется из основного τхр и вспомогательного τвсп.
Рис. 5.2. Изменение концентрации исходного реагента
в периодическом реакторе идеального смешения во времени (а)
и по объему аппарата (б)
Наличие τвсп как составной части времени цикла приводит к снижению производительности химического реактора (количество продукта, получаемого в единицу времени) и является одним из существенных недостатков периодических процессов вообще. Другие их недостатки – большие затраты ручного труда, сложность решения задач автоматизации (так как условия в реакторе во времени постоянно меняются).
Однако периодические реакторы обычно можно приспособить к широкому диапазону условий реакций, что удобно при необходимости производить на одной установке различные химические продукты, например, в промышленности химических реактивов.
Периодические реакторы с интенсивным перемешиванием, приближающимся к идеальному смешению, применяют в производствах реактивов, органических красителей, лекарственных препаратов – там, где для достижения достаточной глубины превращения требуется сравнительно длительное время, а объемы производства невелики.
Периодические реакторы смешения часто применяют в микробиологической промышленности для культивирования аэробных микроорганизмов. Процесс культивирования для большинства микроорганизмов длится 48–72 ч, т. е. достаточно длителен. Интенсивное перемешивание в ферментаторе позволяет обеспечить равномерное распределение температуры, что особенно важно в таких процессах, так как даже небольшие локальные разогревы могут привести к гибели микроорганизмов. Изолированность реакционной системы в периодическом реакторе позволяет устранить опасность отравления микроорганизмов случайными примесями, которые могут попасть в аппарат при непрерывной подаче реагентов.
Окончательное решение о целесообразности применения периодического или непрерывного процесса можно вынести лишь на основании экономической оценки (сравнения расходов на эксплуатацию, амортизацию, электроэнергию, пар, сырье и т. д.). Как правило, при проведении такого сравнения оказывается, что периодические процессы выгодны при относительно невысокой производственной мощности в тех случаях, когда получают дорогостоящие продукты.
Проточный реактор идеального смешения в стационарном режиме.Если необходимо обеспечить получение большого количества продукта одинакового качества, химический процесс предпочитают проводить в непрерывно действующих реакторах с установившимся режимом. Распространенным видом таких проточных аппаратов являются реакторы смешения. Проточный реактор смешения может работать как в нестационарном режиме (пуск, выход на режим, остановка), так и в стационарном, установившемся режиме.
Рассмотрим уравнение материального баланса для стационарного проточного реактора идеального смешения без циркуляции. Получим его, опять упрощая общее уравнение материального баланса (4.7). Для любого реактора идеального смешения, и в частности для проточного, из уравнения можно исключить оператор, описывающий диффузионный перенос. При стационарном режиме работы реактора из уравнения исключается производная дсJ/дτ,не равная нулю только при наличии накопления вещества в реакторе.
Таким образом, в уравнении остаются только два члена, описывающие конвективный перенос вещества J и расход или образование этого вещества в ходе химической реакции.
Оператор конвективного переноса (переноса импульса), записанный в уравнении (4.7) в дифференциальной форме, можно представить для проточного реактора идеального смешения в конечно-разностной форме. В соответствии с допущениями модели идеального смешения в проточном реакторе происходит дискретное конечное (а не бесконечно малое) изменение концентрации ∆сJ сразу же на входе в реактор. Заменим поэтому градиент концентрации на отношение конечного изменения концентрации ∆сJ к изменению координаты ∆z при прохождении реакционного потока через реактор со средней линейной скоростью . Среднюю линейную скорость потока можно заменить через отношение объемного расхода v через реактор к площади поперечного сечения F. Тогда, с учетом того, что произведение F∆z равно объему реактора V,член уравнения, описывающий конвективный перенос, примет вид
(5.4)
В выражении (5.4) ∆сJ равно разности концентраций на выходе из реактора cif и на входе в реактор сJ,0. Окончательно уравнение материального баланса проточного стационарного реактора идеального смешения можно представить так:
. (5.5)
Это же уравнение можно получить и другим путем. Как указывалось, в качестве элементарного объема для реактора идеального смешения можно принять полный объем реактора V. При стационарном режиме работы реактора не происходит изменения постоянных по объему концентраций элементов реакции и во времени, следовательно, в качестве элементарного промежутка времени можно принять любой конечный временной интервал, например единицу времени (1 с, 1 мин или 1 ч).
Количество вещества J, которое за единицу времени войдет в реактор с конвективным потоком, будет равно v0cJ,0,где v0 – объемный расход реакционного потока на входе в аппарат. За это же время выйдет из реактора с конвективным потоком количество вещества J = vfcJ,f,а расход вещества J (или его образование) в ходе химической реакции составит wrJ V. При этом скорость wrJ определяется концентрацией cJ,f.
Стационарность процесса в проточном реакторе можно обеспечить, если объемные расходы на входе v0 и выходе vf равны между собой
(v0 = vf = v).
. (5.6)
Очевидно, что уравнение (5.6) тождественно уравнению (5.5).
Величина = V/v в уравнении (5.5) измеряется в единицах времени и характеризует среднее время, в течение которого обновляется содержимое проточного реактора. Эту величину называют средним временем пребывания реагентов в проточном реакторе.
Действительное время пребывания частиц в проточном реакторе смешения является случайной величиной в отличие от времени пребывания реагентов в периодическом реакторе. Пусть, например, в реактор введено N одинаковых частиц. В периодическом реакторе все они будут находиться равное время от загрузки до выгрузки. В проточном реакторе идеального смешения эти частицы мгновенно и равномерно распределяются по всему объему аппарата, и так как из аппарата непрерывно выходит поток продуктов, то в момент ввода частиц в реактор какое-то их количество может сразу же оказаться в выходном потоке. Некоторые частицы, равномерно распределяясь в новых порциях реакционной смеси, вошедшей в аппарат, могут находиться в нем бесконечно долго. Отсюда можно сделать вывод, что действительное время пребывания частиц в проточном реакторе – это случайная величина, которая может изменяться от 0 до ∞. Непрерывную случайную величину можно задать с помощью вероятностных характеристик, в частности функций распределения случайной величины. Использование в качестве характеристики времени пребывания частиц в проточном реакторе величины является удобным способом усреднения действительного времени пребывания, так как эта величина связана с конструктивными характеристиками реактора: его объемом и объемным расходом реакционной смеси.
Для решения практических задач удобно концентрацию реагента cJ,fвыразить через его степень превращения хJ,f:
. (5.7)
Уравнения материального баланса (5.5)–(5.7) для проточного реактора идеального смешения в стационарном режиме имеют ряд отличий от соответствующих уравнений для периодического реактора (5.2) и (5.3). Следует отметить, что балансовые уравнения стационарного реактора идеального смешения записываются сразу в виде конечного алгебраического уравнения в отличие от дифференциальной формы исходных уравнений для периодического реактора.
В уравнение для периодического реактора скорость wr,Jследует подставлять в виде функциональной зависимости от концентрации wr,J(cj) или степени превращения wr,J(xj) и лишь после интегрирования уравнения возможна подстановка числовых значений. Этот факт, как и дифференциальная форма уравнений материального баланса, отражает зависимость параметров процесса в периодическом реакторе от времени. В стационарном режиме в любой точке реактора идеального смешения в любой момент времени концентрация постоянна. Следовательно, скорость реакции характеризуется каким-то одним конкретным числовым значением, определяемым этой концентрацией. Это число может быть сразу поставлено в уравнение материального баланса.
Пример 5.1.Рассчитать среднее время пребывания реагентов в проточном реакторе идеального смешения, необходимое для достижения степени превращения исходного реагента хА,f= 0,8.
В реакторе протекает реакция второго порядка 2А R + S, скорость которой описывается при постоянной температуре кинетическим уравнением wrA = 2,5 . Начальная концентрация реагента А на входе в реактор сА,0 = 4 кмоль/м 3 .
Решение. Для определения можно использовать уравнение (5.7); концентрацию реагента в реакторе, необходимую для расчета скорости протекающей в нем реакции, выразим через степень превращения
Таким образом, для достижения степени превращения хА = 0,8 необходимо, чтобы соотношение между объемом реактора и объемным расходом через него = V/v = 2 ч.
Уравнения материального баланса для проточного реактора могут быть использованы не только для определения среднего времени пребывания и затем размеров реакционного пространства (V = v )при заданной глубине химического превращения, но и для решения обратной задачи: при заданных объеме реактора и производительности по исходному реагенту (пропорциональной объемному расходу v)определить концентрацию реагентов на выходе из реактора.
Решение этой задачи не вызывает никаких затруднений, если скорость реакции описывается сравнительно простыми кинетическими уравнениями (уравнениями первого и второго порядка). Например, для реакции первого порядка А R из уравнения материального баланса (5.5)
Зачастую скорость сложных реакций с невыясненным до конца механизмом выражают в виде кинетических уравнений дробного порядка. В этом случае аналитическое решение оказывается невозможным и приходится прибегать к численным методам расчета. В качестве примера рассмотрим весьма наглядный графический метод определения концентрации реагентов на выходе из стационарного проточного реактора идеального смешения.
Запишем уравнение материального баланса (5.5) в следующем виде:
. (5.8)
Уравнение (5.8) представляет собой равенство двух разных функций от концентрации. В левой части уравнения записана функция wrА(сА), представляющая собой кинетическое уравнение реакции. В соответствии с законом действующих масс скорость химических реакций пропорциональна концентрациям реагентов, следовательно, wrA(cA) – это возрастающая функция, которую легко представить графически (рис. 5.3, линия 1). Она пересекает ось абсцисс в точке, соответствующей равновесной концентрации сА,е для обратимых реакций, или исходит из начала координат в случае необратимых реакций.
Рис. 5.3. Зависимость скорости реакции от концентрации реагента
на выходе из проточного реактора идеального смешения,
используемая для определения конечной концентрации
В правой части уравнения (5.8) записана соответствующая уравнению материального баланса стационарного реактора идеального смешения линейная функциональная зависимость скорости реакции от концентрации исходного реагента, имеющая отрицательный угловой коэффициент (–1/ ). График этой зависимости – прямая линия, пересекающая ось абсцисс (ось концентраций) в точке сА= сА,0 (линия 2).
Уравнению (5.8) удовлетворяют такие значения концентраций сА, при которых значения функций, стоящих в левой и правой частях этого уравнения, равны. Иначе – такие концентрации, при которых графики этих функций пересекаются. Как видно, линии 1 и 2 пересекаются в единственной точке М.Абсцисса этой точки и есть искомая концентрация реагента на выходе из реактора идеального смешения.
Дата добавления: 2015-06-17 ; просмотров: 7962 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Видео:Модели реакторов идеального вытеснения и идеального смешенияСкачать
Реакторы идеального смешения
Периодического действия
Реактор идеального смешения периодического действия представляет собой аппарат, снабженный перемешивающим устройством. Загрузка реагентов и выгрузка продуктов осуществляется периодически. Материальный баланс реактора периодического действия в соответствии с уравнением 1:
(12);
(13);
(14).
После разделения переменных и интегрирования находим:
(15).
Уравнение 15 позволяет определить необходимое время пребывания реагентов в реакторе периодического действия для достижения заданной степени превращения. При постоянном реакционном объеме уравнение приобретает вид:
(16).
В случае, когда объем реакционной массы меняется уравнение 16 примет вид :
(17).
В тех случаях, когда в РИС-П проводится реакция, порядок которой отличается от 0 и 1, интегрирование уравнения становится затруднительным, поэтому расчет рабочего времени химической реакции производится методом графического интегрирования.
В то же время, если известно время реакции, объем РИС-П можно найти, используя уравнение:
(18),
где Gv- суточная производительность;
z- запас мощности (0,1- 0,25);
φ- коэффициент заполнения (0,6 — 0,85);
τп — полное время периодического процесса ( ) Это время складывается из времени реакции ( ) и вспомогательного времени ( ), которое идет на загрузку и на выгрузку, нагревание и охлаждение реактора периодического действия и другое.
Реакторы периодического действия просты по конструкции, требуют небольшого вспомогательного оборудования, поэтому они особенно удобны в малотоннажных производствах (фармацевтических, парфюмерных и др.). Рассмотрим некоторые примеры расчетов реакторов периодического действия.
Пример 8.
Определить, какое количество вещества А можно переработать в РИС – П за сутки при проведении реакции в постоянном объеме.
порядок реакции n=1;
время загрузки и выгрузки за одну операцию – 80мин;
коэффициент заполнения φ — 0,8;
начальная концентрация исходного вещества СА,0= 20 кмоль/ м 3 ;
константа скорости реакции k= 0,03 мин -1 ;
степень превращения xA = 0,9.
Время химической реакции определяем по уравнению (16):
Определяем полное время проведения процесса.
Определяем количество циклов, которое можно осуществить за одни сутки.
.
Исходя из коэффициента заполнения реактора определяем полезный объем реактора.
.
Определяем количество вещества, которое можно переработать за один процесс:
.
Определяем количество вещества, которое можно переработать за одни сутки:
.
Задачи для самостоятельного решения
1. Процесс описывается реакцией типа 2А → R+ С с константой скорости k = 0,03 л/(моль/мин). Заданная степень превращения вещества А составляет 0,9, исходная концентрация вещества А — 2 моль/л, Объем реактора смешения периодического действия – 10 м 3 . Коэффициент заполнения реактора 0,8. Время загрузки и выгрузки за одну операцию τв= 30 мин. Определить какое количество вещества А можно переработать за сутки.
2. Процесс описывается реакцией типа А → 2R+ С с константой скорости k = 0,5 л/(моль/мин). Заданная степень превращения вещества А составляет 0,8, исходная концентрация вещества А – 1,8 моль/л, Объемный расход реактора смешения периодического действия – 2 м 3 /мин. Коэффициент заполнения реактора 0,7. Полное время пребывания реагентов в реакторе реакции τп= 40 мин. Рассчитать необходимый объем реактора смешения периодического действия, степень превращения вещества А, селективность и выход целевого продукта R.
3. Жидкофазная реакция типа А → 2R имеет константу скорости k = 3,8 ч -1 . Заданная степень превращения вещества А составляет 0,8, исходная концентрация вещества А – 0,8 моль/л, Объем реактора смешения периодического действия – 4 м 3 . Коэффициент заполнения реактора 0,8. Время загрузки и выгрузки за одну операцию τв= 20 мин. Определить суточную производительность по продукту R.
4. Процесс описывается последовательной реакцией типа А→R с константой скорости k = 0,14 л/(моль/мин). Объемный поток вещества А равен 4 м 3 /ч. Процесс проводится в реакторе смешения периодического действия объемом 140 л. Концентрация вещества А на входе в реактор составляет 3,4 моль/л. Время загрузки и выгрузки за одну операцию – 48 мин. Коэффициент заполнения реактора -0.7. Определить концентрации всех веществ на выходе из реактора, степень превращения вещества A и селективность по продукту R.
5. Процесс описывается реакцией типа 2А→R с константой скорости k = 0,15 л/(моль/мин). Объемный поток вещества А равен 40 л/мин. Процесс проводится в реакторе смешения периодического действия объемом 200 л. Концентрация вещества А равна 2,2 моль/л. Коэффициент заполнения реактора 0,8. Время загрузки и выгрузки за одну операцию – 40 мин. Определить производительность реактора по продукту R за сутки, степень превращения вещества A и селективность по продукту R.
6. Процесс описывается реакцией типа А + В → R c константой скорости k = 0,18 л/(моль/мин). Объемный поток вещества А равен 40 л/мин. Процесс проводится в реакторе смешения объемом 250 л. Концентрация вещества R на выходе из реактора равна 1,2 моль/л. Время загрузки и выгрузки за одну операцию – 25 мин. Коэффициент заполнения реактора -0.8. Определить концентрацию вещества А на входе в реактор и степень превращения вещества A.
7. Процесс описывается параллельной реакцией типа А + В → R+S с константами скоростей k1= 0,18 л/(моль/мин) и k2 = 0,14 л/(моль/мин). Поток вещества поступает с концентрацией 1,7 моль/л. Процесс проводится в реакторе смешения периодического действия объемом 100 л. Степень превращения вещества A составляет 0,9. Время загрузки и выгрузки за одну операцию – 10 мин. Коэффициент заполнения реактора -0.8. Определить допустимый расход вещества А.
8. Процесс описывается реакцией типа А + В → R с константой скорости k = 0,28 л/(моль/мин). Поток вещества поступает с концентрацией 1,6 моль/л. Процесс проводится в реакторе смешения объемом 180 л. Степень превращения вещества A составляет 0,7. Время загрузки и выгрузки за одну операцию – 30 мин. Коэффициент заполнения реактора -0,76.Определить производительность реактора по продукту R за час.
9. Процесс описывается параллельной реакцией типа
с константами скоростей k1= 0,15 л/(моль/мин) и k2 = 0,11 л/(моль/мин). Объемный поток вещества А с концентрацией 1,6 моль/л равен 100 л/мин. Процесс проводится в реакторе смешения периодического действия. Время загрузки и выгрузки за одну операцию – 25 мин. Коэффициент заполнения реактора -0.8. Определить объем реактора и достигаемую в нем степень превращения вещества А при условии, что производительность по продукту R составляет 4,8 кмоль/ч.
10. Процесс описывается реакцией типа А + В → R с константой скорости k = 0.48 л/(моль/мин). Объемные потоки вещества А с концентрацией 1,3 моль/л и вещества В с концентрацией 2,2 моль/л равны 100 л/мин. Процесс проводится в реакторе смешения объемом 2,2 м 3 . Концентрация вещества А на входе в реактор составляет 3,4 моль/л. Время загрузки и выгрузки за одну операцию – 40 мин. Коэффициент заполнения реактора — 0.65. Определить производительность реактора по продукту R за сутки.
11. Процесс описывается реакцией типа А + В → R с константой скорости k = 0,39 л/(моль/мин). Объемные потоки вещества А с концентрацией 1,3 моль/л и вещества В с концентрацией 1,7 моль/л равны 80 и 60 л/мин. Производительность реактора по продукту R составляет 8,64 кмоль/ч, концентрация продукта R на выходе — 0,8 моль/л. Время загрузки и выгрузки за одну операцию – 50 мин. Коэффициент заполнения реактора -0.7. Определить требуемый объем реактора смешения периодического действия.
12. Процесс описывается реакцией типа 2А → R с константой скорости k = 0,44 л/(моль/мин). Заданная степень превращения вещества А составляет 0,9, исходная концентрация вещества А — 2,3 кмоль/м 3 , производительность реактора по продукту R – 4,8 кмоль/ч. Определить требуемый объем реактора смешения периодического действия.
13. Процесс описывается реакцией типа А → 2R с константой скорости k = 0,24 мин -1 . Заданная степень превращения вещества А составляет 0,7, исходная концентрация вещества А — 1,7 кмоль/м 3 , производительность реактора по продукту R – 2,8 кмоль/ч. Время загрузки и выгрузки за одну операцию – 20 мин. Определить требуемый объем реактора смешения периодического действия и объемный расход исходной смеси..
14. Процесс описывается обратимой реакцией первого порядка типа 2А R с константами скоростей: прямой k1 = 55,4 м 3 /(кмоль/ч) и обратной k2 = 3,2 ч -1 реакций. Заданная степень превращения вещества А составляет 0,8, исходная концентрация вещества А -1,4 моль/л. Объем реактора смешения периодического действия равен 0,8 м 3 . Определить производительность реактора по продукту R за час.
🎦 Видео
РеакторСкачать
Реактор ReadyСкачать
Реактор ROMM-EH с электрообогревомСкачать
Методика теплогидравлического расчёта активной зоны ЯЭРСкачать
Лекция 28 «Классификация промышленных реакторов»Скачать
Перемешивание в химическом реактореСкачать
Лекция 26 «Моделирование гомогенных реакторов проточного типа»Скачать
Лабораторный реактор MinniСкачать
Кинетика гетерогенно-каталитических процессов. Часть 3.Скачать
Мультифизическое моделирование химических реакторов в COMSOL Multiphysics®. Версия 6.0Скачать
25. Схема реакции и химическое уравнениеСкачать
Химический реактор 12м3 - КонструкцияСкачать
Проточный реактор высокого давления CFP-HPСкачать
Химический реактор с мешалкой. Принцип работы. Где применяется?Скачать
Универсальный лабораторный реактор Radleys ReadyСкачать
Получение крема на лабораторном реакторе ConnyСкачать