Равносильные системы линейных алгебраических уравнений

Равносильные системы уравнений, равносильные преобразования

В этой статье мы поговорим про равносильные системы уравнений. Здесь мы дадим соответствующее определение, а также разберем, какие существуют преобразования, позволяющие переходить от исходной системы уравнений к равносильной ей системе.

Навигация по странице.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Определение равносильных систем уравнений

В учебниках [1, с. 199; 2, с. 74] дается определение равносильных систем уравнений с двумя переменными:

Две системы уравнений с двумя переменными называются равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.

В старших классах оно обобщается на системы с любым числом уравнений и переменных [3, с. 265] :

Две системы уравнений называются равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.

Примеры равносильных и неравносильных систем приведем в следующем пункте.

Видео:§30 Системы линейных алгебраических уравненийСкачать

§30 Системы линейных алгебраических уравнений

Равносильны ли данные системы уравнений?

Чтобы сделать вывод о равносильности или неравносильности данных систем уравнений на основе определения, надо наперед знать решения этих систем. Приведем пример. Пусть нам известно, что системы уравнений Равносильные системы линейных алгебраических уравненийи Равносильные системы линейных алгебраических уравненийне имеют решений (это достаточно очевидно: первая содержит не имеющее решений уравнение 0·x=4 , а вторая – уравнение |x|=−1 ). А по определению системы уравнений, которые не имеют решений, равносильны.

Чтобы доказать неравносильность систем уравнений, достаточно привести одно частное решение, являющееся решением одной системы, но не являющееся решением другой. Например, легко обосновать, что системы уравнений Равносильные системы линейных алгебраических уравненийи Равносильные системы линейных алгебраических уравненийнеравносильны. Действительно, пара (0, 0) является решением первой системы, при этих значениях переменных оба уравнения системы обращаются в верные числовые равенства 0=0 и 0=−0 , но не является решением второй, так как ее второе уравнение при подстановке этих значений дает неверное равенство 0−0=2 . А по определению решения равносильных систем должны быть одинаковыми.

А как доказать равносильность систем уравнений, если их решения неизвестны? Конечно, можно найти решения, после чего сделать вывод касательно равносильности на основе определения. Но иногда для этого решать системы необязательно, это касается тех случаев, когда видно, что одна система получена из другой при помощи некоторых так называемых равносильных преобразований. Их мы подробно изучим в следующем пункте, а пока приведем пример.

Рассмотрим две системы уравнений Равносильные системы линейных алгебраических уравненийи Равносильные системы линейных алгебраических уравнений. При внимательном взгляде на их записи можно заметить следующие вещи: уравнение второй системы есть результат почленного сложения соответствующих частей уравнений первой системы, а второе уравнение второй системы получено из второго уравнения первой системы посредством переноса слагаемого в другую часть. Описанные преобразования являются равносильными, и в результате их проведения получается система, равносильная исходной. Итак, указанные системы равносильны. А мы переходим к разбору основных равносильных преобразований.

Видео:11 класс, 26 урок, Равносильность уравненийСкачать

11 класс, 26 урок, Равносильность уравнений

Равносильные преобразования систем уравнений

Существует ряд преобразований, позволяющих преобразовать данную систему уравнений в равносильную ей систему. Они получили название равносильных преобразований, и нашли основное применение при решении систем уравнений. Эти преобразования можно считать свойствами систем уравнений. Рассмотрим и обоснуем основные из них.

Перестановка местами уравнений системы дает равносильную систему уравнений.

Доказательство этого утверждения очевидно. В силу определения решения системы уравнений любое отдельно взятое решение системы уравнений является решением каждого уравнения этой системы. Понятно, что оно является и решением каждого уравнения системы с этими же уравнениями, но переставленными местами, значит, является решением и системы с переставленными местами уравнениями.

К примеру, Равносильные системы линейных алгебраических уравненийи Равносильные системы линейных алгебраических уравнений— равносильные системы.

Если любое уравнение в системе заменить равносильным уравнением, то полученная система будет равносильна исходной.

Доказательство этого факта тоже лежит на поверхности. Любое решение системы уравнений является решением каждого уравнения системы. Мы также знаем, что равносильные уравнения имеют одинаковые решения. Поэтому, любое решение исходной системы уравнений будет решением всех уравнений системы, в которой какое-то уравнение заменено равносильным ему уравнением, а значит, и решением этой системы.

Важность доказанного свойства огромна: оно дает нам право на работу с отдельными уравнениями системы. С ними мы можем проводить всевозможные уже знакомые нам равносильные преобразования, например, перестановку местами слагаемых, перенос слагаемых из одной части в другую с противоположным знаком, умножение или деление обеих частей уравнения на отличное от нуля число и т.д.

Приведем пример. Пусть дана система Равносильные системы линейных алгебраических уравнений. В ее первом уравнении можно выполнить умножение чисел, то есть, заменить его равносильным уравнением 12·x−y=1 . А во втором уравнении можно собрать все слагаемые в левой части, раскрыть скобки, после чего привести подобные слагаемые. В результате получится равносильная система более простого вида Равносильные системы линейных алгебраических уравнений.

Если к левой и правой части одного из уравнений системы прибавить соответственно левую и правую часть другого уравнения системы, то полученная система будет равносильна исходной.

Для доказательства покажем, что любое решение изначальной системы уравнений является решением полученной, и обратно, что любое решение полученной системы является решением исходной. Это будет означать равносильность систем.

Любое решение начальной системы является решением каждого ее уравнения, оно обращает все уравнения в верные числовые равенства. Нам известно свойство числовых равенств, которое утверждает, что при почленном сложении верных числовых равенств получается верное равенство. Отсюда следует, что взятое нами решение начальной системы является решением уравнения, полученного в результате почленного прибавления к нему другого уравнения. Поэтому, это решение является решением и полученной системы уравнений, так как является решением каждого ее уравнения.

Теперь обратно. Возьмем любое решение полученной системы, оно является решением каждого ее уравнения, то есть, оно обращает их в верные числовые равенства. Существует свойство, позволяющее выполнять почленное вычитание верных числовых равенств. Вычтем из равенства, соответствующего уравнению, полученному в результате почленного сложения, равенство, соотетствующее прибавленному ранее уравнению. Это даст верное числовое равенство, отвечающее начальному уравнению системы до прибавления к нему другого уравнения. Отсюда следует, что взятое решение будет решением каждого уравнения исходной системы, а значит, и ее решением.

Приведем пример выполнения этого равносильного преобразования. Возьмем систему двух уравнений с двумя переменными Равносильные системы линейных алгебраических уравнений. Прибавив к левой и правой части первого уравнения соответственно левую и правую часть второго, получим уравнение с одной переменной 3·y=3 , а система примет вид Равносильные системы линейных алгебраических уравнений. Полученная система уравнений имеет более простой вид, но при этом равносильна исходной.

Понятно, что если система содержит три или большее число уравнений, то можно не ограничиваться почленным прибавлением к левой и правой части выбранного уравнения левой и правой части одного уравнения, а прибавлять левые и правые части двух, трех, да хоть всех остальных уравнений системы. В результате этих действий все равно получится равносильная система уравнений.

На доказанном равносильном преобразовании базируется один из методов решения систем уравнений – метод алгебраического сложения.

Если одно из уравнений системы представляет собой переменную, выраженную через другие переменные, то в любое другое уравнение системы можно подставить вместо этой переменной ее выражение, система, полученная в результате такого преобразования, равносильна исходной.

Приведем пример для пояснения. Возьмем систему Равносильные системы линейных алгебраических уравнений. В ее первом уравнении переменная x выражена через y . Оставим первое уравнение системы без изменений, а во второе подставим вместо x ее выражение через y , то есть, 2·y−1 . В результате приходим к системе Равносильные системы линейных алгебраических уравнений, которая равносильна исходной. Обоснуем это.

Пусть пара (x0, y0) – решение исходной системы, тогда x0=2·y0−1 и x0+3·y0−1=0 – верные числовые равенства. Докажем, что при этом равенство (2·y0−1)+3·y0−1=0 тоже верное, что будет доказывать, что (x0, y0) является решением системы, полученной после преобразования, а это будет означать, что полученная система имеет те же решения, что и исходная.

Легко показать, что при условии x0=2·y0−1 значения выражений x0+3·y0−1 и (2·y0−1)+3·y0−1 равны. Для этого составим их разность и покажем, что она равна нулю: x0+3·y0−1−((2·y0−1)+3·y0−1)= (x0−(2·y0−1))+(3·y0−1−(3·y0−1))= x0−(2·y0−1) , а полученное выражение равно нулю в силу равенства x0=2·y0−1 . Итак, справедливо равенство x0+3·y0−1=(2·y0−1)+3·y0−1 , но справедливо и равенство x0+3·y0−1=0 , а из них по свойству транзитивности вытекает справедливость равенства (2·y0−1)+3·y0−1=0 .

Аналогично доказывается, что любое решение системы уравнений Равносильные системы линейных алгебраических уравненийявляется решением исходной системы. В итоге можно сделать вывод, что системы равносильны.

Суть доказательства рассматриваемого утверждения в общем виде та же. То есть, показывается, что любое решение исходной системы является решением системы, полученной после преобразования, и обратно.

Это равносильное преобразование дает разрешение на решение систем уравнений методом подстановки.

В заключение скажем, что обычно при решении систем уравнений разобранные равносильные преобразования используются сообща и иногда по нескольку раз. Дальше на практике Вы увидите это.

Видео:Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМСкачать

Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМ

Системы линейных уравнений. Равносильные системы линейных уравнений. Решение системы линейных уравнений методом последовательного исключения переменных

Равносильные системы линейных алгебраических уравнений(1)

Составим матрицу при n-неизвестных.

Равносильные системы линейных алгебраических уравнений

Эту матрицу называют матрицей системы(1)илиосновной матрицей. Если к ней добавить столбец, то вновь полученную матрицу называют расширенной.

Равносильные системы линейных алгебраических уравнений

Систему (1) удобно переписать в виде Равносильные системы линейных алгебраических уравнений, где А-матрица столбца неизвестных Равносильные системы линейных алгебраических уравнений

Равносильные системы линейных алгебраических уравнений— столбец свободных членов

Система (1) называется однородной, если вектор b-нулевой, в противном случае — неоднородной.

Система (1) называется совместной, если она имеет хотя бы одно решение, т.е. переменным ( Равносильные системы линейных алгебраических уравнений) можно придать такие значения, которые будучи подставленными в (1) превращает уравнение в верное числовое равенство. Если система (1) решений не имеет, то ее называют несовместной.

Очевидно, что однородная система всегда совместна. Равносильные системы линейных алгебраических уравнений

Однородная система линейных уравнений.Очевидно, что если какое-либо уравнение системы заменить суммой этого уравнения и любого другого уравнения, умноженного на некоторое число, то вновь полученная система будет => первоначальной. Множество решений таких систем совпадает. Так же очевидно, что если два уравнения системы переставить местами, так же получим эквивалентную систему. Это значит, что с матрицей системы можно производить элементарные преобразования 1 и 2 видов.

Пусть Равносильные системы линейных алгебраических уравнений— решение однородной системы Равносильные системы линейных алгебраических уравнений(2), покажем, что их линейная комбинация также будет решением этой системы Равносильные системы линейных алгебраических уравнений; Равносильные системы линейных алгебраических уравнений Равносильные системы линейных алгебраических уравнений.

Это означает, что множество всех решений однородной системы V является подпространством пространства | Равносильные системы линейных алгебраических уравнений. Размерность этого подпространства = n-r, где r – ранг матрицы А.

Пусть Равносильные системы линейных алгебраических уравнений.

Базис линейного пространства V <f1, f2,…fk>называется фундаментальной системой решения (ФСР) системы (2). Зная ФСР можно записать любое решение однородной системы (2).

Алгоритм решения однородной системы:

1.Выписываем матрицу системы.

2.Приводим матрицу к ступенчатому виду.

3.Переменные, соответствующие угловым коэффициентам в ступенчатой матрице, назовем зависимыми, а оставшиеся – независимыми. Затем выразим зависимые переменные через независимые. Кол-во зависимых = r(рангу матрицы), количество независимых (свободных) = k.

4.Векторы ФСР можно получить так: одной из свободных переменных придаем 1, а остальным – 0, и вычисляем значение зависимых переменных. Получаем Равносильные системы линейных алгебраических уравнений, придавая значение 1 другой переменной, получим другой вектор Равносильные системы линейных алгебраических уравненийи т.д., пока не получим ФСР.

5.Общее решение системы f будет иметь вид Равносильные системы линейных алгебраических уравнений, где α12,…αk — произвольные числа.

Неоднородные системы линейных ур-й. Метод Гаусса.

Равносильные системы линейных алгебраических уравнений(1)

В системе (1) хотя бы одно из чисел Равносильные системы линейных алгебраических уравнений. Обозначим Равносильные системы линейных алгебраических уравнений— матрицу этой системы, Равносильные системы линейных алгебраических уравнений— матрицу расширенную. Систему (1) можно переписать в векторном виде

Равносильные системы линейных алгебраических уравнений(1), где Равносильные системы линейных алгебраических уравнений, Равносильные системы линейных алгебраических уравнений.

Наряду с системой (1) будем рассматривать однородную систему (2), которую назовем соответствующей системе (1).

Равносильные системы линейных алгебраических уравнений(2)

Неоднородная система может быть несовместной, т.е. не иметь решений.

Неоднородная система (1) совместна тогда и только тогда, когда ранг ее основной матрицы=рангу расширенной ( Равносильные системы линейных алгебраических уравнений).

Пусть х – решение системы (1), а у – решение системы (2). Тогда Равносильные системы линейных алгебраических уравнений-решение систем Равносильные системы линейных алгебраических уравнений, т.о. Равносильные системы линейных алгебраических уравнений— является решением системы (1)

Т.о. если к частному решению системы (1) прибавить какое-нибудь решение, соответствующей однородной системы (2), то снова получим решение системы (1).

Т.о. можно получить любое решение системы (1).

Равносильные системы линейных алгебраических уравнений(3), где Равносильные системы линейных алгебраических уравнений— общая неоднородная система; Равносильные системы линейных алгебраических уравнений— общая однородная; Равносильные системы линейных алгебраических уравнений— частная неоднородная

Поэтому для отыскания решения системы (1) необходимо найти какое-нибудь частное решение системы (1), найти все решения соответствующее неоднородной системы и воспользоваться формулой (3).

Метод Гаусса— классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Равносильные системы линейных алгебраических уравнений

Матрица A наз. основнойматрицей системы, b — столбцом свободных членов.

Алгоритм решения СЛАУ методом Гаусса подразделяется на два этапа:

На первом этапе осуществляется так называемый прямой ход, когда путём элементарных преобразований над строками систему приводят к ступенчатой или треугольной форме, либо устанавливают, что система несовместна. А именно, среди элементов первого столбца матрицы выбирают ненулевой, перемещают его на крайнее верхнее положение перестановкой строк и вычитают получившуюся после перестановки первую строку из остальных строк, домножив её на величину, равную отношению первого элемента каждой из этих строк к первому элементу первой строки, обнуляя тем самым столбец под ним. После того, как указанные преобразования были совершены, первую строку и первый столбец мысленно вычёркивают и продолжают пока не останется матрица нулевого размера. Если на какой-то из итераций среди элементов первого столбца не нашёлся ненулевой, то переходят к следующему столбцу и проделывают аналогичную операцию.

На втором этапе осуществляется так называемый обратный ход, суть которого заключается в том, чтобы выразить все получившиеся базисные переменные через небазисные и построить фундаментальную систему решений, либо, если все переменные являются базисными, то выразить в численном виде единственное решение системы линейных уравнений. Эта процедура начинается с последнего уравнения, из кот. выражают соответствующую базисную переменную (а она там всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх. Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки.

Пример: Решить систему уравнений

Равносильные системы линейных алгебраических уравнений

Решение. Будем решать методом Гаусса. Выпишем расширенную матрицу системы и преобразуем её, вычитая первую строку, умноженную на 2, 3 и 1 соответственно из 2-ой, 3-ей и 4-ой строк:

Равносильные системы линейных алгебраических уравненийРавносильные системы линейных алгебраических уравнений

Далее вторую строку, умноженную на 2 и 3, вычтем соответственно из третей и четвёртой строк:

Равносильные системы линейных алгебраических уравнений

Последняя матрица эквивалентна следующей ступенчатой системе: Равносильные системы линейных алгебраических уравнений

Полученная упрощённая система представляет собой систему из двух уравнений для четырёх неизвестных. Следовательно, два из неизвестных можно выбрать за главные, а два — за свободные, через кот. будут выражены главные. В качестве главных неизвестных можно выбрать любую пару, если определитель, составленный из коэффициентов, стоящих перед ними, отличен от нуля (базисный

минор). В данной задаче в качестве главных неизвестных можно выбрать Равносильные системы линейных алгебраических уравнений.

Действительно, определитель, составленный из их коэффициентов, отличен от нуля: Равносильные системы линейных алгебраических уравнений.

Теперь из второго уравнения выразим Равносильные системы линейных алгебраических уравненийчерез Равносильные системы линейных алгебраических уравнений. Затем подставим его в первое уравнение и найдём Равносильные системы линейных алгебраических уравненийчерез Равносильные системы линейных алгебраических уравнений. В итоге получим: Равносильные системы линейных алгебраических уравнений

Переменные Равносильные системы линейных алгебраических уравненийпринимают произвольные значения. Положив Равносильные системы линейных алгебраических уравнений, общее решение системы можно записать в виде:

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Алгебра. 7 класс

Конспект урока

Равносильность уравнений и систем уравнений

Перечень вопросов, рассматриваемых в теме:

  • Понятие равносильных уравнений.
  • Изучение равносильных систем уравнений.
  • Практическое применение равносильности систем уравнений.

Уравнение, левой и правой частями которого являются числа или многочлены степени не выше первой относительно х и у, называются линейными уравнением с двумя неизвестными х и у.

Члены многочленов, находящиеся в левой и правой частях линейного уравнения, называют членами этого уравнения.

Два уравнения называют равносильными, если любое решение первого уравнения является решением второго, а любое решение второго является решением первого.

Равносильны два уравнения, каждое из которых не имеет решения.

Две системы уравнений называют равносильными, если любое решение первой системы является решением второй системы и любое решение второй системы является решением первой системы.

Равносильны две системы, если каждая из них не имеет решений.

  1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
  1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
  2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
  3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Уравнение, левой и правой частями которого являются числа или многочлены степени не выше первой относительно х и у, называются линейными уравнением с двумя неизвестными х и у.

Равносильные системы линейных алгебраических уравнений

Члены многочленов, находящиеся в левой и правой частях линейного уравнения, называют членами этого уравнения.

Два уравнения называют равносильными, если любое решение первого уравнения является решением второго, а любое решение второго является решением первого.

Равносильны такие два уравнения, каждое из которых не имеет решения.

1) Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получим уравнение, равносильное исходному.

Равносильные системы линейных алгебраических уравнений

2) Если перенести с противоположным знаком член уравнения из одной части в другую, то получим уравнение, равносильное исходному.

Равносильные системы линейных алгебраических уравнений

3) Если в левой и правой частях линейного уравнения привести подобные члены, то получится уравнение, равносильное исходному:

Равносильные системы линейных алгебраических уравнений

Доказательство этих утверждений проводится так же, как для линейного уравнения с одним неизвестным.

Равносильные системы линейных алгебраических уравнений

Две системы уравнений называют равносильными, если любое решение первой системы является решением второй системы и любое решение второй системы является решением первой системы. Равносильны также две системы, если каждая из них не имеет решений.

Очевидно, что если одно из уравнений системы заменить другим, равносильным ему уравнением, то полученная система будет равносильна исходной.

Равносильные системы линейных алгебраических уравнений

Перенеся свободные члены уравнений этой системы в их правые части, получим следующую равносильную систему:

Равносильные системы линейных алгебраических уравнений

Пример 2. Решите систему уравнений:

Равносильные системы линейных алгебраических уравнений

Равносильные системы линейных алгебраических уравнений

Решим системы способом подстановки.

Пример 3. Решите систему уравнений

Равносильные системы линейных алгебраических уравнений

Пример 4. Решите систему уравнений

Равносильные системы линейных алгебраических уравнений

Разбор решения заданий тренировочного модуля.

№1. Тип задания: единичный выбор.

Какие два уравнения называются равносильными?

Два уравнения называют равносильными, если любое решение первого уравнения является решением второго, а любое решение второго является решением первого.

Два уравнения называют равносильными, если любое решение первого уравнения не является решением второго, а любое решение второго не является решением первого.

Два уравнения называют равносильными, если любое решение первого уравнения является продолжением решения второго, и является единственно верным.

Два уравнения называют равносильными, если любое решение первого уравнения является решением второго, а любое решение второго является решением первого.

№2. Тип задания: Восстановление последовательности элементов горизонтальное / вертикальное.

🌟 Видео

Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать

Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 класс

Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)Скачать

Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ

2 - Решениt систем линейных алгебраических уравнений (СЛАУ) с помощью Matlab.Скачать

2 - Решениt систем линейных алгебраических уравнений (СЛАУ) с помощью Matlab.

Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

РАВНОСИЛЬНЫЕ УРАВНЕНИЯ И ИХ СВОЙСТВА. Видеоурок | АЛГЕБРА 7 классСкачать

РАВНОСИЛЬНЫЕ УРАВНЕНИЯ И ИХ СВОЙСТВА. Видеоурок | АЛГЕБРА 7 класс

Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения

Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Линейные уравненияСкачать

Линейные уравнения

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Равносильные уравнения. Рациональные уравнения - 8 класс алгебраСкачать

Равносильные уравнения. Рациональные уравнения - 8 класс алгебра

решение систем линейных уравнений урок 2.flvСкачать

решение систем линейных уравнений урок 2.flv
Поделиться или сохранить к себе: