Презентация по алгебре и началам математического анализа для 11 класса на тему «Равносильные преобразования уравнений и неравенств».
- Просмотр содержимого документа «Равносильные преобразования уравнений и неравенств»
- Алгебра и начала математического анализа. 10 класс
- Равносильные неравенства, преобразование неравенств
- Равносильные неравенства: определение, примеры
- Равносильные преобразования неравенств
- Результат неравносильных преобразований неравенств
- 📽️ Видео
Просмотр содержимого документа
«Равносильные преобразования уравнений и неравенств»
Равносильные преобразования уравнений и неравенств
Основные равносильные преобразования уравнений
1. Перенос члена уравнения из одной части уравнения в другую
2. Умножение (деление) обеих частей уравнения на отличное от нуля число
3. Применение тождеств
4. Возведение уравнения в нечетную степень
5. Извлечение корня нечетной степени из обеих частей уравнения
Равносильные преобразования неравенств
1. Перенос члена неравенства (с противоположным знаком) из одной части неравенства в другую
2. Умножение (деление) обеих частей неравенства на положительное число
3. Применение тождеств
4. Возведение неравенства в нечетную степень
5. Извлечение корня нечетной степени из обеих частей неравенства
6. Логарифмирование показательного неравенства
Основные равносильные преобразования уравнений-следствий
1. Возведение уравнения в четную степень
2. Потенцирование логарифмического уравнения
3. Освобождение уравнения от знаменателя
4. Приведение подобных членов
Проверка полученных корней является обязательной частью решения уравнения!
Возведение уравнения в четную степень
Потенцирование логарифмических уравнений
Видео:Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)Скачать
Алгебра и начала математического анализа. 10 класс
Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок №19. Равносильные уравнения и неравенства
Перечень вопросов, рассматриваемых в теме
1) понятие равносильного уравнения;
2) понятие равносильного неравенства;
3) понятие уравнения-следствия;
4) основные теоремы равносильности.
Глоссарий по теме
Два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.
Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.
Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Определение. Два уравнения с одной переменной
f(х) = g(х) и р(х) = h(х) называют равносильными, если множества их корней совпадают.
Иными словами, два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.
1) Уравнения равносильны, т.к. каждое из них имеет только один корень х=3.
2) Уравнения также равносильны, т.к. у них одни и те же корни .
3) А вот уравнения не равносильны, потому что у первого уравнения корень х=2, а у второго уравнения два корня х=2 и х=-2.
Из определения равносильности следует, что два уравнения равносильны, если каждый корень первого уравнения является корнем второго уравнения, и наоборот.
Решение уравнения осуществляется в три этапа.
Первый этап — технический. На этом этапе осуществляют преобразования по схеме (1) → (2) → (3)→ (4) → . и находят корни последнего (самого простого) уравнения указанной цепочки.
Второй этап — анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.
Третий этап — проверка. Если анализ, проведенный на втором этапе, показывает, что некоторые преобразования могли привести к уравнению-следствию, то обязательна проверка всех найденных корней их подстановкой в исходное уравнение.
Реализация этого плана связана с поисками ответов на четыре вопроса.
- Как узнать, является ли переход от одного уравнения к другому равносильным преобразованием?
- Какие преобразования могут перевести данное уравнение в уравнение-следствие?
- Если мы в конечном итоге решили уравнение-следствие, то как сделать проверку в случае, когда она сопряжена со значительными вычислительными трудностями?
- В каких случаях при переходе от одного уравнения к другому может произойти потеря корней и как этого не допустить?
Из курса средней школы мы знаем, что можно сделать следующие преобразования уравнений: любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.
Обе части уравнения можно умножить или разделить на одной и то же число, не равное нулю.
Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.
Из этого определения и определения равносильности уравнений следует, что:
- если ва уравнения равносильны, то каждое из них является следствием другого;
- если каждое из двух уравнений является следствием другого, то эти уравнения равносильны.
При решении уравнений главное- не потерять корни, а наличие посторонних корней можно установить проверкой. Поэтому важно следить за тем, чтобы при преобразовании уравнения каждое следующее уравнение было следствием предыдущего.
Стоит отметить, что посторонние корни могут получиться при умножении обеих частей уравнения на выражение, содержащее неизвестное; а вот потеря корней может произойти при делении обеих частей уравнения на выражение, содержащее неизвестное.
Итак, сформулируем основные теоремы, которые используются при решении равносильных уравнений:
Определение. Областью определения уравнения f(х) = g(х) или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной х, при которых одновременно имеют смысл выражения
Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.
Теорема 2. Если обе части уравнения возвести в одну и туже нечетную степень, то получится уравнение, равносильное данному.
Теорема 3. Показательное уравнение (где а > 0, a≠1)
равносильно уравнению f(x) = g(х).
Теорема 4. Если обе части уравнения f(x) = g(х) умножить на одно и то же выражение h(х), которое:
а) имеет смысл всюду в области определения (в области допустимых значений) уравнения f(x) = g(х)
б) нигде в этой области не обращается в 0, то получится уравнение f(x)h(x) = g(x)h(x), равносильное данному в его ОДЗ.
Следствием теоремы 4: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
Теорема 5. Если обе части уравнения f(x)=g(х) неотрицательны в ОДЗ уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение равносильное данному в его ОДЗ.
Краткая запись теорем 4, 5.
4. f(x) = g(x) ⇔h(x)f(x) = h(x)g(x), где h(x) ≠0
и h(x) имеет смысл в ОДЗ данного уравнения.
5. f(x) = g(x) ⇔ , где f(x)≥0, g(x)≥0
и n=2k (чётное число).
Например, х – 1 = 3; х = 4
Умножим обе части на (х – 2):
(х – 2)(х – 1) = 3(х – 2); х = 4 и х = 2 – посторонний корень⇒ проверка!
Равносильность неравенств с неизвестным определяется аналогично.
Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.
Разбор решения заданий тренировочного модуля
Решим уравнение:
Возведем в квадрат обе части уравнения, получим:
, которое не будет равносильно исходному уравнению, потому что у этого уравнения два корня , а у первоначального уравнения только один корень х=4.
- Неравенства и x-3 x-1 не равносильны, так как решениями первого являются числа x 1, а решениями второго- числа x>-1. При решении неравенств обычно данное неравенство преобразуется в ему равносильное.
Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать
Равносильные неравенства, преобразование неравенств
В процессе решения неравенств зачастую происходит переход от заданного неравенства к неравенствам иного вида, имеющим то же решение, но определяемое проще. Иными словами, в результате преобразований заданное неравенство возможно заменить равносильным ему, облегчающим поиск решения. Данная статья посвящена способам равносильных преобразований. Сформулируем определение, рассмотрим основные виды преобразований.
Видео:Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать
Равносильные неравенства: определение, примеры
Равносильные неравенства – неравенства, имеющие одни и те же решения. В частном случае, неравенства, не имеющие решений, тоже называются равносильными.
Иными словами, если неравенства равносильны и имеют решения, то любое решение первого будет являться и решением второго. Ни одно из равносильных неравенств не имеет решений, не являющихся решениями других, равносильных ему неравенств.
Даны три равносильных неравенства: x > 2 , 2 · x : 2 > 2 и x > 3 — 1 . В самом деле, множества решений этих неравенств одинаковые, решение каждого их них – числовой промежуток ( 2 , + ∞ ) .
Неравенства х 6 ≥ — 2 и | х + 7 | 0 являются равносильными, поскольку оба не имеют решений.
Неравенства х > 3 и х ≥ 3 – не равносильные: х = 3 служит решением второго из этих равенств, но не служит решением первого.
Отметим, что указанное определение относится к неравенствам как с одной переменной, так и с двумя, тремя и более.
Видео:Равносильные уравнения, неравенстваСкачать
Равносильные преобразования неравенств
Возможно совершить некоторые действия с правой и левой частью неравенств, что даст возможность получать новые неравенства, имеющие решения, как и у исходного.
Равносильное преобразование неравенства – это замена исходного неравенства равносильным ему, т.е. таким, которое имеет то же множество решений. Сами действия-преобразования, приводящие к равносильному неравенству, тоже называют равносильными преобразованиями.
Равносильные преобразования дают возможность находить решения неравенств, преобразуя заданное неравенство в равносильное ему, но более простое и удобное для решения.
Рассмотрим основные виды равносильных преобразований: по сути без них не обходится решение ни одного неравенства. Отметим также, что равносильные преобразования неравенств очень похожи на равносильные преобразования уравнений. Схожи и принципы доказательства, только, конечно, в данном случае доказательства будут строиться на основе свойств числовых неравенств.
Итак, перечислим основные виды равносильных преобразований неравенств:
- Замена выражений в обоих частях неравенства тождественно равными выражениями на области допустимых значений (ОДЗ) переменных заданного неравенства есть равносильное преобразование неравенства.
Доказательство 1
Докажем утверждение. Пусть дано неравенство с одной переменной A ( x ) B ( x ) , где A ( x ) и B ( x ) — некие выражения с переменной x . Допустим, выражение C ( x ) является тождественно равным выражению A ( x ) , а выражение D ( x ) является тождественно равным B ( x ) на ОДЗ заданного неравенства. Найдем доказательство, что неравенство C ( x ) D ( x ) служит равносильным неравенству A ( x ) B ( x ) . С этой целью нам нужно продемонстрировать тот факт, что любое решение q заданного неравенства будет также решением неравенства C ( x ) D ( x ) , и наоборот: любое решение неравенства C ( x ) D ( x ) будет решением заданного неравенства A ( x ) B ( x ) .
Мы приняли, что q – решение неравенства A ( x ) B ( x ) , тогда верным будет числовое неравенство A ( q ) B ( q ) . Отсюда по разностному определению неравенства выводим, что A ( q ) − B ( q ) 0 .
Выражение A ( q ) − B ( q ) можно записать в виде A ( q ) + ( C ( q ) − C ( q ) ) − B ( q ) + ( D ( q ) − D ( q ) ) , что является тем же самым, ( A ( q ) − C ( q ) ) + C ( q ) − ( B ( q ) − D ( q ) ) − D ( q ) . Выражения A ( x ) и C ( x ) , B ( x ) и D ( x ) по условию тождественно равны, тогда: A ( q ) = C ( q ) и B ( q ) = D ( q ) , откуда A ( q ) − C ( q ) = 0 и B ( q ) − D ( q ) = 0 . Таким образом, ( A ( q ) − C ( q ) ) + C ( q ) − ( B ( q ) − D ( q ) ) − D ( q ) = 0 + C ( q ) − 0 − D ( q ) = C ( q ) − D ( q ) . Мы продемонстрировали, что значение выражения A ( q ) − B ( q ) равно значению выражения C ( q ) − D ( q ) , а поскольку A ( q ) − B ( q ) 0 , то и C ( q ) − D ( q ) 0 . Отсюда делаем вывод, что C ( q ) D ( q ) . И крайнее неравенство означает, что q – решение неравенства C ( x ) D ( x ) .
Таким же образом доказывается, что любое решение неравенства C ( x ) D ( x ) будет решением и неравенства A ( x ) B ( x ) , тем самым будет доказано и исходное утверждение.
Подобные преобразования не должны сужать ОДЗ заданного неравенства, тогда возможно совершать тождественные преобразования обеих сторон неравенства.
Покажем пример использования.
Рассмотрим неравенство x > 2 + 6 . В правой части возможно заменить сумму значением так, чтобы получилось равносильное неравенство x > 8 .
В неравенстве 3 · ( x + 1 ) − 2 · x + 11 ≤ 2 · y + 3 · ( y + 1 ) + x , в обоих его частях мы раскроем скобки и приведем подобные слагаемые, получив в итоге равносильное неравенство x + 14 ≤ 5 · y + 3 + x . Если детально разобрать наши действия, то мы заменили левую часть данного неравенства тождественно равным ей выражением x + 14 , а правую часть – тождественно равным ей выражением 5 · y + 3 + x на области допустимых значений переменных x и y заданного неравенства.
Еще раз особенно укажем, как важен учет ОДЗ (область допустимых значений) при совершении замены частей неравенства тождественными выражениями. В случае, когда ОДЗ нового неравенства будет отлична от ОДЗ исходного, неравенство не может считаться равносильным. Это крайне важный аспект, пренебрежение им приводит к неверным ответам при решении неравенств.
- Прибавление или вычитание из обеих частей неравенства одного и того же числа является равносильным преобразованием.
Доказательство 2
Приведем обоснование указанного утверждения. Допустим, задано неравенство A ( x ) B ( x ) и некое число c . Необходимо доказать, что заданному равносильно неравенство A ( x ) + c B ( x ) + c , которое мы получим, прибавив к обеим частям исходного неравенства число c . Продемонстрируем, что любое решение q заданного неравенства будет также и решением неравенства A ( x ) + c B ( x ) + c , и наоборот.
Мы приняли, что q – решение неравенства A ( x ) B ( x ) , тогда верно следующее: A ( q ) B ( q ) . Из свойств числовых неравенств следует, что к обеим частям верного числового неравенства можно прибавить любое число. Мы прибавим число c к обеим частям крайнего неравенства, получим A ( q ) + c B ( q ) + c , и это означает, что q служит решением неравенства A ( x ) + c B ( x ) + c .
Подобным же образом можно доказать, что любое решение неравенства A ( x ) + c B ( x ) + c будет являться и решением неравенства A ( x ) B ( x ) . Мы приняли, что q — решение неравенства A ( x ) + c B ( x ) + c , тогда A ( q ) + c B ( q ) + c , из обеих частей вычтем число c , получим A ( q ) B ( q ) , где q – решение неравенства A ( x ) B ( x ) .
Таким образом, неравенства A ( x ) B ( x ) и A ( x ) + c B ( x ) + c являются равносильными. Для наглядности укажем пример: x > 2 и x − 5 > 2 − 5 – равносильные неравенства, а, учитывая рассматриваемое выше утверждение, равносильным им является и неравенство x − 5 > − 3 .
- Свойство, которое мы доказали выше, возможно расширить: прибавив к левой и правой частям неравенства одно и то же выражение с учетом соблюдения ОДЗ данного неравенства, получим равносильное неравенство.
Пример 3
Исходному неравенству x 7 будет равносильно неравенство x + ( 12 · x − 1 ) 7 + ( 12 · x − 1 ) .
- Указанные выше равносильные преобразования дают как следствие еще одно действие, пожалуй, основное в процессе преобразования неравенств: перенос любого слагаемого из одной части неравенства в другую с противоположным знаком служит равносильным преобразованием.
Пример 4
Исходному неравенству 3 · x − 5 · y > 12 равносильно неравенство 3 · x > 12 + 5 · y .
- Равносильным преобразованием также является умножение или деление обеих частей неравенства на одно и то же положительное число. И, умножив (или разделив) обе части неравенства на одно и то же отрицательное число, поменяв при этом знак неравенства на противоположный ( на > , > на , ≤ на ≥ , а ≥ на ≤ ), получим равносильное неравенство.
Доказательство 3
Докажем сначала первую часть утверждения. Допустим, задано неравенство A ( x ) B ( x ) и c – некое положительное число. Приведем доказательство, что A ( x ) B ( x ) и A ( x ) · c B ( x ) · c — равносильные неравенства. Примем q как решение заданного неравенства, в таком случае верным будет числовое неравенство A ( q ) B ( q ) . Опираясь на свойства числовых неравенств, можем утверждать, что, умножив обе части верного числового неравенства на положительное число, получим верное числовое неравенство. Производим умножение на заданное число c , что дает нам A ( q ) · c B ( q ) · c . Это значит, что q — решение неравенства A ( x ) · c B ( x ) · c .
Теперь в обратную сторону: примем q как решение неравенства A ( x ) · c B ( x ) · c , в таком случае: A ( q ) · c B ( q ) · c . Разделим обе части этого числового неравенства на положительное число c (опираясь на свойства числовых неравенств), что даст нам верное числовое неравенство A ( q ) B ( q ) . Отсюда можно сделать вывод, что q — решение неравенства A ( x ) B ( x ) . Так, мы доказали, что при положительном числе c неравенства A ( x ) B ( x ) и A ( x ) · c B ( x ) · c являются равносильными.
Таким же образом приводится доказательство второй части утверждения. Здесь можно опереться на свойство умножения и деления числовых неравенств на отрицательное число при смене знака неравенства на противоположный.
Задано неравенство 2 · x ≤ 5 . Умножим его левую и правую части на положительное число 3 , что даст нам равносильное неравенство 6 · x ≤ 15 .
Задано неравенство — 2 3 · z 1 . Разделим левую и правую его части на отрицательное число — 2 3 , сменив знак неравенства. Получим z > — 1 1 2 — неравенство, равносильное заданному.
Расширим и это свойство неравенств:
- умножив обе части заданного неравенства на одно и то же выражение, положительное при любых значениях переменных из ОДЗ заданного неравенства, не изменяющее ОДЗ, получим равносильное неравенство;
- умножив обе части неравенства на одно и то же выражение, отрицательное при любых значениях переменных из ОДЗ заданного неравенства и не изменяющее ОДЗ, а также изменив знак равенства на противоположный, получим равносильное неравенство.
Пример 7
Задано неравенство x > 1 . Умножим его правую и левую части на выражение x 2 + 1 , положительное на всей ОДЗ, и получим равносильное неравенство x · ( x 2 + 1 ) > 1 · ( x 2 + 1 ) .
В целом, есть и другие равносильные преобразования, однако, они не так распространены и скорее имеют отношение к конкретному виду неравенств, например, к логарифмическим неравенствам. Познакомиться с ними можно подробнее в соответствующей теме.
Видео:Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |Скачать
Результат неравносильных преобразований неравенств
Сколь уж существуют равносильные преобразования, имеют место и неравносильные. Такие действия приводят к искажению заданного неравенства и дают в итоге решение, не являющееся истинным для исходного неравенства. Случается, что и при неравносильных преобразованиях получается верный ответ, но это не более чем случайность.
Собственно, вывод очевиден: решая неравенства, производить только равносильные преобразования.
Разберем примеры для лучшего понимания теории.
Пусть заданы неравенства x > − 2 и 1 x — 1 x + x > — 2 . Решением первого будет числовой промежуток ( − 2 , + ∞ ) , а второго – множество — 2 , 0 ∪ 0 , + ∞ .
Пусть необходимо решить второе неравенство.
Конечно, сазу приходит мысль об упрощении левой части приведением слагаемых, произведя замену просто на х, что даст переход к простому неравенству x > − 2 . Однако мы намеренно не учтем, что переход надо осуществить на ОДЗ переменной х ( х ≠ 0 ) , тогда предложенное выше преобразование даст нам неравносильное неравенство x > − 2 , а следовательно – неверный ответ ( − 2 , + ∞ ) взамен нужного — 2 , 0 ∪ 0 , + ∞ .
Посмотрим с другой стороны:
Мы решим неравенство x > − 2 . При этом нам захотелось заменить его якобы равносильным неравенством 1 x — 1 x + x > — 2 . Однако оно не является таковым: нуль не служит его решением, однако служит решением исходного неравенства. Суть в том, что выражение в его левой части тождественно равно не на всей области допустимых значений исходного неравенства: когда х = 0 , неравенство не равно x (при х = 0 оно не определено). Совершенные действия приведут нас к неверному ответу — 2 , 0 ∪ 0 , + ∞ взамен правильного ( − 2 , + ∞ ) .
Признак вероятного неравносильного преобразования – сужение области допустимых значений. Вновь обратимся к примеру выше: когда мы производили переход от неравенства x > − 2 к неравенству 1 x — 1 x + x > — 2 , произошло сужение ОДЗ со всего множества действительных чисел до множества без нуля. Такое положение вещей точно указывает на то, что полученное в итоге неравенство никак не будет равносильным исходному, т.е. такой переход не приведет к необходимому верному результату.
Неравносильные преобразования чаще всего происходят при невнимательном использовании свойств корней, логарифмов и модуля. Эти моменты будут детально рассмотрены в темах о решении неравенств соответствующих видов.
📽️ Видео
11 класс, 26 урок, Равносильность уравненийСкачать
Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)Скачать
Как решать неравенства? Математика 10 класс | TutorOnlineСкачать
Равносильные переходы при решении иррациональных уравненийСкачать
ИРРАЦИОНАЛЬНЫЕ НЕРАВЕНСТВА неравенства с корнемСкачать
Равносильные уравнения и неравенстваСкачать
11 класс, 28 урок, Равносильность неравенствСкачать
Равносильные уравнения и неравенства. ВидеоурокСкачать
решение УРАВНЕНИЙ решение НЕРАВЕНСТВ 10 11 классСкачать
Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать
Решение неравенства методом интерваловСкачать
Иррациональные неравенства | Математика ЕГЭ | УмскулСкачать
Дробно-рациональные уравнения. 8 класс.Скачать
Как решать неравенства? Часть 1| МатематикаСкачать
РАВНОСИЛЬНЫЕ УРАВНЕНИЯ #математика #егэ #огэ #формулы #профильныйегэ #уравненияСкачать