Рациональные уравнения как решать не дробные

Дробно-рациональные уравнения

Видео:Решение дробных рациональных уравнений. Алгебра, 8 классСкачать

Решение дробных рациональных уравнений. Алгебра, 8 класс

Что такое дробно-рациональные уравнения

Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

9 x 2 — 1 3 x = 0

1 2 x + x x + 1 = 1 2

6 x + 1 = x 2 — 5 x x + 1

Уравнения, которые не являются дробно-рациональными:

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Как решаются дробно-рациональные уравнения

В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

Алгоритм действий при стандартном способе решения:

  1. Выписать и определить ОДЗ.
  2. Найти общий знаменатель для дробей.
  3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
  4. Записать уравнение со скобками.
  5. Раскрыть скобки для приведения подобных слагаемых.
  6. Найти корни полученного уравнения.
  7. Выполним проверку корней в соответствии с ОДЗ.
  8. Записать ответ.

Пример 1

Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

x x — 2 — 7 x + 2 = 8 x 2 — 4

Начать следует с области допустимых значений:

x 2 — 4 ≠ 0 ⇔ x ≠ ± 2

Воспользуемся правилом сокращенного умножения:

x 2 — 4 = ( x — 2 ) ( x + 2 )

В результате общим знаменателем дробей является:

Выполним умножение каждого из членов выражения на общий знаменатель:

x x — 2 — 7 x + 2 = 8 x 2 — 4

x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 )

После сокращения избавимся от скобок и приведем подобные слагаемые:

x ( x + 2 ) — 7 ( x — 2 ) = 8

x 2 + 2 x — 7 x + 14 = 8

Осталось решить квадратное уравнение:

Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Примеры задач с ответами для 9 класса

Требуется решить дробно-рациональное уравнение:

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

Определим область допустимых значений:

О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2

x 2 + 7 x + 10 ≠ 0

D = 49 — 4 · 10 = 9

x 1 ≠ — 7 + 3 2 = — 2

x 2 ≠ — 7 — 3 2 = — 5

Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 )

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 —

— ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0

x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0

2 x 2 + 9 x — 5 = 0

Потребуется решить квадратное уравнение:

2 x 2 + 9 x — 5 = 0

Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

Дано дробно-рациональное уравнение, корни которого требуется найти:

4 x — 2 — 3 x + 4 = 1

В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

4 ( x + 4 ) x — 2 — 3 ( x — 2 ) x + 4 — 1 ( x — 2 ) ( x + 4 ) = 0

4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0

4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0

x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0

Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

— x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0

Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

( x — 2 ) ( x + 4 ) ≠ 0

Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

— x 2 — x + 30 = 0 _ _ _ · ( — 1 )

Получилось квадратное уравнение, которое можно решить:

Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

Нужно решить дробно-рациональное уравнение:

x + 2 x 2 — 2 x — x x — 2 = 3 x

На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

x + 2 1 x ( x — 2 ) — x x x — 2 — 3 ( x — 2 ) x = 0

x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0

x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0

— x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0

Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

— x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 )

Корни квадратного уравнения:

x 1 = — 4 ; x 2 = 2

Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

Найти корни уравнения:

x 2 — x — 6 x — 3 = x + 2

Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

x 2 — x — 6 1 x — 3 — x ( x — 3 ) — 2 ( x — 3 ) = 0

x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0

x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0

0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0

Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

Ответ: х — любое число, за исключением 3.

Требуется вычислить корни дробно-рационального уравнения:

5 x — 2 — 3 x + 2 = 20 x 2 — 4

На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

5 ( x + 2 ) x — 2 — 3 ( x — 2 ) x + 2 — 20 1 ( x — 2 ) ( x + 2 ) = 0

5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0

5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0

2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0

( x — 2 ) ( x + 2 ) ≠ 0

Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

Ответ: корни отсутствуют

Нужно найти корни уравнения:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )

Начнем с определения ОДЗ:

— 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0

При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 )

( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 )

( x — 3 ) x + x = x + 5

Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0

Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

x 1 · x 2 = — 10 x 1 + x 2 = 3

В этом случае подходящими являются числа: -2 и 5.

Второе значение не соответствует области допустимых значений.

Видео:Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.Скачать

Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.

Рациональные уравнения с примерами решения

Содержание:

Видео:Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnlineСкачать

Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnline

Рациональные уравнения. Равносильные уравнения

два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.

Так, например, равносильными будут уравнения Рациональные уравнения как решать не дробные

Уравнения Рациональные уравнения как решать не дробные— не равносильны, так как корнем первого уравнения является число 10, а корнем второго — число 9.

Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.

1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;

2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;

3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.

Рациональные уравнения как решать не дробные

Левая и правая части каждого из них являются рациональными выражениями.

Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.

В первых двух из записанных выше уравнений левая и правая части являются целыми выражениями. Такие уравнения называют целыми рациональными уравнениями. Если хотя бы одна часть уравнения — дробное выражение, то его называют дробным рациональным уравнением. Третье из записанных выше уравнений является дробным рациональным.

Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.

Применение условия равенства дроби нулю

Напомним, что Рациональные уравнения как решать не дробныекогда Рациональные уравнения как решать не дробные

Пример №202

Решите уравнение Рациональные уравнения как решать не дробные

Решение:

С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду Рациональные уравнения как решать не дробныегде Рациональные уравнения как решать не дробныеи Рациональные уравнения как решать не дробные— целые рациональные выражения. Имеем:

Рациональные уравнения как решать не дробные

Окончательно получим уравнение: Рациональные уравнения как решать не дробные

Чтобы дробь Рациональные уравнения как решать не дробныеравнялась нулю, нужно, чтобы числитель Рациональные уравнения как решать не дробныеравнялся нулю, а знаменатель Рациональные уравнения как решать не дробныене равнялся нулю.

Тогда Рациональные уравнения как решать не дробныеоткуда Рациональные уравнения как решать не дробныеПри Рациональные уравнения как решать не дробныезнаменатель Рациональные уравнения как решать не дробныеСледовательно, Рациональные уравнения как решать не дробные— единственный корень уравнения.

Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:

Рациональные уравнения как решать не дробные

Значит, решая дробное рациональное уравнение, можно:

1) с помощью тождественных преобразований привести уравнение к виду Рациональные уравнения как решать не дробные

2) приравнять числитель Рациональные уравнения как решать не дробные к нулю и решить полученное целое уравнение;

3) исключить из его корней те, при которых знаменатель Рациональные уравнения как решать не дробные равен нулю, и записать ответ.

Использование основного свойства пропорции

Если Рациональные уравнения как решать не дробныето Рациональные уравнения как решать не дробныегде Рациональные уравнения как решать не дробные

Пример №203

Решите уравнение Рациональные уравнения как решать не дробные

Решение:

Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Рациональные уравнения как решать не дробныеИмеем: Рациональные уравнения как решать не дробныето есть ОДЗ переменной Рациональные уравнения как решать не дробныесодержит все числа, кроме 1 и 2.

Сложив выражения в правой части уравнения, приведем его к виду: Рациональные уравнения как решать не дробныеполучив пропорцию: Рациональные уравнения как решать не дробные

По основному свойству пропорции имеем:

Рациональные уравнения как решать не дробные

Решим это уравнение:

Рациональные уравнения как решать не дробныеоткуда Рациональные уравнения как решать не дробные

Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.

Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:

Рациональные уравнения как решать не дробные

Таким образом, для решения дробного рационального уравнения можно:

1) найти область допустимых значений (ОДЗ) переменной в уравнении;

2) привести уравнение к виду Рациональные уравнения как решать не дробные

3) записать целое уравнение Рациональные уравнения как решать не дробные и решить его;

4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.

Метод умножения обеих частей уравнения на общий знаменатель дробей

Пример №204

Решите уравнение Рациональные уравнения как решать не дробные

Решение:

Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:

Рациональные уравнения как решать не дробные

Областью допустимых значений переменной будут те значения Рациональные уравнения как решать не дробныепри которых Рациональные уравнения как решать не дробныето есть все значения Рациональные уравнения как решать не дробныекроме чисел Рациональные уравнения как решать не дробныеА простейшим общим знаменателем будет выражение Рациональные уравнения как решать не дробные

Умножим обе части уравнения на это выражение:

Рациональные уравнения как решать не дробные

Получим: Рациональные уравнения как решать не дробныеа после упрощения: Рациональные уравнения как решать не дробныето есть Рациональные уравнения как решать не дробныеоткуда Рациональные уравнения как решать не дробныеили Рациональные уравнения как решать не дробные

Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.

Следовательно, число 12 — единственный корень уравнения. Ответ. 12.

Решая дробное рациональное уравнение, можно:

3) умножить обе части уравнения на этот общий знаменатель;

4) решить полученное целое уравнение;

5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.

Пример №205

Являются ли равносильными уравнения

Рациональные уравнения как решать не дробные

Решение:

Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.

Первое уравнение имеет единственный корень Рациональные уравнения как решать не дробныеа второе — два корня Рациональные уравнения как решать не дробные(решите уравнения самостоятельно). Следовательно, уравнения не являются равносильными.

Степень с целым показателем

Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:

Рациональные уравнения как решать не дробные

где Рациональные уравнения как решать не дробные— натуральное число, Рациональные уравнения как решать не дробные

В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: Рациональные уравнения как решать не дробныекг. Как понимать смысл записи Рациональные уравнения как решать не дробные

Рассмотрим степени числа 3 с показателями Рациональные уравнения как решать не дробные— это соответственно Рациональные уравнения как решать не дробные

В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим: Рациональные уравнения как решать не дробные

Число Рациональные уравнения как решать не дробныедолжно быть втрое меньше числа Рациональные уравнения как решать не дробныеравного числу 3. Но втрое меньшим числа 3 является число 1, следовательно, Рациональные уравнения как решать не дробныеРавенство Рациональные уравнения как решать не дробныесправедливо для любого основания Рациональные уравнения как решать не дробныепри условии, что Рациональные уравнения как решать не дробные

Нулевая степень отличного от нуля числа а равна единице, то есть Рациональные уравнения как решать не дробные при Рациональные уравнения как решать не дробные

Вернемся к строке со степенями числа 3, где слева от числа Рациональные уравнения как решать не дробныезаписано число Рациональные уравнения как решать не дробныеЭто число втрое меньше, чем 1, то есть равно Рациональные уравнения как решать не дробныеСледовательно, Рациональные уравнения как решать не дробныеРассуждая аналогично получаем: Рациональные уравнения как решать не дробныеи т. д.

Приходим к следующему определению степени с целым отрицательным показателем:

если Рациональные уравнения как решать не дробные натуральное число, то Рациональные уравнения как решать не дробные

Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

Алгебра 8. Урок 11 - Дробно-рациональные уравнения

Решение рациональных уравнений

Вы будете перенаправлены на Автор24

Рациональные уравнения — это уравнения, содержащие в себе рациональные выражения.

Рациональными выражениями при этом являются выражения, которые возможно записать в виде обыкновенной дроби вида $frac$, при этом $m$ и $n$ — целые числа и $n$ не может быть равно нулю. К рациональным выражениям относятся не только выражения, содержащие дроби вида $frac$, но и выражения, содержащие только целые числа, так как любое целое число можно представить в виде неправильной дроби.

Теперь рассмотрим более подробно, что же такое рациональные уравнения.

Как мы уже упомянули выше, рациональные уравнения — это уравнения, содержащие в себе рациональные выражения и переменные.

Соответственно тому, на каком именно месте стоит переменная в рациональном уравнении, оно может быть либо дробным рациональным уравнением, либо целым рациональным уравнением.

Дробные уравнения могут содержать дробь с переменной только в какой-то одной части уравнения, тогда как целые уравнения не содержат дробных выражений с переменной.

Целые рациональные уравнения примеры: $5x+2= 12$; $3y=-7(-4y + 5)$; $7a-14=256$.

Дробно-рациональные уравнения примеры: $frac+frac=frac$; $frac=5$;

Стоит отметить, что дробно-рациональными уравнениями называются только уравнения, содержащие дробь в знаменателе, так как уравнения, содержащие дробные выражения без переменных, легко сводятся к линейным целым уравнениям.

Видео:Дробно рациональные уравнения. Алгебра, 9 классСкачать

Дробно рациональные уравнения. Алгебра, 9 класс

Как решать рациональные уравнения?

В зависимости от того, имеете ли вы дело с целым рациональным уравнением или с дробным, применяются несколько разные алгоритмы для решения.

Алгоритм решения целых рациональных уравнений

  1. В начале необходимо определить наименьший общий знаменатель для всего равенства.
  2. Затем нужно определить множители, на которые нужно домножить каждый член равенства.
  3. Следующий этап — приведение к общему знаменателю всего равенства.
  4. Наконец, осуществление поиска корней полученного целого рационального равенства.

Готовые работы на аналогичную тему

Сначала найдём общий множитель — в данном случае это число $4$. Для того чтобы избавиться от знаменателя, домножим левую часть на $frac$, получаем:

$10x+18=x$ — полученное уравнение является линейным, его корень $x=-2$.

Как решать дробно-рациональные уравнения?

В случае с дробными рациональными уравнениями порядок решения похож на алгоритм для решения целых рациональных, то есть сохраняются пункты 1-4, но после нахождения предполагаемых корней в случае использования неравносильных преобразований корни требуется проверить, подставив в уравнение.

Решите дробно-рациональное уравнение: $frac+frac=frac$

Для того чтобы привести дробь к общему знаменателю, здесь это $x cdot (x-5)$, домножим каждую дробь на единицу, представленную в виде необходимого для приведения к общему знаменателю множителя:

Теперь, когда вся дробь имеет общий знаменатель, от него можно избавиться:

Воспользуемся теоремой Виета для решения получившегося квадратного уравнения:

$begin x_1 + x_2 = 3 \ x_1 cdot x_2 = -10 \ end$

Так как преобразование, использовавшееся для упрощения уравнения, не является равносильным, полученные корни необходимо проверить в исходном уравнении, для этого подставим их:

$frac=frac$ — следовательно, корень $x_2=-2$ — верный.

Здесь сразу видно, что в знаменателе образуется нуль, следовательно, корень $x_1=5$ — посторонний.

Необходимо помнить, что в случае, если уравнение, содержащее в левой или правой части выражение вида $frac$ равно нулю, равен нулю может быть только числитель дроби. Это происходит из-за того, что, если где-то в знаменателе образуется нуль, проверяемый корень не является корнем уравнения, так как всё равенство теряет смысл в этом случае. Корни, приводящие знаменатель к нулю, называются посторонними.

В случае если дробно-рациональное уравнение имеет довольно сложную форму, для его дальнейшего упрощения и решения возможно использовать замену части уравнения на новую переменную, наверняка вы уже видели примеры таких дробно-рациональных уравнений:

Для упрощения решения введём переменную $t= x^2+3x$:

Общий знаменатель здесь $5 cdot (t-3)(t+1)$, домножим на необходимые множители все части уравнения чтобы избавиться от него:

Через дискриминант вычислим корни:

Так как мы использовали неравносильные преобразования, необходимо проверить полученные корни в знаменателе, они должны удовлетворять условию $5(t-3)(t+1)≠0$. Оба корня соответствуют этому условию.

Теперь подставим полученные корни вместо $t$ и получим два уравнения:

По теореме Виета корни первого уравнения $x_1=-4; x_2=1$, корни второго же вычислим через дискриминант и имеем $x_=frac<-3±sqrt<frac>>$.

Все корни уравнения составят: $x_1=-4; x_2=1, x_=frac<-3±sqrt<frac>>$.

Видео:ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать

ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?

Преобразования для упрощения формы уравнения

Как вы уже могли увидеть выше, для решения рациональных уравнений используют различные преобразования.

Различают преобразования уравнений двух видов: равносильные (тождественные) и неравносильные.

Преобразования называются равносильными, если они приводят к уравнению нового вида, корни которого такие же, как у первоначального.

Тождественные преобразования, которые можно использовать для изменения вида первоначального уравнения без каких-либо проверок в дальнейшем, следующие:

  • Умножение или деление всего уравнения на какое-либо число, отличное от нуля;
  • Перенос частей уравнения из левой части в правую и наоборот.

Неравносильными преобразованиями называются преобразования, в ходе которых могут появиться посторонние корни. К неравносильным преобразованиям относят:

  • Возведение обеих частей уравнения в квадрат;
  • Избавление от знаменателей, содержащих переменную;

Корни рациональных уравнений, решённых с помощью неравносильных преобразований, необходимо проверять подстановкой в исходное уравнение, так как при неравносильных преобразованиях могут появиться посторонние корни. Не всегда неравносильные преобразования приводят к появлению посторонних корней, но всё же необходимо это учитывать.

Видео:#136 Урок 61. Дробно-рациональные уравнения. Рациональные уравнения, приводящиеся к квадратным.Скачать

#136 Урок 61. Дробно-рациональные уравнения. Рациональные уравнения, приводящиеся к квадратным.

Решение рациональных уравнений со степенями больше двух

Наиболее часто используемыми методами для решения уравнений со степенями больше двух являются метод замены переменной, рассмотренный нами выше на примере дробно-рационального уравнения, а также метод разложения на множители.

Рассмотрим более подробно метод разложения на множители.

Пусть дано уравнение вида $P(x)= 0$, при этом $P(x)$ — многочлен, степень которого больше двух. Если данное уравнение возможно разложить на множители так, что оно принимает вид $P_1(x)P_2(x)P_3(x)..cdot P_n(x)=0$, то решением данного уравнения будет множество решений уравнений $P_1(x)=0, P_2(x)=0, P_3(x)=0. P_n(x)=0$.

Решите уравнение: $x^3+2x^2+3x+6=0$

Вынесем общие множители:

После разложения на множители нужно решить уравнения $x+2=0$ и $x^2+3=0$. Корень первого $x=-2$, второе уравнение корней не имеет, поэтому $x=-2$ — в данном случае окончательный ответ.

Уравнения, в которых коэффициент при переменной со старшей степенью равен единице, называются приведёнными.

Для приведённых уравнений справедливо следующее:

Если такое уравнение с целыми коэффициентами при переменных имеет рациональный корень, то этот корень непременно является целым числом.

Благодаря такому свойству этих уравнений их можно решать перебором целых делителей свободного члена.

Для тех, кто не помнит: свободный член уравнения — это член уравнений, не содержащий при себе в качестве множителя переменную. При этом найдя один из корней такого уравнения, его можно использовать для дальнейшего разложения уравнения на множители.

Делителями свободного члена будут числа $±1, ±2, ±3, ±4, ±6, ±8, ±12$ и $±24$. При их проверке подходящим корнем оказался $x=2$. Это значит, что данный многочлен можно разложить с использованием этого корня: $(x-2)(x^2+6+12)=0$.

Многочлен во второй паре скобок корней не имеет корней, значит, единственным корнем данного уравнения будет $x=2$.

Другим типом уравнений со степенью больше двух являются биквадратные уравнения вида $ax^4+bx^2+ c=0$. Такие уравнения решаются путём замены $x^2$ на $y$, применив её, получаем уравнение вида $ay^2+y+c=0$, а после этого полученное значение новой переменной используют для вычисления исходной переменной.

Также существует ещё один тип уравнений, называемый возвратным. Такие уравнения выглядят так: $ax^4+bx^3+cx^2+bx+a=0$. Такое название они имеют из-за повторения коэффициентов при старших степенях и младших.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 05 03 2021

🌟 Видео

Зачётный способ решить дробно рациональное уравнение методом заменыСкачать

Зачётный способ решить дробно рациональное уравнение методом замены

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

Дробно-рациональные уравнения. Подготовка к экзаменам. 64 часть. 9 класс.Скачать

Дробно-рациональные уравнения. Подготовка к экзаменам. 64 часть. 9 класс.

Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴Скачать

Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴

Решение задач с помощью рациональных уравнений. Алгебра, 8 классСкачать

Решение задач с помощью рациональных уравнений. Алгебра, 8 класс

8 класс, 5 урок, Первые представления о решении рациональных уравненийСкачать

8 класс, 5 урок, Первые представления о решении рациональных уравнений

РАЗБИРАЕМ ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ II #shorts #математика #егэ #огэ #профильныйегэСкачать

РАЗБИРАЕМ ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ II #shorts #математика #егэ #огэ #профильныйегэ

Дробно-рациональные уравнения. Подготовка к экзаменам. 61 часть. 9 класс.Скачать

Дробно-рациональные уравнения. Подготовка к экзаменам. 61 часть. 9 класс.

Алгебра 8 класс (Урок№31 - Решение дробных рациональных уравнений.)Скачать

Алгебра 8 класс (Урок№31 - Решение дробных рациональных уравнений.)

Дробно рациональные уравнения. Как решать ?Скачать

Дробно рациональные уравнения. Как решать ?

Дробно-рациональные уравнения + Бонус: треугольник Паскаля | МатематикаСкачать

Дробно-рациональные уравнения + Бонус: треугольник Паскаля | Математика
Поделиться или сохранить к себе: