- Общая информация
- Основные виды
- Линейные и квадратные
- Кубические тождества
- Биквадратные уравнения
- Пример решения
- Рациональные уравнения с примерами решения
- Рациональные уравнения. Равносильные уравнения
- Применение условия равенства дроби нулю
- Пример №202
- Использование основного свойства пропорции
- Пример №203
- Метод умножения обеих частей уравнения на общий знаменатель дробей
- Пример №204
- Пример №205
- Степень с целым показателем
- Основные сведения о решении дробно-рациональных уравнений
- Определение основных понятий по теме
- Алгоритм решения дробно-рациональных уравнений
- Примеры решения задач
- 🌟 Видео
Видео:РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ. §7 алгебра 8 классСкачать
Общая информация
Рациональным уравнением называется равенство с одним или несколькими неизвестными, в правой и левой частях которого содержатся только рациональные выражения. Очень важно уметь определять тип, поскольку от этого зависит правильность нахождения корней и методика решения.
Определение можно немного упростить. Рациональным называется выражение, состоящее из некоторых числовых значений и неизвестной, операций вычитания, сложения, умножения, деления, а также возведения в степень с целым (натуральным) показателем. Уравнение рационального типа — равенство двух выражений, состоящих из переменных рационального типа (r (x) = 0). Они бывают двух видов: целые и дробные.
К первым относятся тождества, в знаменателе которых не содержится неизвестная величина. Примерами являются: x + 7 = 2x, x 2 + 2x — 7 = 0 и (x 2 + 4) / 2 = 2x / 4. Дробные представлены правильными дробями, числитель и знаменатель которых содержат переменные рационального типа. Примерами дробно-рациональных уравнений являются (x + 7) / 2x = 7 — x, (x 2 + 2x — 7) / (x 2 — 4) = 0 и (x 2 + 4) / 2x^ — 8 = 2x / 4.
Математики выделяют еще одну группу рациональных уравнений с параметрами, которые необходимо найти или они даются при решении задачи. Параметр — некоторое ограничение, влияющее на поиск корней.
Видео:Решение дробных рациональных уравнений. Алгебра, 8 классСкачать
Основные виды
Рациональные уравнения бывают линейными, квадратными, кубическими и биквадратными. Для каждого вида существуют определенные методики решения. Последние строятся на алгоритмах, позволяющих оптимизировать процесс нахождения корней.
Уравнения могут объединяться в системы. Чтобы ее решить, нужно найти все ее корни, удовлетворяющие ее элементам (выражениям). Отличаются равенства между собой только показателем степени. Например, у линейного последняя соответствует единице, у квадратного — 2, кубического — 3 и биквадратным — 4. Если в выражении с неизвестным присутствует дробная часть, всегда проверяется знаменатель на равенство нулю, поскольку такое значение превращает тождество в неопределенность. Числитель проверять нет необходимости. Выбор алгоритма решения рационального уравнения зависит от типа выражения.
Линейные и квадратные
Линейное выражение с неизвестными можно записать следующим образом: a1 * y1 + a2 * y2 +. + an * yn + c = 0. Например, 5х + 4 = 8 является линейным. Решается оно с помощью простого алгоритма:
- Необходимо перенести неизвестные величины в левую сторону, а известные — в правую: 5х = 8 — 4.
- Перенести число «5» с противоположным знаком: x = (8 — 4) / 5 = 4 / 5 = 0,8.
Квадратные уравнения — тождества вида az 2 + bz + c = 0. Они бывают полными (присутствуют все коэффициенты) и неполными. В последних какой-либо из параметров равен нулю. В зависимости от методики нахождения его корней, выбирается нужный алгоритм. Основные способы решения:
- Теорема Виета (при a = 1).
- Нахождение дискриминанта.
- Графический метод.
- Автоматизированный.
При использовании теоремы Виета значения корней вычисляется по таким формулам: z1 + z2 = — b и z1 * z2 = c. Если а > 1 (b и c не равны 0), то необходимо найти некоторый параметр. Математики называют его дискриминантом. Для решения существует специальный алгоритм:
- Выполнить расчет дискриминанта, и записать результат в виде квадрата: D = b 2 — 4ac.
- Если D больше 0, то два корня уравнения вычисляются таким образом: z1 = [(-b) + (D)^(½)] / (2 * а) и z2 = [(-b) — (D)^(½)] / (2 * а).
- При D = 0 две формулы во втором пункте преобразуются в одну, поскольку дискриминант не учитывается: z = [-b] / (2 * а). В этом случае существует только один корень.
- Когда при подсчете значения D получается отрицательное число, корней у уравнения нет вообще.
- После нахождения корней нужно подставить их в исходное выражение. Результат вычисления будет равен 0. Все остальные значения, приводящие к неверному тождеству, являются неверными. Их необходимо отсеивать. Это происходит, когда квадратное уравнение имеет вид обыкновенной дроби.
Следующим способом является графический метод решения. Для его реализации необходимо построить параболу, а затем найти точки пересечения с осью абсцисс (корни). Использование дополнительного программного обеспечения (онлайн-калькуляторов) для автоматизации вычислений экономит много времени. Его рекомендуется применять для проверки.
При отсутствии свободного члена (az^2 + bz = 0), можно воспользоваться методом разложения на множители. Для этого следует разделить обе части равенства на «а», а затем вынести общий множитель. В результате получится выражение z(z + b) = 0. У него два корня: z1 = 0 и z2 = -b.
Кубические тождества
Выражение вида а * z 3 + b * z 2 + с * z + d = 0 (а > 0), содержащее одну неизвестную, называется кубическим уравнением. Его метод решения зависит от вида. В алгебре выделяют 4 класса:
- az 3 + d= 0.
- az 3 + bz 2 + bz + a = 0.
- az 3 + bz 2 + cz = 0.
а * z 3 + b * z 2 + с * z + d = 0.
Первый класс решается просто. Для этого необходимо перенести свободный член d в правую часть, а затем разделить на «а»: z 3 = -d/a. После этого можно взять кубический корень из правой и левой частей. Кроме того, можно не переносить d, а просто разложить на множители: z 3 + d/a = (z + (d/a)^(1/3)) * (z 2 — [(d/a)^(1/3)]z + [(d/a)^2]^(1/3)) = 0. Разложив на множители, нужно решить 2 уравнения.
Чтобы решить второй тип задания, нужно выполнить некоторые математические преобразования: az 3 + bz 2 + bz + a = a (z 3 + 1) + b (z 2 + z) = a (z + 1)(z 2 — z + 1) + bz (z + 1) = (z + 1)(az 2 + z (b — a) + a) = 0. В результате этой операции произошло понижение степени. Далее нужно решить 2 равенства с неизвестными.
В третьем классе нужно просто вынести неизвестную (общий множитель) за скобку, а затем решить линейное и квадратное уравнения. Кроме того, этот тип тождеств решается также при помощи графического метода или замены переменной. Четвертый класс решается только с помощью построения графика (графическое представление — кубическая парабола) или заменой неизвестной.
В первом случае нужно построить кривую, которая называется кубической параболой. После этого следует найти точки пересечения графика с осью абсцисс. Метод замены — введение нового параметра, приводящего к равносильному упрощенному выражению. Сведение к квадратному многочлену осуществляется по такому алгоритму:
- Разделить обе части на «а».
- Выполнить замену: z = w — (b/(3a)).
- Вычислить коэффициенты р и q: p = [(3ас — b 2 ) / (3а 2 )] и q = [2b 3 — 9abc + (27a 2 ) * D] / (27a 3 ).
- Записать результат: w 2 + pw + q = 0.
- Решить квадратное уравнение.
- Вычислить z, подставив корни из пятого пункта во второй.
- Осуществить проверку.
Последний пункт также можно выполнить в автоматизированном режиме, поскольку это займет меньше времени. Методика позволяет избавиться от высшей степени и свести выражение к квадратному многочлену.
Биквадратные уравнения
Биквадратные уравнения (az 4 + bz 2 + c = 0) — сложные выражения. Они решаются аналитическим методом, который заключается в понижении степени. В этом случае вводится новая неизвестная для понижения степени w = z 2 . В результате этого получается равносильное равенство вида: aw 2 + bw + c = 0. Далее решается обыкновенное квадратное уравнение, а затем его корни подставляются в параметр замены.
Когда биквадратный многочлен с неизвестными представлен в виде az 4 + bz 3 + cz 2 + dz + e = 0, нужно решать при помощи формулы Кардана. Математики рекомендуют воспользоваться алгоритмом:
- Рассчитать вспомогательные коэффициенты: f = b / a, g = c / a и h = d / a.
- Вычисление основных параметров: i = -((f)^2 / 3) + g и k = [2 (f)^3 / 27] — [(f * g) / 3] + h.
- Нахождение по формуле Кардана математического ожидания: m = [(-k / 2) + ((k 2 / 4) + i 3 / 27)^(½)]^(1/3) + [(-k / 2) — (-(k 2 / 4) + i 3 / 27)^(½)]^(1/3).
- Поиск искомых корней: z1 = m — f, z2 = m — g и z3 = m — h.
Математическое ожидание — область, принимающая среднее значение при определенных условиях. Если уравнение имеет другой вид, корни следует искать с помощью математического ожидания Кардана. Однако его следует править в зависимости от коэффициентов исходного тождества. Можно также построить график функции, но эта методика довольно сложная.
Для этого специалисты рекомендуют пользоваться сторонними сервисами, одним из которых является «yotx.ru». Он позволяет строить разные графики. Особенностью веб-приложения является его гибкая настройка, а также табличные данные зависимости значения функции от ее аргумента, которыми можно воспользоваться. Полученный график можно распечатать, сохранить на жестком диске, получить в виде ссылки и html-кода для сайта или урока.
Видео:Дробно-рациональные уравнения. 8 класс.Скачать
Пример решения
После получения теоретических знаний следует приступить к практике. Начинать следует с простых примеров, заканчивая более сложными. Например, выполнить работу по нахождению корней равенства с неизвестными: [(2z^3 — 16) / (2z^2 — 4z + 2)] = 0.
Уравнение является рациональным. Оно состоит из двух выражений: числителя и знаменателя. Первый следует приравнять к нулю, поскольку при делении на любое выражение будет получено нулевое значение. Однако не все так просто — нужно обязательно проверить знаменатель. Следует найти корень или корни, при которых он обращается в ноль, превращая все тождество в пустое множество или неопределенность. Чтобы найти корни числителя, нужно воспользоваться алгоритмом:
Видео:8 класс, 5 урок, Первые представления о решении рациональных уравненийСкачать
Рациональные уравнения с примерами решения
Содержание:
Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать
Рациональные уравнения. Равносильные уравнения
два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.
Так, например, равносильными будут уравнения
Уравнения — не равносильны, так как корнем первого уравнения является число 10, а корнем второго — число 9.
Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.
1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;
2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;
3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.
Левая и правая части каждого из них являются рациональными выражениями.
Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.
В первых двух из записанных выше уравнений левая и правая части являются целыми выражениями. Такие уравнения называют целыми рациональными уравнениями. Если хотя бы одна часть уравнения — дробное выражение, то его называют дробным рациональным уравнением. Третье из записанных выше уравнений является дробным рациональным.
Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.
Применение условия равенства дроби нулю
Напомним, что когда
Пример №202
Решите уравнение
Решение:
С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду где и — целые рациональные выражения. Имеем:
Окончательно получим уравнение:
Чтобы дробь равнялась нулю, нужно, чтобы числитель равнялся нулю, а знаменатель не равнялся нулю.
Тогда откуда При знаменатель Следовательно, — единственный корень уравнения.
Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:
Значит, решая дробное рациональное уравнение, можно:
1) с помощью тождественных преобразований привести уравнение к виду
2) приравнять числитель к нулю и решить полученное целое уравнение;
3) исключить из его корней те, при которых знаменатель равен нулю, и записать ответ.
Использование основного свойства пропорции
Если то где
Пример №203
Решите уравнение
Решение:
Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Имеем: то есть ОДЗ переменной содержит все числа, кроме 1 и 2.
Сложив выражения в правой части уравнения, приведем его к виду: получив пропорцию:
По основному свойству пропорции имеем:
Решим это уравнение:
откуда
Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.
Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:
Таким образом, для решения дробного рационального уравнения можно:
1) найти область допустимых значений (ОДЗ) переменной в уравнении;
2) привести уравнение к виду
3) записать целое уравнение и решить его;
4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.
Метод умножения обеих частей уравнения на общий знаменатель дробей
Пример №204
Решите уравнение
Решение:
Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:
Областью допустимых значений переменной будут те значения при которых то есть все значения кроме чисел А простейшим общим знаменателем будет выражение
Умножим обе части уравнения на это выражение:
Получим: а после упрощения: то есть откуда или
Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.
Следовательно, число 12 — единственный корень уравнения. Ответ. 12.
Решая дробное рациональное уравнение, можно:
3) умножить обе части уравнения на этот общий знаменатель;
4) решить полученное целое уравнение;
5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.
Пример №205
Являются ли равносильными уравнения
Решение:
Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.
Первое уравнение имеет единственный корень а второе — два корня (решите уравнения самостоятельно). Следовательно, уравнения не являются равносильными.
Степень с целым показателем
Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:
где — натуральное число,
В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: кг. Как понимать смысл записи
Рассмотрим степени числа 3 с показателями — это соответственно
В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим:
Число должно быть втрое меньше числа равного числу 3. Но втрое меньшим числа 3 является число 1, следовательно, Равенство справедливо для любого основания при условии, что
Нулевая степень отличного от нуля числа а равна единице, то есть при
Вернемся к строке со степенями числа 3, где слева от числа записано число Это число втрое меньше, чем 1, то есть равно Следовательно, Рассуждая аналогично получаем: и т. д.
Приходим к следующему определению степени с целым отрицательным показателем:
если натуральное число, то
Видео:Равносильные уравнения. Рациональные уравнения - 8 класс алгебраСкачать
Основные сведения о решении дробно-рациональных уравнений
Видео:8 класс, 28 урок, Рациональные уравнения как математические модели реальных ситуацийСкачать
Определение основных понятий по теме
Рациональным выражением является такое выражение в алгебре, в состав которого включены числа и переменная х, а также операции сложения, вычитания, умножения, деления, возведения в степень с натуральным показателем. Если пара рациональных выражений объединены знаком равенства, то перед нами рациональное уравнение.
Дробно-рациональное уравнение представляет собой не имеющее знак корня рациональное уравнение, в котором обе части записаны в виде дробных выражений.
В дробно-рациональном уравнении имеется как минимум одна дробь, содержащая в знаменателе переменную.
Например, дробно-рациональными уравнениями являются:
9 x 2 — 1 3 x = 0
1 2 x + x x + 1 = 1 2
6 x + 1 = x 2 — 5 x x + 1
Уравнения, которые нельзя отнести к дробно-рациональным:
Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать
Алгоритм решения дробно-рациональных уравнений
В процессе решения дробно-рациональных уравнений требуется правильно определить область допустимых значений (ОДЗ). Когда корни уравнения найдены, следует проверить их на соответствие ОДЗ и выяснить, какие являются допустимыми. В противном случае образуются посторонние решения, что автоматически делает ответ неверным.
Предусмотрен стандартный алгоритм действий для поиска корней дробно-рациональных уравнений:
- Выписать и определить ОДЗ.
- Вычислить общий знаменатель дробей.
- Найти произведение каждого члена уравнения и общего знаменателя. После чего следует сократить полученные дроби, чтобы избавиться от знаменателей.
- Записать уравнение со скобками.
- Раскрыть скобки и привести подобные слагаемые.
- Найти корни уравнения, которое получилось после раскрытия скобок.
- Сверить найденные корни с ОДЗ.
- Решения, которые успешно прошли проверку, записать в ответ.
Видео:Алгебра 8 класс. Рациональные уравненияСкачать
Примеры решения задач
Требуется найти корни дробно-рационального уравнения:
x x — 2 — 7 x + 2 = 8 x 2 — 4
Рассмотрим уравнение из условия задания:
x x — 2 — 7 x + 2 = 8 x 2 — 4
Определим область допустимых значений:
x 2 — 4 ≠ 0 ⇔ x ≠ ± 2
Воспользуемся формулой сокращенного умножения:
x x — 2 — 7 x + 2 = 8 x 2 — 4
x 2 — 4 = ( x — 2 ) ( x + 2 )
В таком случае, общим знаменателем является следующее выражение:
Согласно стандартной последовательности действий, найдем произведение каждого члена уравнения и ( x — 2 ) ( x + 2 ) : x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 )
x ( x + 2 ) — 7 ( x — 2 ) = 8
x 2 + 2 x — 7 x + 14 = 8
Затем следует привести подобные слагаемые:
Решениями получившегося квадратного уравнения являются следующие корни:
Сравним результат вычислений с ОДЗ. Зная, что x ≠ 2 , исключим первый корень, как посторонний. Запишем в ответ второй корень.
Для закрепления материала и знаний метода решения дробно-рациональных уравнений попробуем решить еще одно задание с объяснением действий. Подобные задачи нередко приходится решать на уроках алгебры в восьмом классе.
Решить дробно-рациональное уравнение:
x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0
Рассмотрим уравнение из условия задания:
x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0
Определим область допустимых значений:
x 2 + 7 x + 10 ≠ 0
D = 49 — 4 · 10 = 9
x 1 ≠ — 7 + 3 2 = — 2
x 2 ≠ — 7 — 3 2 = — 5
Воспользуемся способом разложения квадратного трехчлена на множители:
a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 )
Преобразуем квадратный трехчлен x 2 + 7 x + 10 с учетом найденных x 1 и x 2 :
x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0
В результате общий знаменатель равен:
Умножим все части уравнения на общий знаменатель:
x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 — — ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0
Выполним сокращение дробей:
x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0
Избавимся от скобок:
x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0
Приведем подобные слагаемые:
2 x 2 + 9 x — 5 = 0
Тогда получим корни уравнения:
Соотнесем решения с областью допустимых значений, которую определили ранее. Первый корень является посторонним, что выявлено с помощью контрольной проверки. По этой причине в ответ следует записать только второй корень.
Задания для самостоятельной работы
Найти корни уравнения:
x — 1 2 + 2 x 3 = 5 x 6
x — 1 2 + 2 x 3 = 5 x 6
3 x — 3 + 4 x 6 = 5 x 6
Требуется решить дробно-рациональное уравнение:
x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )
x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )
x 2 — 3 x + x — 5 = x + 5
x 2 — 3 x — 10 = 0
Вычислить корни уравнения:
33 + x 2 9 — x 2 + 7 + x x — 3 = — 2 + 4 — x x + 3
33 + x 2 9 — x 2 + 7 + x x — 3 = — 2 + 4 — x x + 3
— 33 — x 2 + ( 7 + x ) · ( x + 3 ) = — 2 ( x 2 — 9 ) + ( 4 — x ) · ( x — 3 )
Согласно ОДЗ, первый вариант решения не подходит:
🌟 Видео
Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnlineСкачать
8 класс, 36 урок, Рациональные уравненияСкачать
Решение задач с помощью рациональных уравнений. Алгебра, 8 классСкачать
ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать
Алгебра 8. Урок 12 - Задачи на составление дробно-рациональных уравнений (Часть 1)Скачать
Алгебра 8 класс (Урок№31 - Решение дробных рациональных уравнений.)Скачать
Алгебра 8 класс (Урок№32 - Решение задач с помощью рациональных уравнений.)Скачать
#136 Урок 61. Дробно-рациональные уравнения. Рациональные уравнения, приводящиеся к квадратным.Скачать
МЕРЗЛЯК-8 РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ. ПАРАГРАФ-7 ТЕОРИЯСкачать
ЛУЧШАЯ СТРАТЕГИЯ решения Целых Рациональных Уравнений (математика с нуля)Скачать
Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴Скачать