Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Урок № 15 по алгебре и началам математического анализа; Класс : 10 Дата : 17.09.19 г. уч. Белялова А.Р.
Тема: Рациональные уравнения.
— образовательная : научиться решать рациональные уравнения, разобрать различные способы их решения;
— развивающая: развивать логическое мышление, правильную математическую речь, внимание, память;
— воспитательная: воспитывать аккуратность, трудолюбие, дисциплину._
Тип урока: изучение нового материала.
Актуализация опорных знаний и умений.
Проверка домашнего задания (собрать тетради в конце урока).
Ответить на вопросы по домашнему заданию.
Какие выражения наз. рациональными?
Какие виды уравнений вы уже решали ранее?
Какие уравнения наз. линейными? Алгоритм решения линейных уравнений.
Определение квадратных уравнений и способы их решения?
Изучение нового материала.
Определение рациональных уравнений.
Определение корней рационального уравнения.
Физкультминутка. (Гимнастика для глаз).
Работа с учебником:
VI . Подведение итогов урока.
2.Дом.зад.: п. 2.6 , выучить теоретич. материал. Решать №5.49 (б).
-Сегодня на уроке я узнал, что …
-Мне было сложно …
-Я понял, что мне нужно повторить …
Курс повышения квалификации
- Дистанционное обучение как современный формат преподавания
- Математика: теория и методика преподавания в образовательной организации
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Материал подходит для УМК
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- Урок в 10 классе «Рациональные уравнения». методическая разработка по алгебре (10 класс) по теме
- Скачать:
- Предварительный просмотр:
- ГДЗ по Алгебре за 10 класс Никольский С.М., Потапов М.К. ФГОС
- 🔍 Видео
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 930 человек из 80 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 687 человек из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 304 человека из 68 регионов
Ищем педагогов в команду «Инфоурок»
Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать
Дистанционные курсы для педагогов
«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»
Свидетельство и скидка на обучение каждому участнику
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 594 809 материалов в базе
Материал подходит для УМК
«Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни)», Никольский С.М., Потапов М.К., Решетников Н.Н. и др.
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»
Свидетельство и скидка на обучение каждому участнику
Другие материалы
- 11.12.2019
- 2106
- 289
- 11.12.2019
- 941
- 18
- 09.12.2019
- 295
- 11
- 09.12.2019
- 319
- 34
- 09.12.2019
- 219
- 10
- 09.12.2019
- 210
- 7
- 08.12.2019
- 674
- 22
- 08.12.2019
- 154
- 0
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 11.12.2019 1981
- DOCX 1.4 мбайт
- 250 скачиваний
- Рейтинг: 5 из 5
- Оцените материал:
Настоящий материал опубликован пользователем Белялова Алие Рустемовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 5 лет и 5 месяцев
- Подписчики: 5
- Всего просмотров: 9100
- Всего материалов: 10
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
В ростовских школах рассматривают гибридный формат обучения с учетом эвакуированных
Время чтения: 1 минута
В Белгородской области отменяют занятия в школах и детсадах на границе с Украиной
Время чтения: 0 минут
Минпросвещения России подготовит учителей для обучения детей из Донбасса
Время чтения: 1 минута
Минобрнауки и Минпросвещения запустили горячие линии по оказанию психологической помощи
Время чтения: 1 минута
Школы смогут вносить данные в портфолио школьника в «МЭШ»
Время чтения: 2 минуты
В приграничных пунктах Брянской области на день приостановили занятия в школах
Время чтения: 0 минут
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Видео:Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnlineСкачать
Урок в 10 классе «Рациональные уравнения».
методическая разработка по алгебре (10 класс) по теме
Данный урок предназначен для изучения темы в 10 классе: «Рациональные уравнения.» Тип урока: урок- лекция.
Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать
Скачать:
Вложение | Размер |
---|---|
Данный урок предназначен для изучения темы в 10 классе: «Рациональные уравнения.» Тип урока: урок- лекция. | 166 КБ |
10 класс: «Рациональные уравнения.» | 209.5 КБ |
Видео:✓ Метод интервалов. Рациональные уравнения и неравенства | Борис ТрушинСкачать
Предварительный просмотр:
МОУ «Гимназия № 5 г. Белгорода»
Тема урока: Рациональные уравнения.
УМК : Алгебра и начала анализа: учеб. Для 10кл. общеобразоват. учреждений/[С.М.Никольский, М.К. Потапов.].-5-е изд., доп.-М.: Просвещение , 2006.-432с. Стр.65-74., 45-47.
Образовательная: систематизировать и обобщить известные из основной школы сведения о рациональных выражениях; показать способы решения рациональных уравнений;
Развивающая: расширить и углубить изучение различных видов рациональных уравнений разнообразными методами.
Воспитывающая: показать значимость изучаемой темы в разделе математика.
Тип урока: урок- лекция.
- Постановка цели урока (1мин).
- Подготовка к изучению нового материала(2 мин).
- 3.Ознакомление с новым материалом(38мин).
- 4.Итог урока.(2 мин)
- 5.Домашнее задание (2 мин)
Оборудование урока: интерактивная доска, проектор, компьютер.
1. Рациональные выражения.
2. Рациональные уравнения.
3.Системы рациональных уравнений.
Алгебра возникла из решения практических задач с помощью уравнений. Цели алгебры оставались неизменными на протяжении тысячелетий- решались уравнения: сначала линейные, потом квадратные, а там и уравнения еще больших степеней. Но форма, в которой излагались алгебраические результаты, менялись до неузнаваемости.
Уравнение- это самая распространенная форма математической задачи. Учение об уравнениях является главным содержанием школьного курса алгебры. Для решения уравнений нужно уметь производить действия над одночленами, многочленами алгебраическими дробями, уметь производить разложение на множители, раскрывать скобки и т. д. Нужно привести свои знания в порядок. Мы начнем повторение с понятия «рациональные выражения». Сообщение ученика о рациональных выражениях известных из основной школы. Таким образом, учение об уравнениях невозможно без учения о законах действий.
II. Основная часть.
Главное в понятии уравнения – это постановка вопроса о его решении. Уравнение, левая и правая части которого есть рациональные выражения относительно х, называют рациональным уравнением с неизвестным х.
Например, уравнения 5х 6 — 9х 5 + 4х — Зх + 1 = 0, являются рациональными.
Корнем (или решением) уравнения с неизвестным х называют число, при подстановке которого в уравнение вместо х получается верное числовое равенство.
Решить уравнение — значит найти все его корни или показать, что их нет. При решении рациональных уравнений приходится умножать и делить обе части уравнения на не равное нулю число, переносить члены уравнения из одной части в другую, применять правила сложения и вычитания алгебраических дробей. В результате будет получаться уравнение, равносильное предшествующему, т. е. уравнение, имеющее те же корни, и только их.
Перечислим стандартные уравнения, которые были нами изучены. Ответы учащихся.( линейное уравнение , квадратное уравнение, простейшее степенное уравнение х n =а). Преобразование уравнений к одному из стандартных является основным шагом в решении уравнения. Полностью алгоритмизировать процесс преобразования нельзя, однако полезно запомнить некоторые приемы, общие для всех типов уравнений.
1).Уравнение вида А(х)•В(х) = О, где А(х) и В(х) — многочлены относительно х, называют распадающимся уравнением .
Множество всех корней распадающегося уравнения есть объединение множеств всех корней двух уравнений А(х)=0 и В(х)=0. К уравнениям вида А(х)=0 применяется метод разложения на множители. Суть этого метода : нужно решить уравнение А(х)=0, где А(х)=А 1 (х)А 2 (х)А 3 (х). Уравнение А(х)=0 заменяют совокупностью простых уравнений: А 1 (х)=0,А 2 (х)=0,А 3 (х)=0. Находят корни уравнений этой совокупности и делают проверку. Метод разложения на множители используется в основном для рациональных и тригонометрических уравнений.
Решим уравнение (х 2 — 5х + 6) (х 2 + х — 2) = 0.
Уравнение распадается на два уравнения.
х 2 — 5х + 6 = 0 х 1 = 2 и х 2 = 3
х 2 + х — 2 = 0. х 3 = -2 и х 4 = 1
Значит, уравнение исходное имеет корни х 1 = 2, х 2 = 3, х 3 = -2, х 4 =1.
ПРИМЕР. Решим уравнение х 3 -7х+6=0.
х-1=0 , х 1 =1; х 2 +х-6=0, х 2 =2,х 3 =-3.
2).Уравнение вида , где А(х) и В(х) — многочлены относительно х.
Сначала решим уравнение
х 2 + 4х — 21 = 0. х 1 = 3 и х 2 = -7
Подставив эти числа в знаменатель левой части исходного уравнения, получим
х 1 2 — х 1 -6 = 9-3-6 = 0,
х 2 2 — х 2 — 6 = 49 + 7 — 6 = 50 ≠0.
Это показывает, что число х 1 = 3 не является корнем исходного уравнения, а число х 2 =- 7 — корень этого уравнения.
где А(х), В(х), С(х) и D(х) — многочлены относительно х, обычно решают по следующему правилу.
Решают уравнение А(х)•D(х) — С(х)·В(х) = 0 и отбирают из его корней те, которые не обращают в нуль знаменатель уравнения.
х 2 — 5х + 6 — (2х + 3) (х — 3) = 0.
х 1 = -5 и х 2 = 3.
Число х 1 не обращает в нуль знаменатель х — 3, а число х 2 обращает. Следовательно, уравнение имеет единственный корень = -5.
Найти корни рационального уравнения часто помогает замена неизвестного. Умение удачно ввести новую переменную- важный элемент математической культуры. Удачный выбор новой переменной делает структуру уравнения более прозрачной.
Решим уравнение х 8 + 4х 6 -10х 4 + 4х 2 + 1 = 0.
Число х 0 = 0 не является корнем уравнения, поэтому уравнение равносильно уравнению
х 4 + 4х 2 — 10 + + =0
Обозначим t = ,тогда х 4 + =t 2 -2 ,
получаем t 2 + 4t — 12 = 0, х 1 = 2 и х 2 = -6.
Следовательно, корни уравнения найдем, объединив все корни двух уравнений: =2, и =-6,
Первое уравнение имеет два корня -1 и 1, а второе уравнение не имеет действительных корней, поэтому уравнение имеет только два корня: -1 и 1. Ответ. -1; 1.
4). Симметрические уравнения.
Многочлен от нескольких переменных называют симметрическим многочленом, если его вид не изменяется при любой перестановке этих переменных.
Например, многочлены х + у, а 2 + b 2 — 1, zt и 5а 3 + 6ab + 5b 3 — симметрические многочлены от двух переменных, а многочлены х + у + г, а 3 + b 3 + с 3 , — симметрические многочлены от трех переменных.
В то же время многочлены х — у, а 2 –b 2 и а 3 + аb – b 3 — не симметрические многочлены.
Уравнение ax 4 +bx 3 +cx 2 +bx+a=0, где а R/ ,b R, с R называется симметрическим уравнением четвертой степени. Чтобы решить это уравнение необходимо:
1).Поделить обе части уравнения на х 2 и сгруппировать полученные выражения: .
2).Введение переменной уравнение приводится к квадратному.
Решите уравнение х 4 +5х 3 +4х 2 -5х+1=0.
Число 0 не является корнем уравнения. Поделим обе части уравнения на х 2 ≠0.
Системы рациональных уравнений.
Системы уравнений появляются при решении задач, в которых неизвестными являются несколько величин. Эти величины связаны определенной зависимостью, которые записываются в виде уравнений.
Уравнение, левая и правая части которого есть рациональные выражения относительно х и у, называют рациональным уравнением с двумя неизвестными х и у.
Если надо найти все пары чисел х и у, каждая из которых является решением каждого из данных уравнений с двумя неизвестными х и у, то говорят, что надо решить систему уравнений с двумя неизвестными х и у и каждую такую пару называют решением этой системы.
Неизвестные могут обозначаться и другими буквами. Аналогично определяется система уравнений, число неизвестных в которой больше двух.
Если каждое решение первой системы уравнений является решением второй системы, а каждое решение второй системы уравнений является решением первой системы, то такие системы называют равносильными. В частности, равносильными считаются две системы, не имеющие решений.
Например, равносильны системы
1). Способ подстановки .
ПРИМЕР 1. Решим систему уравнений
Выразив у через х из первого уравнения системы, получим уравнение:
Решив уравнение 5x 2 -4(3x-1)+3(3x-1) 2 =9, найдем его корни х 1 = 1 и х 2 = . Подставив найденные числа х 1 и х 2 в уравнение у = 3х — 1 , получим у 1 = 2
и у = Следовательно, система имеет два решения: (1; 2) и ( ; )
2). Метод алгебраического сложения.
ПРИМЕР 2. Решим систему уравнений
Оставив без изменения первое уравнение системы и сложив первое уравнение со вторым, получим систему равносильную системе.
Все решения системы есть объединение всех решений двух систем:
Решив каждую из этих систем, найдем все решения системы :
3). Метод введение новых неизвестных.
ПРИМЕР 3. Решим систему уравнений
Обозначив u = ху, v = х — у, перепишем систему в виде
Найдем ее решения: u 1 = 1, v 1 = 0 и u 2 = 5, v 2 = 4. Следовательно, все решения системы есть объединение всех решений двух систем:
Решив методом подстановки каждую из этих систем, найдем ее решения системы: (1; 1), (-1; -1), (5; 1), (-1; -5).
Ответ. (1; 1), (-1; -1), (5; 1), (-1; -5).
4). Уравнение вида ах 2 + bху + су 2 = 0, где а, b, с — данные неравные нулю числа, называют однородным уравнением относительно неизвестных х и у.
Рассмотрим систему уравнений, в котором есть однородное уравнение.
ПРИМЕР 4. Решим систему уравнений
Обозначив t = , перепишем первое уравнение системы в виде t 2 +4t+3=0.
Уравнение имеет два корня t 1 = -1 и t 2 = -3, поэтому все решения системы есть объединение всех решений двух систем:
Решив каждую из этих систем, найдем все решения системы:
При решении некоторых систем помогает знание свойств симметрических многочленов.
Введем новые неизвестные α = х + у и β= ху, тогда, х 4 +у 4 = α 4 -4 α 2 β+2 β 2
Поэтому систему можно переписать в виде
Решим квадратное уравнение относительно β: β 1 =6, β 2 =44.
Следовательно, все решения системы являются объединением
всех решении двух систем:
Первая система имеет два решения х 1 = 2, у 1 = 3 и х 2 = 3, у 2 =2, а вторая система не имеет действительных решений. Следовательно, система имеет два решения: (х: 1 ; у 1 ) и (х 2 ;у 2 )
Сегодня мы подвели итоги изучения темы рациональные уравнения. Мы поговорили об общих идеях, общих методах, на которых основана вся школьная линия уравнений.
Выделили методы решения уравнений:
1) метод разложения на множители;
2) метод введения новых переменных.
Расширили представления о методах решения систем уравнений.
На следующих 4 уроках проведем практические занятия. Для этого необходимо выучить теоретический материал, и подобрать из учебника по 2 примера на рассмотренные методы решения уравнений и систем уравнений, на 6 уроке будет проведен семинар по этой теме, для этого необходимо подготовить вопросы: формула бинома Ньютона, решение симметрических уравнений 3,5 степени. Заключительный урок по этой теме — зачет.
- Алгебра и начала анализа: учеб. Для 10кл. общеобразоват. учреждений/[С.М.Никольский, М.К. Потапов.].-5-е изд., доп.-М.: Просвещение , 2006.-432с. Стр.65-74., 45-47.
- Математика: тренировочные тематические задания повышенной сложности с ответами для подготовки к ЕГЭ и к другим формам выпускного и вступительного экзаменов/сост. Г.И.Ковалева, Т.И. Бузулина — Волгоград: Учитель,2009.-494с. – стр. 62-72,194-199.
- Титаренко А.М. Математика : т9-11 классы: 6000 задач и примеров/А.М. Титаренко.-М.:Эксмо,2007.-336с.
Много можно говорить об уравнениях. В этой области математики существуют вопросы, на которые математики еще не дали ответа. Возможно, кто-то из вас найдет ответы на эти вопросы.
Альберт Эйнштейн говорил: « Мне приходиться делить время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее. Политика существует только для данного момента. А уравнения будут существовать вечно ».
Уроки 2-5 отводиться практическим занятиям. Основным видом занятий на этих уроках является самостоятельная работа учащихся по закреплению и углублению теоретического материала, изложенного на лекции. На каждом из них проводится повторение вопросов теории и опрос учащихся. На основе самостоятельной работы на уроке и дома обеспечивается повторение и усвоение вопросов теории, ведется целенаправленная работа по выработке умений и навыков решения задач различного уровня сложности, проводится опрос учащихся. Цель: закрепить и углубить теоретический материал изложенный на лекции, научиться применять его на практике, усвоить алгоритмы решения типовых примеров и задач, добиться, чтобы все учащиеся усвоили основное содержание изучаемого раздела на уровне программных требований.
На семинар отводится 6-й и 7-й уроки, причем целесообразно на 6-м уроке провести семинар, а 7-м- зачет.
План урока – семинара.
Цель: повторение, углубление и обобщение пройденного материала, отработать основные методы, способы и приемы решения математических задач, приобретение новых знаний, обучение самостоятельному применению знаний в нестандартных ситуациях.
1. В начале урока организуется программный контроль. Цель проведения работы- проверка сформированности умений и навыков выполнения несложных упражнений. В процессе фронтального опроса учеников, неверно указавших номер ответа, учитель выясняет, какие из заданий вызвали затруднение. Далее ведется устная или письменная работа по устранению ошибок. На проведение программированного контроля отводится не более 10 минут.
2. Дифференцированный опрос нескольких учащихся по вопросам теории.
3. Историческая справка о возникновении и развитии понятия уравнения (сообщение ученика). Формула бином Ньютона. Решение симметрических уравнений третьей степени, четвертой степени, пятой степени.
х 4 -2х 3 -х 2 -2х+1=0
2х 4 +х 3 -11х 2 +х+2=0
х 5 -х 4 -3х 3 -3х 2 -х+1=0
2х 5 +3х 4 -5х 3 -5х 2 +3х+2=0
4. Решение примеров, проверка готовности учащихся к выполнению контрольной работы – это одна из главных задач семинара.
Проведение зачета не означает отказ от текущего контроля знаний учащихся. Оценки выставляются на практических и семинарских занятиях. На зачет выносятся некоторые типичные упражнения. Заранее ученикам сообщается, какой теоретический материал и упражнения будут представлены на зачете. Приведем содержание одной из карточек для проведения зачета по рассматриваемой теме.
Решите уравнения: (х+3) 4 +(х 2 +х-6) 2 =2(х-2) 4
Видео:Как решать неравенства? Математика 10 класс | TutorOnlineСкачать
ГДЗ по Алгебре за 10 класс Никольский С.М., Потапов М.К. ФГОС
авторы: Никольский С.М., Потапов М.К., Решетников Н.Н..
Издательство: Просвещение 2015 год.
Убедись в правильности решения задачи вместе с ГДЗ по Алгебре за 10 класс Никольский С.М., Потапов М.К., Решетников Н.Н. . Ответы сделаны к книге 2015 года от Просвещение ФГОС
ГДЗ к дидактическим материалам по алгебре за 10 класс Потапов М.К. можно посмотреть тут.
ГДЗ к тематическим тестам по алгебре за 10 класс Шепелева Ю.В. можно посмотреть тут.
🔍 Видео
СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать
Дробно-рациональные уравнения. 8 класс.Скачать
Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать
Алгебра 10 класс. №2.58 (а). ГДЗ. Учебник Никольский. Система уравнений с заменой переменной.Скачать
Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать
Дробно-рациональные уравнения + Бонус: треугольник Паскаля | МатематикаСкачать
решение УРАВНЕНИЙ решение НЕРАВЕНСТВ 10 11 классСкачать
#136 Урок 61. Дробно-рациональные уравнения. Рациональные уравнения, приводящиеся к квадратным.Скачать
Решение неравенства методом интерваловСкачать
Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)Скачать
Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)Скачать
Как решать уравнения с дробью? #shortsСкачать
10 класс. Дробно-Рациональные уравнения. Деление уголком.Скачать