Рациональные уравнения 10 11 класс

Рациональные уравнения

Рациональное уравнение – это уравнение вида $f(x)=g(x)$, где $f(x)$ и $g(x)$ — рациональные выражения.

Рациональные выражения — это целые и дробные выражения, соединённые между собой знаками арифметических действий: деления, умножения, сложения или вычитания, возведения в целую степень и знаками последовательности этих выражений.

$/+5x=7$ – рациональное уравнение

$3x+√x=7$ — иррациональное уравнение (содержит корень)

Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно рациональным.

Чтобы решить дробно рациональное уравнение, необходимо:

  1. Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ);
  2. Найти общий знаменатель дробей, входящих в уравнение;
  3. Умножить обе части уравнения на общий знаменатель;
  4. Решить получившееся целое уравнение;
  5. Исключить из его корней те, которые обращают в ноль общий знаменатель.

Решить уравнение: $4x+1-/=0$

1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

2. находим общий знаменатель дробей и умножаем на него обе части уравнения

3. решаем полученное уравнение

Решим вторым устным способом, т.к. $а+с=b$

4. исключаем те корни, при которых общий знаменатель равен нулю

В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

При решении уравнения с двумя дробями, можно использовать основное свойство пропорции.

Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

Воспользуемся основным свойством пропорции

Раскроем скобки и соберем все слагаемые в левой стороне

Решим данное квадратное уравнение первым устным способом, т.к. $a+b+c=0$

В первом пункте получилось, что при x = 0 уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Рациональные уравнения с примерами решения

Содержание:

Видео:решение УРАВНЕНИЙ решение НЕРАВЕНСТВ 10 11 классСкачать

решение УРАВНЕНИЙ решение НЕРАВЕНСТВ 10 11 класс

Рациональные уравнения. Равносильные уравнения

два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.

Так, например, равносильными будут уравнения Рациональные уравнения 10 11 класс

Уравнения Рациональные уравнения 10 11 класс— не равносильны, так как корнем первого уравнения является число 10, а корнем второго — число 9.

Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.

1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;

2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;

3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.

Рациональные уравнения 10 11 класс

Левая и правая части каждого из них являются рациональными выражениями.

Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.

В первых двух из записанных выше уравнений левая и правая части являются целыми выражениями. Такие уравнения называют целыми рациональными уравнениями. Если хотя бы одна часть уравнения — дробное выражение, то его называют дробным рациональным уравнением. Третье из записанных выше уравнений является дробным рациональным.

Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.

Применение условия равенства дроби нулю

Напомним, что Рациональные уравнения 10 11 класскогда Рациональные уравнения 10 11 класс

Пример №202

Решите уравнение Рациональные уравнения 10 11 класс

Решение:

С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду Рациональные уравнения 10 11 классгде Рациональные уравнения 10 11 класси Рациональные уравнения 10 11 класс— целые рациональные выражения. Имеем:

Рациональные уравнения 10 11 класс

Окончательно получим уравнение: Рациональные уравнения 10 11 класс

Чтобы дробь Рациональные уравнения 10 11 классравнялась нулю, нужно, чтобы числитель Рациональные уравнения 10 11 классравнялся нулю, а знаменатель Рациональные уравнения 10 11 классне равнялся нулю.

Тогда Рациональные уравнения 10 11 классоткуда Рациональные уравнения 10 11 классПри Рациональные уравнения 10 11 классзнаменатель Рациональные уравнения 10 11 классСледовательно, Рациональные уравнения 10 11 класс— единственный корень уравнения.

Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:

Рациональные уравнения 10 11 класс

Значит, решая дробное рациональное уравнение, можно:

1) с помощью тождественных преобразований привести уравнение к виду Рациональные уравнения 10 11 класс

2) приравнять числитель Рациональные уравнения 10 11 класс к нулю и решить полученное целое уравнение;

3) исключить из его корней те, при которых знаменатель Рациональные уравнения 10 11 класс равен нулю, и записать ответ.

Использование основного свойства пропорции

Если Рациональные уравнения 10 11 классто Рациональные уравнения 10 11 классгде Рациональные уравнения 10 11 класс

Пример №203

Решите уравнение Рациональные уравнения 10 11 класс

Решение:

Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Рациональные уравнения 10 11 классИмеем: Рациональные уравнения 10 11 классто есть ОДЗ переменной Рациональные уравнения 10 11 класссодержит все числа, кроме 1 и 2.

Сложив выражения в правой части уравнения, приведем его к виду: Рациональные уравнения 10 11 классполучив пропорцию: Рациональные уравнения 10 11 класс

По основному свойству пропорции имеем:

Рациональные уравнения 10 11 класс

Решим это уравнение:

Рациональные уравнения 10 11 классоткуда Рациональные уравнения 10 11 класс

Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.

Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:

Рациональные уравнения 10 11 класс

Таким образом, для решения дробного рационального уравнения можно:

1) найти область допустимых значений (ОДЗ) переменной в уравнении;

2) привести уравнение к виду Рациональные уравнения 10 11 класс

3) записать целое уравнение Рациональные уравнения 10 11 класс и решить его;

4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.

Метод умножения обеих частей уравнения на общий знаменатель дробей

Пример №204

Решите уравнение Рациональные уравнения 10 11 класс

Решение:

Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:

Рациональные уравнения 10 11 класс

Областью допустимых значений переменной будут те значения Рациональные уравнения 10 11 класспри которых Рациональные уравнения 10 11 классто есть все значения Рациональные уравнения 10 11 класскроме чисел Рациональные уравнения 10 11 классА простейшим общим знаменателем будет выражение Рациональные уравнения 10 11 класс

Умножим обе части уравнения на это выражение:

Рациональные уравнения 10 11 класс

Получим: Рациональные уравнения 10 11 класса после упрощения: Рациональные уравнения 10 11 классто есть Рациональные уравнения 10 11 классоткуда Рациональные уравнения 10 11 классили Рациональные уравнения 10 11 класс

Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.

Следовательно, число 12 — единственный корень уравнения. Ответ. 12.

Решая дробное рациональное уравнение, можно:

3) умножить обе части уравнения на этот общий знаменатель;

4) решить полученное целое уравнение;

5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.

Пример №205

Являются ли равносильными уравнения

Рациональные уравнения 10 11 класс

Решение:

Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.

Первое уравнение имеет единственный корень Рациональные уравнения 10 11 класса второе — два корня Рациональные уравнения 10 11 класс(решите уравнения самостоятельно). Следовательно, уравнения не являются равносильными.

Степень с целым показателем

Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:

Рациональные уравнения 10 11 класс

где Рациональные уравнения 10 11 класс— натуральное число, Рациональные уравнения 10 11 класс

В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: Рациональные уравнения 10 11 класскг. Как понимать смысл записи Рациональные уравнения 10 11 класс

Рассмотрим степени числа 3 с показателями Рациональные уравнения 10 11 класс— это соответственно Рациональные уравнения 10 11 класс

В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим: Рациональные уравнения 10 11 класс

Число Рациональные уравнения 10 11 классдолжно быть втрое меньше числа Рациональные уравнения 10 11 классравного числу 3. Но втрое меньшим числа 3 является число 1, следовательно, Рациональные уравнения 10 11 классРавенство Рациональные уравнения 10 11 класссправедливо для любого основания Рациональные уравнения 10 11 класспри условии, что Рациональные уравнения 10 11 класс

Нулевая степень отличного от нуля числа а равна единице, то есть Рациональные уравнения 10 11 класс при Рациональные уравнения 10 11 класс

Вернемся к строке со степенями числа 3, где слева от числа Рациональные уравнения 10 11 классзаписано число Рациональные уравнения 10 11 классЭто число втрое меньше, чем 1, то есть равно Рациональные уравнения 10 11 классСледовательно, Рациональные уравнения 10 11 классРассуждая аналогично получаем: Рациональные уравнения 10 11 класси т. д.

Приходим к следующему определению степени с целым отрицательным показателем:

если Рациональные уравнения 10 11 класс натуральное число, то Рациональные уравнения 10 11 класс

Видео:Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnlineСкачать

Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnline

Урок в 10 классе «Рациональные уравнения».
методическая разработка по алгебре (10 класс) по теме

Данный урок предназначен для изучения темы в 10 классе: «Рациональные уравнения.» Тип урока: урок- лекция.

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Скачать:

ВложениеРазмер
Данный урок предназначен для изучения темы в 10 классе: «Рациональные уравнения.» Тип урока: урок- лекция.166 КБ
10 класс: «Рациональные уравнения.»209.5 КБ

Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

Предварительный просмотр:

МОУ «Гимназия № 5 г. Белгорода»

Тема урока: Рациональные уравнения.

УМК : Алгебра и начала анализа: учеб. Для 10кл. общеобразоват. учреждений/[С.М.Никольский, М.К. Потапов.].-5-е изд., доп.-М.: Просвещение , 2006.-432с. Стр.65-74., 45-47.

Образовательная: систематизировать и обобщить известные из основной школы сведения о рациональных выражениях; показать способы решения рациональных уравнений;

Развивающая: расширить и углубить изучение различных видов рациональных уравнений разнообразными методами.

Воспитывающая: показать значимость изучаемой темы в разделе математика.

Тип урока: урок- лекция.

  1. Постановка цели урока (1мин).
  2. Подготовка к изучению нового материала(2 мин).
  3. 3.Ознакомление с новым материалом(38мин).
  4. 4.Итог урока.(2 мин)
  5. 5.Домашнее задание (2 мин)

Оборудование урока: интерактивная доска, проектор, компьютер.

1. Рациональные выражения.

2. Рациональные уравнения.

3.Системы рациональных уравнений.

Алгебра возникла из решения практических задач с помощью уравнений. Цели алгебры оставались неизменными на протяжении тысячелетий- решались уравнения: сначала линейные, потом квадратные, а там и уравнения еще больших степеней. Но форма, в которой излагались алгебраические результаты, менялись до неузнаваемости.

Уравнение- это самая распространенная форма математической задачи. Учение об уравнениях является главным содержанием школьного курса алгебры. Для решения уравнений нужно уметь производить действия над одночленами, многочленами алгебраическими дробями, уметь производить разложение на множители, раскрывать скобки и т. д. Нужно привести свои знания в порядок. Мы начнем повторение с понятия «рациональные выражения». Сообщение ученика о рациональных выражениях известных из основной школы. Таким образом, учение об уравнениях невозможно без учения о законах действий.

II. Основная часть.

Главное в понятии уравнения – это постановка вопроса о его решении. Уравнение, левая и правая части которого есть рациональные выражения относительно х, называют рациональным уравнением с неизвестным х.

Например, уравнения 5х 6 — 9х 5 + 4х — Зх + 1 = 0, являются рациональными.

Корнем (или решением) уравнения с неизвестным х называют число, при подстановке которого в уравнение вместо х получается верное числовое равенство.

Решить уравнение — значит найти все его корни или показать, что их нет. При решении рациональных уравнений приходится умножать и делить обе части уравнения на не равное нулю число, переносить члены уравнения из одной части в другую, применять правила сложения и вычитания алгебраических дробей. В результате будет получаться уравнение, равносильное предшествующему, т. е. уравнение, имеющее те же корни, и только их.

Перечислим стандартные уравнения, которые были нами изучены. Ответы учащихся.( линейное уравнение , квадратное уравнение, простейшее степенное уравнение х n =а). Преобразование уравнений к одному из стандартных является основным шагом в решении уравнения. Полностью алгоритмизировать процесс преобразования нельзя, однако полезно запомнить некоторые приемы, общие для всех типов уравнений.

1).Уравнение вида А(х)•В(х) = О, где А(х) и В(х) — многочлены относительно х, называют распадающимся уравнением .

Множество всех корней распадающегося уравнения есть объединение множеств всех корней двух уравнений А(х)=0 и В(х)=0. К уравнениям вида А(х)=0 применяется метод разложения на множители. Суть этого метода : нужно решить уравнение А(х)=0, где А(х)=А 1 (х)А 2 (х)А 3 (х). Уравнение А(х)=0 заменяют совокупностью простых уравнений: А 1 (х)=0,А 2 (х)=0,А 3 (х)=0. Находят корни уравнений этой совокупности и делают проверку. Метод разложения на множители используется в основном для рациональных и тригонометрических уравнений.

Решим уравнение (х 2 — 5х + 6) (х 2 + х — 2) = 0.

Уравнение распадается на два уравнения.

х 2 — 5х + 6 = 0 х 1 = 2 и х 2 = 3

х 2 + х — 2 = 0. х 3 = -2 и х 4 = 1

Значит, уравнение исходное имеет корни х 1 = 2, х 2 = 3, х 3 = -2, х 4 =1.

ПРИМЕР. Решим уравнение х 3 -7х+6=0.

х-1=0 , х 1 =1; х 2 +х-6=0, х 2 =2,х 3 =-3.

2).Уравнение вида Рациональные уравнения 10 11 класс, где А(х) и В(х) — многочлены относительно х.

Сначала решим уравнение

х 2 + 4х — 21 = 0. х 1 = 3 и х 2 = -7

Подставив эти числа в знаменатель левой части исходного уравнения, получим

х 1 2 — х 1 -6 = 9-3-6 = 0,

х 2 2 — х 2 — 6 = 49 + 7 — 6 = 50 ≠0.

Это показывает, что число х 1 = 3 не является корнем исходного уравнения, а число х 2 =- 7 — корень этого уравнения.

где А(х), В(х), С(х) и D(х) — многочлены относительно х, обычно решают по следующему правилу.

Решают уравнение А(х)•D(х) — С(х)·В(х) = 0 и отбирают из его корней те, которые не обращают в нуль знаменатель уравнения.

х 2 — 5х + 6 — (2х + 3) (х — 3) = 0.

х 1 = -5 и х 2 = 3.

Число х 1 не обращает в нуль знаменатель х — 3, а число х 2 обращает. Следовательно, уравнение имеет единственный корень = -5.

Найти корни рационального уравнения часто помогает замена неизвестного. Умение удачно ввести новую переменную- важный элемент математической культуры. Удачный выбор новой переменной делает структуру уравнения более прозрачной.

Решим уравнение х 8 + 4х 6 -10х 4 + 4х 2 + 1 = 0.

Число х 0 = 0 не является корнем уравнения, поэтому уравнение равносильно уравнению

х 4 + 4х 2 — 10 + + =0

Обозначим t = ,тогда х 4 + =t 2 -2 ,

получаем t 2 + 4t — 12 = 0, х 1 = 2 и х 2 = -6.

Следовательно, корни уравнения найдем, объединив все корни двух уравнений: =2, и =-6,

Первое уравнение имеет два корня -1 и 1, а второе уравнение не имеет действительных корней, поэтому уравнение имеет только два корня: -1 и 1. Ответ. -1; 1.

4). Симметрические уравнения.

Многочлен от нескольких переменных называют симметрическим многочленом, если его вид не изменяется при любой перестановке этих переменных.

Например, многочлены х + у, а 2 + b 2 — 1, zt и 5а 3 + 6ab + 5b 3 — симметрические многочлены от двух переменных, а многочлены х + у + г, а 3 + b 3 + с 3 , — симметрические многочлены от трех переменных.

В то же время многочлены х — у, а 2 –b 2 и а 3 + аb – b 3 — не симметрические многочлены.

Уравнение ax 4 +bx 3 +cx 2 +bx+a=0, где а R/ ,b R, с R называется симметрическим уравнением четвертой степени. Чтобы решить это уравнение необходимо:

1).Поделить обе части уравнения на х 2 и сгруппировать полученные выражения: .

2).Введение переменной уравнение приводится к квадратному.

Решите уравнение х 4 +5х 3 +4х 2 -5х+1=0.

Число 0 не является корнем уравнения. Поделим обе части уравнения на х 2 ≠0.

Системы рациональных уравнений.

Системы уравнений появляются при решении задач, в которых неизвестными являются несколько величин. Эти величины связаны определенной зависимостью, которые записываются в виде уравнений.

Уравнение, левая и правая части которого есть рациональные выражения относительно х и у, называют рациональным уравнением с двумя неизвестными х и у.

Если надо найти все пары чисел х и у, каждая из которых является решением каждого из данных уравнений с двумя неизвестными х и у, то говорят, что надо решить систему уравнений с двумя неизвестными х и у и каждую такую пару называют решением этой системы.

Неизвестные могут обозначаться и другими буквами. Аналогично определяется система уравнений, число неизвестных в которой больше двух.

Если каждое решение первой системы уравнений является решением второй системы, а каждое решение второй системы уравнений является решением первой системы, то такие системы называют равносильными. В частности, равносильными считаются две системы, не имеющие решений.

Например, равносильны системы

1). Способ подстановки .

ПРИМЕР 1. Решим систему уравнений

Выразив у через х из первого уравнения системы, получим уравнение:

Решив уравнение 5x 2 -4(3x-1)+3(3x-1) 2 =9, найдем его корни х 1 = 1 и х 2 = . Подставив найденные числа х 1 и х 2 в уравнение у = 3х — 1 , получим у 1 = 2

и у = Следовательно, система имеет два решения: (1; 2) и ( ; )

2). Метод алгебраического сложения.

ПРИМЕР 2. Решим систему уравнений

Оставив без изменения первое уравнение системы и сложив первое уравнение со вторым, получим систему равносильную системе.

Все решения системы есть объединение всех решений двух систем:

Решив каждую из этих систем, найдем все решения системы :

3). Метод введение новых неизвестных.

ПРИМЕР 3. Решим систему уравнений

Обозначив u = ху, v = х — у, перепишем систему в виде

Найдем ее решения: u 1 = 1, v 1 = 0 и u 2 = 5, v 2 = 4. Следовательно, все решения системы есть объединение всех решений двух систем:

Решив методом подстановки каждую из этих систем, найдем ее решения системы: (1; 1), (-1; -1), (5; 1), (-1; -5).

Ответ. (1; 1), (-1; -1), (5; 1), (-1; -5).

4). Уравнение вида ах 2 + bху + су 2 = 0, где а, b, с — данные неравные нулю числа, называют однородным уравнением относительно неизвестных х и у.

Рассмотрим систему уравнений, в котором есть однородное уравнение.

ПРИМЕР 4. Решим систему уравнений

Обозначив t = , перепишем первое уравнение системы в виде t 2 +4t+3=0.

Уравнение имеет два корня t 1 = -1 и t 2 = -3, поэтому все решения системы есть объединение всех решений двух систем:

Решив каждую из этих систем, найдем все решения системы:

При решении некоторых систем помогает знание свойств симметрических многочленов.

Введем новые неизвестные α = х + у и β= ху, тогда, х 4 +у 4 = α 4 -4 α 2 β+2 β 2

Поэтому систему можно переписать в виде

Решим квадратное уравнение относительно β: β 1 =6, β 2 =44.

Следовательно, все решения системы являются объединением

всех решении двух систем:

Первая система имеет два решения х 1 = 2, у 1 = 3 и х 2 = 3, у 2 =2, а вторая система не имеет действительных решений. Следовательно, система имеет два решения: (х: 1 ; у 1 ) и (х 2 ;у 2 )

Сегодня мы подвели итоги изучения темы рациональные уравнения. Мы поговорили об общих идеях, общих методах, на которых основана вся школьная линия уравнений.

Выделили методы решения уравнений:

1) метод разложения на множители;

2) метод введения новых переменных.

Расширили представления о методах решения систем уравнений.

На следующих 4 уроках проведем практические занятия. Для этого необходимо выучить теоретический материал, и подобрать из учебника по 2 примера на рассмотренные методы решения уравнений и систем уравнений, на 6 уроке будет проведен семинар по этой теме, для этого необходимо подготовить вопросы: формула бинома Ньютона, решение симметрических уравнений 3,5 степени. Заключительный урок по этой теме — зачет.

  1. Алгебра и начала анализа: учеб. Для 10кл. общеобразоват. учреждений/[С.М.Никольский, М.К. Потапов.].-5-е изд., доп.-М.: Просвещение , 2006.-432с. Стр.65-74., 45-47.
  2. Математика: тренировочные тематические задания повышенной сложности с ответами для подготовки к ЕГЭ и к другим формам выпускного и вступительного экзаменов/сост. Г.И.Ковалева, Т.И. Бузулина — Волгоград: Учитель,2009.-494с. – стр. 62-72,194-199.
  3. Титаренко А.М. Математика : т9-11 классы: 6000 задач и примеров/А.М. Титаренко.-М.:Эксмо,2007.-336с.

Много можно говорить об уравнениях. В этой области математики существуют вопросы, на которые математики еще не дали ответа. Возможно, кто-то из вас найдет ответы на эти вопросы.

Альберт Эйнштейн говорил: « Мне приходиться делить время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее. Политика существует только для данного момента. А уравнения будут существовать вечно ».

Уроки 2-5 отводиться практическим занятиям. Основным видом занятий на этих уроках является самостоятельная работа учащихся по закреплению и углублению теоретического материала, изложенного на лекции. На каждом из них проводится повторение вопросов теории и опрос учащихся. На основе самостоятельной работы на уроке и дома обеспечивается повторение и усвоение вопросов теории, ведется целенаправленная работа по выработке умений и навыков решения задач различного уровня сложности, проводится опрос учащихся. Цель: закрепить и углубить теоретический материал изложенный на лекции, научиться применять его на практике, усвоить алгоритмы решения типовых примеров и задач, добиться, чтобы все учащиеся усвоили основное содержание изучаемого раздела на уровне программных требований.

На семинар отводится 6-й и 7-й уроки, причем целесообразно на 6-м уроке провести семинар, а 7-м- зачет.

План урока – семинара.

Цель: повторение, углубление и обобщение пройденного материала, отработать основные методы, способы и приемы решения математических задач, приобретение новых знаний, обучение самостоятельному применению знаний в нестандартных ситуациях.

1. В начале урока организуется программный контроль. Цель проведения работы- проверка сформированности умений и навыков выполнения несложных упражнений. В процессе фронтального опроса учеников, неверно указавших номер ответа, учитель выясняет, какие из заданий вызвали затруднение. Далее ведется устная или письменная работа по устранению ошибок. На проведение программированного контроля отводится не более 10 минут.

2. Дифференцированный опрос нескольких учащихся по вопросам теории.

3. Историческая справка о возникновении и развитии понятия уравнения (сообщение ученика). Формула бином Ньютона. Решение симметрических уравнений третьей степени, четвертой степени, пятой степени.

х 4 -2х 3 -х 2 -2х+1=0

2х 4 +х 3 -11х 2 +х+2=0

х 5 -х 4 -3х 3 -3х 2 -х+1=0

2х 5 +3х 4 -5х 3 -5х 2 +3х+2=0

4. Решение примеров, проверка готовности учащихся к выполнению контрольной работы – это одна из главных задач семинара.

Проведение зачета не означает отказ от текущего контроля знаний учащихся. Оценки выставляются на практических и семинарских занятиях. На зачет выносятся некоторые типичные упражнения. Заранее ученикам сообщается, какой теоретический материал и упражнения будут представлены на зачете. Приведем содержание одной из карточек для проведения зачета по рассматриваемой теме.

Решите уравнения: (х+3) 4 +(х 2 +х-6) 2 =2(х-2) 4

💥 Видео

ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать

ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?

Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

Алгебра 8. Урок 11 - Дробно-рациональные уравнения

Как решать неравенства? Математика 10 класс | TutorOnlineСкачать

Как решать неравенства? Математика 10 класс | TutorOnline

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнем

Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать

Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 класс

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

Математика 10-11 класс. Рациональные уравнения. Подготовка к ЕГЭ.Скачать

Математика 10-11 класс. Рациональные уравнения. Подготовка к ЕГЭ.

Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)Скачать

Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)

11 класс, 26 урок, Равносильность уравненийСкачать

11 класс, 26 урок, Равносильность уравнений

✓ Метод интервалов. Рациональные уравнения и неравенства | Борис ТрушинСкачать

✓ Метод интервалов. Рациональные уравнения и неравенства | Борис Трушин

Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)Скачать

Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)

Иррациональные уравнения и их системы. 11 класс.Скачать

Иррациональные уравнения и их системы. 11 класс.

Повторяем решение уравнений. Полезно всем! Вебинар | МатематикаСкачать

Повторяем решение уравнений. Полезно всем! Вебинар | Математика

Показательные уравнения. 11 класс.Скачать

Показательные уравнения. 11 класс.

Как решать неравенства? 9 - 11 класс. Вебинар | Математика TutorOnlineСкачать

Как решать неравенства? 9 - 11 класс. Вебинар | Математика TutorOnline
Поделиться или сохранить к себе: