Рациональное уравнение – это уравнение вида $f(x)=g(x)$, где $f(x)$ и $g(x)$ — рациональные выражения.
Рациональные выражения — это целые и дробные выражения, соединённые между собой знаками арифметических действий: деления, умножения, сложения или вычитания, возведения в целую степень и знаками последовательности этих выражений.
$/+5x=7$ – рациональное уравнение
$3x+√x=7$ — иррациональное уравнение (содержит корень)
Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно рациональным.
Чтобы решить дробно рациональное уравнение, необходимо:
- Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ);
- Найти общий знаменатель дробей, входящих в уравнение;
- Умножить обе части уравнения на общий знаменатель;
- Решить получившееся целое уравнение;
- Исключить из его корней те, которые обращают в ноль общий знаменатель.
Решить уравнение: $4x+1-/=0$
1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
2. находим общий знаменатель дробей и умножаем на него обе части уравнения
3. решаем полученное уравнение
Решим вторым устным способом, т.к. $а+с=b$
4. исключаем те корни, при которых общий знаменатель равен нулю
В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
При решении уравнения с двумя дробями, можно использовать основное свойство пропорции.
Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
Воспользуемся основным свойством пропорции
Раскроем скобки и соберем все слагаемые в левой стороне
Решим данное квадратное уравнение первым устным способом, т.к. $a+b+c=0$
В первом пункте получилось, что при x = 0 уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
- Рациональные уравнения с примерами решения
- Рациональные уравнения. Равносильные уравнения
- Применение условия равенства дроби нулю
- Пример №202
- Использование основного свойства пропорции
- Пример №203
- Метод умножения обеих частей уравнения на общий знаменатель дробей
- Пример №204
- Пример №205
- Степень с целым показателем
- Урок в 10 классе «Рациональные уравнения». методическая разработка по алгебре (10 класс) по теме
- Скачать:
- Предварительный просмотр:
- 💥 Видео
Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать
Рациональные уравнения с примерами решения
Содержание:
Видео:решение УРАВНЕНИЙ решение НЕРАВЕНСТВ 10 11 классСкачать
Рациональные уравнения. Равносильные уравнения
два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.
Так, например, равносильными будут уравнения
Уравнения — не равносильны, так как корнем первого уравнения является число 10, а корнем второго — число 9.
Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.
1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;
2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;
3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.
Левая и правая части каждого из них являются рациональными выражениями.
Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.
В первых двух из записанных выше уравнений левая и правая части являются целыми выражениями. Такие уравнения называют целыми рациональными уравнениями. Если хотя бы одна часть уравнения — дробное выражение, то его называют дробным рациональным уравнением. Третье из записанных выше уравнений является дробным рациональным.
Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.
Применение условия равенства дроби нулю
Напомним, что когда
Пример №202
Решите уравнение
Решение:
С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду где и — целые рациональные выражения. Имеем:
Окончательно получим уравнение:
Чтобы дробь равнялась нулю, нужно, чтобы числитель равнялся нулю, а знаменатель не равнялся нулю.
Тогда откуда При знаменатель Следовательно, — единственный корень уравнения.
Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:
Значит, решая дробное рациональное уравнение, можно:
1) с помощью тождественных преобразований привести уравнение к виду
2) приравнять числитель к нулю и решить полученное целое уравнение;
3) исключить из его корней те, при которых знаменатель равен нулю, и записать ответ.
Использование основного свойства пропорции
Если то где
Пример №203
Решите уравнение
Решение:
Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Имеем: то есть ОДЗ переменной содержит все числа, кроме 1 и 2.
Сложив выражения в правой части уравнения, приведем его к виду: получив пропорцию:
По основному свойству пропорции имеем:
Решим это уравнение:
откуда
Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.
Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:
Таким образом, для решения дробного рационального уравнения можно:
1) найти область допустимых значений (ОДЗ) переменной в уравнении;
2) привести уравнение к виду
3) записать целое уравнение и решить его;
4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.
Метод умножения обеих частей уравнения на общий знаменатель дробей
Пример №204
Решите уравнение
Решение:
Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:
Областью допустимых значений переменной будут те значения при которых то есть все значения кроме чисел А простейшим общим знаменателем будет выражение
Умножим обе части уравнения на это выражение:
Получим: а после упрощения: то есть откуда или
Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.
Следовательно, число 12 — единственный корень уравнения. Ответ. 12.
Решая дробное рациональное уравнение, можно:
3) умножить обе части уравнения на этот общий знаменатель;
4) решить полученное целое уравнение;
5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.
Пример №205
Являются ли равносильными уравнения
Решение:
Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.
Первое уравнение имеет единственный корень а второе — два корня (решите уравнения самостоятельно). Следовательно, уравнения не являются равносильными.
Степень с целым показателем
Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:
где — натуральное число,
В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: кг. Как понимать смысл записи
Рассмотрим степени числа 3 с показателями — это соответственно
В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим:
Число должно быть втрое меньше числа равного числу 3. Но втрое меньшим числа 3 является число 1, следовательно, Равенство справедливо для любого основания при условии, что
Нулевая степень отличного от нуля числа а равна единице, то есть при
Вернемся к строке со степенями числа 3, где слева от числа записано число Это число втрое меньше, чем 1, то есть равно Следовательно, Рассуждая аналогично получаем: и т. д.
Приходим к следующему определению степени с целым отрицательным показателем:
если натуральное число, то
Видео:Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnlineСкачать
Урок в 10 классе «Рациональные уравнения».
методическая разработка по алгебре (10 класс) по теме
Данный урок предназначен для изучения темы в 10 классе: «Рациональные уравнения.» Тип урока: урок- лекция.
Видео:Дробно-рациональные уравнения. 8 класс.Скачать
Скачать:
Вложение | Размер |
---|---|
Данный урок предназначен для изучения темы в 10 классе: «Рациональные уравнения.» Тип урока: урок- лекция. | 166 КБ |
10 класс: «Рациональные уравнения.» | 209.5 КБ |
Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать
Предварительный просмотр:
МОУ «Гимназия № 5 г. Белгорода»
Тема урока: Рациональные уравнения.
УМК : Алгебра и начала анализа: учеб. Для 10кл. общеобразоват. учреждений/[С.М.Никольский, М.К. Потапов.].-5-е изд., доп.-М.: Просвещение , 2006.-432с. Стр.65-74., 45-47.
Образовательная: систематизировать и обобщить известные из основной школы сведения о рациональных выражениях; показать способы решения рациональных уравнений;
Развивающая: расширить и углубить изучение различных видов рациональных уравнений разнообразными методами.
Воспитывающая: показать значимость изучаемой темы в разделе математика.
Тип урока: урок- лекция.
- Постановка цели урока (1мин).
- Подготовка к изучению нового материала(2 мин).
- 3.Ознакомление с новым материалом(38мин).
- 4.Итог урока.(2 мин)
- 5.Домашнее задание (2 мин)
Оборудование урока: интерактивная доска, проектор, компьютер.
1. Рациональные выражения.
2. Рациональные уравнения.
3.Системы рациональных уравнений.
Алгебра возникла из решения практических задач с помощью уравнений. Цели алгебры оставались неизменными на протяжении тысячелетий- решались уравнения: сначала линейные, потом квадратные, а там и уравнения еще больших степеней. Но форма, в которой излагались алгебраические результаты, менялись до неузнаваемости.
Уравнение- это самая распространенная форма математической задачи. Учение об уравнениях является главным содержанием школьного курса алгебры. Для решения уравнений нужно уметь производить действия над одночленами, многочленами алгебраическими дробями, уметь производить разложение на множители, раскрывать скобки и т. д. Нужно привести свои знания в порядок. Мы начнем повторение с понятия «рациональные выражения». Сообщение ученика о рациональных выражениях известных из основной школы. Таким образом, учение об уравнениях невозможно без учения о законах действий.
II. Основная часть.
Главное в понятии уравнения – это постановка вопроса о его решении. Уравнение, левая и правая части которого есть рациональные выражения относительно х, называют рациональным уравнением с неизвестным х.
Например, уравнения 5х 6 — 9х 5 + 4х — Зх + 1 = 0, являются рациональными.
Корнем (или решением) уравнения с неизвестным х называют число, при подстановке которого в уравнение вместо х получается верное числовое равенство.
Решить уравнение — значит найти все его корни или показать, что их нет. При решении рациональных уравнений приходится умножать и делить обе части уравнения на не равное нулю число, переносить члены уравнения из одной части в другую, применять правила сложения и вычитания алгебраических дробей. В результате будет получаться уравнение, равносильное предшествующему, т. е. уравнение, имеющее те же корни, и только их.
Перечислим стандартные уравнения, которые были нами изучены. Ответы учащихся.( линейное уравнение , квадратное уравнение, простейшее степенное уравнение х n =а). Преобразование уравнений к одному из стандартных является основным шагом в решении уравнения. Полностью алгоритмизировать процесс преобразования нельзя, однако полезно запомнить некоторые приемы, общие для всех типов уравнений.
1).Уравнение вида А(х)•В(х) = О, где А(х) и В(х) — многочлены относительно х, называют распадающимся уравнением .
Множество всех корней распадающегося уравнения есть объединение множеств всех корней двух уравнений А(х)=0 и В(х)=0. К уравнениям вида А(х)=0 применяется метод разложения на множители. Суть этого метода : нужно решить уравнение А(х)=0, где А(х)=А 1 (х)А 2 (х)А 3 (х). Уравнение А(х)=0 заменяют совокупностью простых уравнений: А 1 (х)=0,А 2 (х)=0,А 3 (х)=0. Находят корни уравнений этой совокупности и делают проверку. Метод разложения на множители используется в основном для рациональных и тригонометрических уравнений.
Решим уравнение (х 2 — 5х + 6) (х 2 + х — 2) = 0.
Уравнение распадается на два уравнения.
х 2 — 5х + 6 = 0 х 1 = 2 и х 2 = 3
х 2 + х — 2 = 0. х 3 = -2 и х 4 = 1
Значит, уравнение исходное имеет корни х 1 = 2, х 2 = 3, х 3 = -2, х 4 =1.
ПРИМЕР. Решим уравнение х 3 -7х+6=0.
х-1=0 , х 1 =1; х 2 +х-6=0, х 2 =2,х 3 =-3.
2).Уравнение вида , где А(х) и В(х) — многочлены относительно х.
Сначала решим уравнение
х 2 + 4х — 21 = 0. х 1 = 3 и х 2 = -7
Подставив эти числа в знаменатель левой части исходного уравнения, получим
х 1 2 — х 1 -6 = 9-3-6 = 0,
х 2 2 — х 2 — 6 = 49 + 7 — 6 = 50 ≠0.
Это показывает, что число х 1 = 3 не является корнем исходного уравнения, а число х 2 =- 7 — корень этого уравнения.
где А(х), В(х), С(х) и D(х) — многочлены относительно х, обычно решают по следующему правилу.
Решают уравнение А(х)•D(х) — С(х)·В(х) = 0 и отбирают из его корней те, которые не обращают в нуль знаменатель уравнения.
х 2 — 5х + 6 — (2х + 3) (х — 3) = 0.
х 1 = -5 и х 2 = 3.
Число х 1 не обращает в нуль знаменатель х — 3, а число х 2 обращает. Следовательно, уравнение имеет единственный корень = -5.
Найти корни рационального уравнения часто помогает замена неизвестного. Умение удачно ввести новую переменную- важный элемент математической культуры. Удачный выбор новой переменной делает структуру уравнения более прозрачной.
Решим уравнение х 8 + 4х 6 -10х 4 + 4х 2 + 1 = 0.
Число х 0 = 0 не является корнем уравнения, поэтому уравнение равносильно уравнению
х 4 + 4х 2 — 10 + + =0
Обозначим t = ,тогда х 4 + =t 2 -2 ,
получаем t 2 + 4t — 12 = 0, х 1 = 2 и х 2 = -6.
Следовательно, корни уравнения найдем, объединив все корни двух уравнений: =2, и =-6,
Первое уравнение имеет два корня -1 и 1, а второе уравнение не имеет действительных корней, поэтому уравнение имеет только два корня: -1 и 1. Ответ. -1; 1.
4). Симметрические уравнения.
Многочлен от нескольких переменных называют симметрическим многочленом, если его вид не изменяется при любой перестановке этих переменных.
Например, многочлены х + у, а 2 + b 2 — 1, zt и 5а 3 + 6ab + 5b 3 — симметрические многочлены от двух переменных, а многочлены х + у + г, а 3 + b 3 + с 3 , — симметрические многочлены от трех переменных.
В то же время многочлены х — у, а 2 –b 2 и а 3 + аb – b 3 — не симметрические многочлены.
Уравнение ax 4 +bx 3 +cx 2 +bx+a=0, где а R/ ,b R, с R называется симметрическим уравнением четвертой степени. Чтобы решить это уравнение необходимо:
1).Поделить обе части уравнения на х 2 и сгруппировать полученные выражения: .
2).Введение переменной уравнение приводится к квадратному.
Решите уравнение х 4 +5х 3 +4х 2 -5х+1=0.
Число 0 не является корнем уравнения. Поделим обе части уравнения на х 2 ≠0.
Системы рациональных уравнений.
Системы уравнений появляются при решении задач, в которых неизвестными являются несколько величин. Эти величины связаны определенной зависимостью, которые записываются в виде уравнений.
Уравнение, левая и правая части которого есть рациональные выражения относительно х и у, называют рациональным уравнением с двумя неизвестными х и у.
Если надо найти все пары чисел х и у, каждая из которых является решением каждого из данных уравнений с двумя неизвестными х и у, то говорят, что надо решить систему уравнений с двумя неизвестными х и у и каждую такую пару называют решением этой системы.
Неизвестные могут обозначаться и другими буквами. Аналогично определяется система уравнений, число неизвестных в которой больше двух.
Если каждое решение первой системы уравнений является решением второй системы, а каждое решение второй системы уравнений является решением первой системы, то такие системы называют равносильными. В частности, равносильными считаются две системы, не имеющие решений.
Например, равносильны системы
1). Способ подстановки .
ПРИМЕР 1. Решим систему уравнений
Выразив у через х из первого уравнения системы, получим уравнение:
Решив уравнение 5x 2 -4(3x-1)+3(3x-1) 2 =9, найдем его корни х 1 = 1 и х 2 = . Подставив найденные числа х 1 и х 2 в уравнение у = 3х — 1 , получим у 1 = 2
и у = Следовательно, система имеет два решения: (1; 2) и ( ; )
2). Метод алгебраического сложения.
ПРИМЕР 2. Решим систему уравнений
Оставив без изменения первое уравнение системы и сложив первое уравнение со вторым, получим систему равносильную системе.
Все решения системы есть объединение всех решений двух систем:
Решив каждую из этих систем, найдем все решения системы :
3). Метод введение новых неизвестных.
ПРИМЕР 3. Решим систему уравнений
Обозначив u = ху, v = х — у, перепишем систему в виде
Найдем ее решения: u 1 = 1, v 1 = 0 и u 2 = 5, v 2 = 4. Следовательно, все решения системы есть объединение всех решений двух систем:
Решив методом подстановки каждую из этих систем, найдем ее решения системы: (1; 1), (-1; -1), (5; 1), (-1; -5).
Ответ. (1; 1), (-1; -1), (5; 1), (-1; -5).
4). Уравнение вида ах 2 + bху + су 2 = 0, где а, b, с — данные неравные нулю числа, называют однородным уравнением относительно неизвестных х и у.
Рассмотрим систему уравнений, в котором есть однородное уравнение.
ПРИМЕР 4. Решим систему уравнений
Обозначив t = , перепишем первое уравнение системы в виде t 2 +4t+3=0.
Уравнение имеет два корня t 1 = -1 и t 2 = -3, поэтому все решения системы есть объединение всех решений двух систем:
Решив каждую из этих систем, найдем все решения системы:
При решении некоторых систем помогает знание свойств симметрических многочленов.
Введем новые неизвестные α = х + у и β= ху, тогда, х 4 +у 4 = α 4 -4 α 2 β+2 β 2
Поэтому систему можно переписать в виде
Решим квадратное уравнение относительно β: β 1 =6, β 2 =44.
Следовательно, все решения системы являются объединением
всех решении двух систем:
Первая система имеет два решения х 1 = 2, у 1 = 3 и х 2 = 3, у 2 =2, а вторая система не имеет действительных решений. Следовательно, система имеет два решения: (х: 1 ; у 1 ) и (х 2 ;у 2 )
Сегодня мы подвели итоги изучения темы рациональные уравнения. Мы поговорили об общих идеях, общих методах, на которых основана вся школьная линия уравнений.
Выделили методы решения уравнений:
1) метод разложения на множители;
2) метод введения новых переменных.
Расширили представления о методах решения систем уравнений.
На следующих 4 уроках проведем практические занятия. Для этого необходимо выучить теоретический материал, и подобрать из учебника по 2 примера на рассмотренные методы решения уравнений и систем уравнений, на 6 уроке будет проведен семинар по этой теме, для этого необходимо подготовить вопросы: формула бинома Ньютона, решение симметрических уравнений 3,5 степени. Заключительный урок по этой теме — зачет.
- Алгебра и начала анализа: учеб. Для 10кл. общеобразоват. учреждений/[С.М.Никольский, М.К. Потапов.].-5-е изд., доп.-М.: Просвещение , 2006.-432с. Стр.65-74., 45-47.
- Математика: тренировочные тематические задания повышенной сложности с ответами для подготовки к ЕГЭ и к другим формам выпускного и вступительного экзаменов/сост. Г.И.Ковалева, Т.И. Бузулина — Волгоград: Учитель,2009.-494с. – стр. 62-72,194-199.
- Титаренко А.М. Математика : т9-11 классы: 6000 задач и примеров/А.М. Титаренко.-М.:Эксмо,2007.-336с.
Много можно говорить об уравнениях. В этой области математики существуют вопросы, на которые математики еще не дали ответа. Возможно, кто-то из вас найдет ответы на эти вопросы.
Альберт Эйнштейн говорил: « Мне приходиться делить время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее. Политика существует только для данного момента. А уравнения будут существовать вечно ».
Уроки 2-5 отводиться практическим занятиям. Основным видом занятий на этих уроках является самостоятельная работа учащихся по закреплению и углублению теоретического материала, изложенного на лекции. На каждом из них проводится повторение вопросов теории и опрос учащихся. На основе самостоятельной работы на уроке и дома обеспечивается повторение и усвоение вопросов теории, ведется целенаправленная работа по выработке умений и навыков решения задач различного уровня сложности, проводится опрос учащихся. Цель: закрепить и углубить теоретический материал изложенный на лекции, научиться применять его на практике, усвоить алгоритмы решения типовых примеров и задач, добиться, чтобы все учащиеся усвоили основное содержание изучаемого раздела на уровне программных требований.
На семинар отводится 6-й и 7-й уроки, причем целесообразно на 6-м уроке провести семинар, а 7-м- зачет.
План урока – семинара.
Цель: повторение, углубление и обобщение пройденного материала, отработать основные методы, способы и приемы решения математических задач, приобретение новых знаний, обучение самостоятельному применению знаний в нестандартных ситуациях.
1. В начале урока организуется программный контроль. Цель проведения работы- проверка сформированности умений и навыков выполнения несложных упражнений. В процессе фронтального опроса учеников, неверно указавших номер ответа, учитель выясняет, какие из заданий вызвали затруднение. Далее ведется устная или письменная работа по устранению ошибок. На проведение программированного контроля отводится не более 10 минут.
2. Дифференцированный опрос нескольких учащихся по вопросам теории.
3. Историческая справка о возникновении и развитии понятия уравнения (сообщение ученика). Формула бином Ньютона. Решение симметрических уравнений третьей степени, четвертой степени, пятой степени.
х 4 -2х 3 -х 2 -2х+1=0
2х 4 +х 3 -11х 2 +х+2=0
х 5 -х 4 -3х 3 -3х 2 -х+1=0
2х 5 +3х 4 -5х 3 -5х 2 +3х+2=0
4. Решение примеров, проверка готовности учащихся к выполнению контрольной работы – это одна из главных задач семинара.
Проведение зачета не означает отказ от текущего контроля знаний учащихся. Оценки выставляются на практических и семинарских занятиях. На зачет выносятся некоторые типичные упражнения. Заранее ученикам сообщается, какой теоретический материал и упражнения будут представлены на зачете. Приведем содержание одной из карточек для проведения зачета по рассматриваемой теме.
Решите уравнения: (х+3) 4 +(х 2 +х-6) 2 =2(х-2) 4
💥 Видео
ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать
Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать
Как решать неравенства? Математика 10 класс | TutorOnlineСкачать
Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать
Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать
Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать
Математика 10-11 класс. Рациональные уравнения. Подготовка к ЕГЭ.Скачать
Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)Скачать
11 класс, 26 урок, Равносильность уравненийСкачать
✓ Метод интервалов. Рациональные уравнения и неравенства | Борис ТрушинСкачать
Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)Скачать
Иррациональные уравнения и их системы. 11 класс.Скачать
Повторяем решение уравнений. Полезно всем! Вебинар | МатематикаСкачать
Показательные уравнения. 11 класс.Скачать
Как решать неравенства? 9 - 11 класс. Вебинар | Математика TutorOnlineСкачать