Расстояние между прямыми заданными параметрическими уравнениями

Расстояние между прямыми в пространстве онлайн

С помощю этого онлайн калькулятора можно найти расстояние между прямыми в пространстве. Дается подробное решение с пояснениями. Для вычисления расстояния между прямыми в пространстве, задайте вид уравнения прямых («канонический» или «параметрический» ), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Видеоурок "Расстояние между прямыми в пространстве"Скачать

Видеоурок "Расстояние между прямыми в пространстве"

Расстояние между прямыми в пространстве − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2:

Расстояние между прямыми заданными параметрическими уравнениями.(1)
Расстояние между прямыми заданными параметрическими уравнениями,(2)

Прямые (1) и (2) в пространстве могут совпадать, быть паралленьными, пересекаться, или быть скрещивающимся. Если прямые в пространстве пересекаются или совпадают, то расстояние между ними равно нулю. Мы рассмотрим два случая. Первый − прямые параллельны, и второй − прямые скрещиваются. Остальные являются частыми случаями. Если при вычислении расстояния между параллельными прямыми мы получим расстояние равным нулю, то это значит, что эти прямые совпадают. Если же расстояние между скрещивающимися прямыми равно нулю, то эти прямые пересекаются.

1. Расстояние между параллельными прямыми в пространстве

Рассмотрим два метода вычисления расстояния между прямыми.

Расстояние между прямыми заданными параметрическими уравнениямиРасстояние между прямыми заданными параметрическими уравнениями

которое и является расстоянием между прямыми L1 и L2 (Рис.1).

Расстояние между прямыми заданными параметрическими уравнениями

Пример 1. Найти расстояние между прямыми L1 и L2:

Расстояние между прямыми заданными параметрическими уравнениями(3)
Расстояние между прямыми заданными параметрическими уравнениями(4)
q1=<m1, p1, l1>=
q2=<m2, p2, l2>=

Найдем проекцию точки M1 на прямую L2. Для этого построим плоскость α, проходящей через точку M1 и перпендикулярной прямойL2.

Для того, чтобы плоскость α было перепендикулярна прямой L2, нормальный вектор плоскости α должен быть коллинеарным направляющему вектору прямой L2, т.е. в качестве нормального вектора плоскости α можно взять направляющий вектор прямой L2. Тогда уравнение искомой плоскости, проходящей через точку M1(x1, y1, z1) имеет следующий вид:

m2<xx1)+p2(yy1)+ l2(zz1)=0(5)
2(x−1)−4(y−2)+ 8(z−1)=0

После упрощения получим уравнение плоскости, проходящей через точку M1 и перпендикулярной прямой L2:

2x−4y+ 8z−2=0(6)

Найдем точку пересечения прямой L2 и плоскости α, для этого построим параметрическое уравнение прямой L2.

Расстояние между прямыми заданными параметрическими уравнениями

Выразив переменные x, y, z через параметр t, получим параметрическое уравнение прямой L2:

Расстояние между прямыми заданными параметрическими уравнениями(7)

Чтобы найти точку пересечения прямой L2 и плоскости α, подставим значения переменных x, y, z из (7) в (6):

Расстояние между прямыми заданными параметрическими уравнениями

Решив уравнение получим:

Расстояние между прямыми заданными параметрическими уравнениями(8)

Подставляя полученное значение t в (7), получим точку пересеченияпрямой L2 и плоскости α:

Расстояние между прямыми заданными параметрическими уравнениями

Остается найти расстояние между точками M1 и M3:

Расстояние между прямыми заданными параметрическими уравнениями
Расстояние между прямыми заданными параметрическими уравнениямиРасстояние между прямыми заданными параметрическими уравнениями

Ответ: Расстояние между прямыми L1 и L2 равно d=7.2506.

Метод 2. Найдем расстояние между прямыми L1 и L2 (уравнения (1) и (2)). Во первых, проверяем параллельность прямых L1 и L2. Если направляющие векторы прямых L1 и L2 коллинеарны, т.е. если существует такое число λ, что выполнено равенство q1=λq2, то прямые L1 и L2 параллельны.

Данный метод вычисления расстояния между параллельными векторами основана на понятии векторного произведения векторов. Известно, что норма векторного произведения векторов Расстояние между прямыми заданными параметрическими уравнениямии q1 дает площадь параллелограмма, образованного этими векторами (Рис.2). Узнав площадь параллелограмма, можно найти вершину параллелограмма d, разделив площадь на основание q1 параллелограмма.

Расстояние между прямыми заданными параметрическими уравнениями

Вычислим координаты вектора Расстояние между прямыми заданными параметрическими уравнениями:

Расстояние между прямыми заданными параметрическими уравнениями

Вычислим векторное произведение векторов Расстояние между прямыми заданными параметрическими уравнениямии q1:

Расстояние между прямыми заданными параметрическими уравнениямиРасстояние между прямыми заданными параметрическими уравнениямиРасстояние между прямыми заданными параметрическими уравнениямиРасстояние между прямыми заданными параметрическими уравнениями

Вычисляя определители второго порядка находим координаты вектора c:

Далее находим площадь параллелограмма:

Расстояние между прямыми заданными параметрическими уравнениями.

Расстояние между прямыми L1 и L2 равно:

Расстояние между прямыми заданными параметрическими уравнениями,
Расстояние между прямыми заданными параметрическими уравнениями,

Пример 2. Решим пример 1 методом 2. Найти расстояние между прямыми

Расстояние между прямыми заданными параметрическими уравнениями(25)
Расстояние между прямыми заданными параметрическими уравнениями(26)
q1=<m1, p1, l1>=
q2=<m2, p2, l2>=

Векторы q1 и q2 коллинеарны. Следовательно прямые L1 и L2 параллельны. Для вычисления расстояния между параллельными прямыми воспользуемся векторным произведением векторов.

Построим вектор Расстояние между прямыми заданными параметрическими уравнениями=<x2x1, y2y1, z2z1>=.

Вычислим векторное произведение векторов Расстояние между прямыми заданными параметрическими уравнениямии q1. Для этого составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов Расстояние между прямыми заданными параметрическими уравнениямии q1:

Расстояние между прямыми заданными параметрическими уравнениями

Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов Расстояние между прямыми заданными параметрическими уравнениямии q1:

Расстояние между прямыми заданными параметрическими уравнениямиРасстояние между прямыми заданными параметрическими уравнениямиРасстояние между прямыми заданными параметрическими уравнениями

Таким образом, результатом векторного произведения векторов Расстояние между прямыми заданными параметрическими уравнениямии q1 будет вектор:

Расстояние между прямыми заданными параметрическими уравнениями

Поскольку векторное произведение векторов Расстояние между прямыми заданными параметрическими уравнениямии q1 дает плошадь параллелограмма образованным этими векторами, то расстояние между прямыми L1 и L2 равно :

Расстояние между прямыми заданными параметрическими уравнениямиРасстояние между прямыми заданными параметрическими уравнениями Расстояние между прямыми заданными параметрическими уравнениями

Ответ: Расстояние между прямыми L1 и L2 равно d=7.25061.

2. Расстояние между скрещивающимися прямыми в пространстве

Пусть задана декартова прямоугольная симтема координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2 (уравнения (1) и (2)).

Пусть прямые L1 и L2 не параллельны (паралельные прямые мы расстотрели в предыдущем параграфе). Чтобы найти расстояние между прямыми L1 и L2 нужно построить параллельные плоскости α1 и α2 так, чтобы прямая L1 лежал на плоскости α1 а прямая L2 − на плоскости α2. Тогда расстояние между прямыми L1 и L2 равно расстоянию между плоскостями L1 и L2 (Рис. 3).

Расстояние между прямыми заданными параметрическими уравнениями

Поскольку плоскость α1, проходит через прямую L1, то он проходит также через M1(x1, y1, z1). Следовательно справедливо следующее равенство:

A1x1+B1y1+C1z1+D1=0.(27)

где n1=<A1, B1, C1> − нормальный вектор плоскости α1. Для того, чтобы плоскость α1 проходила через прямую L1, нормальный вектор n1 должен быть ортогональным направляющему вектору q1 прямой L1, т.е. скалярное произведение этих векторов должен быть равным нулю:

A1m1+B1p1+C1l1=0.(28)

Так как плоскость α1 должна быть параллельной прямой L2, то должна выполнятся условие:

A1m2+B1p2+C1l2=0.(29)

Решая систему линейных уравнений (27)−(29), с тремя уравнениями и четыремя неизвестными A1, B1, C1, D1, и подставляя в уравнение

A1x+B1y+C1z+D1=0.(30)

получим уравнение плоскости α1. (Как построить уравнение плоскости, проходящей через прямую, параллельно другой прямой подробно изложено здесь).

Аналогичным образом находим уравнение плоскости α2:

A2x+B2y+C2z+D2=0.(31)

Плоскости α1 и α2 параллельны, следовательно полученные нормальные векторыn1=<A1, B1, C1> и n2=<A2, B2, C2> этих плоскостей коллинеарны. Если эти векторы не равны, то можно умножить (31) на некторое число так, чтобы полученный нормальный вектор n2 совпадал с нормальным вектором уравнения (30).

Тогда расстояние между параллельными плоскостями вычисляется формулой:

Расстояние между прямыми заданными параметрическими уравнениями.

Полученное расстояние между плоскостями α1 и α2 является также расстоянием между прямыми L1 и L2.

Пример 3. Найти расстояние между прямыми

Расстояние между прямыми заданными параметрическими уравнениями(32)
Расстояние между прямыми заданными параметрическими уравнениями(33)

Построим плоскость α1, проходящую через прямую L1, параллельно прямой L2.

Поскольку плоскость α1 проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(2, 1, 4) и нормальный вектор n1=<m1, p1, l1> плоскости α1 перпендикулярна направляющему вектору q1 прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

A1x1+B1y1+C1z1+D1=0.(34)

а условие параллельности прямой L1 и искомой плоскости α1 представляется следующим условием:

A1m1+B1p1+C1l1=0.(35)

Так как плоскость α1 должна быть параллельной прямой L2, то должна выполнятся условие:

A1m2+B1p2+C1l2=0.(36)
A1·2+B1·1+C1·4+D1=0.(37)
A1·1+B1·3+C1·(−2)=0.(38)
A1·2+B1·(−3)+C1·7=0.(39)

Представим эти уравнения в матричном виде:

Расстояние между прямыми заданными параметрическими уравнениями(40)
Расстояние между прямыми заданными параметрическими уравнениями(41)

Искомая плоскость может быть представлена формулой:

A1x+B1y+C1z+D1=0.(42)
Расстояние между прямыми заданными параметрическими уравнениями

Упростим уравнение, умножив на число 17.

Расстояние между прямыми заданными параметрическими уравнениями(43)

Построим плоскость α2, проходящую через прямую L2, параллельно прямой L1.

Поскольку плоскость α2 проходит через прямую L2 , то она проходит также через точку M2(x2, y2, z2)=M2(6, −1, 2) и нормальный вектор n2=<m2, p2, l2> плоскости α2 перпендикулярна направляющему вектору q2 прямой L2. Тогда уравнение плоскости должна удовлетворять условию:

A2x2+B2y2+C2z2+D2=0.(44)

а условие параллельности прямой L2 и искомой плоскости α2 представляется следующим условием:

A2m2+B2p2+C2l2=0.(45)

Так как плоскость α2 должна быть параллельной прямой L1, то должна выполнятся условие:

A2m1+B2p1+C2l1=0.(46)
A1·6+B1·(−1)+C1·2+D1=0.(47)
A1·2+B1·(−3)+C1·7=0.(48)
A1·1+B1·3+C1·(−2)=0.(49)

Представим эти уравнения в матричном виде:

Расстояние между прямыми заданными параметрическими уравнениями(50)
Расстояние между прямыми заданными параметрическими уравнениями(51)

Искомая плоскость может быть представлена формулой:

A2x+B2y+C2z+D2=0.(52)
Расстояние между прямыми заданными параметрическими уравнениями

Упростим уравнение, умножив на число −83.

Расстояние между прямыми заданными параметрическими уравнениями(53)

Расстояние между построенными плоскостями (43) и (53) будет расстоянием между прямыми (1) и (2).

Запишем формулы уравнений плоскостей α1 и α2 :

A1x+B1y+C1z+D1=0.
A2x+B2y+C2z+D2=0.

Поскольку нормальные векторы плоскостей α1 и α2 совпадают, то можно найти расстояние между плоскостями α1 и α2, используя следующую формулу:

Расстояние между прямыми заданными параметрическими уравнениями(54)
Расстояние между прямыми заданными параметрическими уравнениями

Упростим и решим:

Расстояние между прямыми заданными параметрическими уравнениями

Расстояние между прямыми равно: d=4.839339

Видео:14. Угол между прямыми в пространствеСкачать

14. Угол между прямыми в пространстве

Расстояние между 2 прямыми в пространстве

Вы будете перенаправлены на Автор24

Очень часто на практике необходимо найти расстояние между точкой и некой прямой линией или между двумя прямыми линиями в пространстве, например, иногда определять расстояние между двумя линиями приходится и в реальной жизни. Хорошая иллюстрация такого примера — это знак, который вешают на мосты для грузовиков, указывающий максимальную высоту грузовика, которая может проехать под данным мостом.

Расстояние от верхней грани грузовика и нижней грани в данном случае определяют как расстояние между двумя прямыми.

Расстояние между 2 прямыми в пространстве — это отрезок, соединяющий две прямые линии по наикратчайшему расстоянию между ними, то есть перпендикулярный к обеим прямым.

Расстояние между двумя скрещивающимися прямыми в пространстве — это расстояние между одной заданной прямой и плоскостью, в которой лежит вторая прямая.

Чтобы было чуть проще понять, что это такое, давайте повторим определение скрещивающихся прямых:

Скрещивающиеся прямые — это две прямые, которые не лежат в одной плоскости и не имеют каких-либо совместных друг для друга точек.

Соответственно, для того чтобы найти расстояние между скрещивающимися прямыми в пространстве, необходимо от одной из прямых опустить перпендикуляр на плоскость, в которой лежит другая прямая.

Расстояние же между двумя параллельными прямыми в пространстве является одинаковым на протяжении всей длины параллельных прямых, то есть перпендикуляр, опущенный из одной параллельной прямой на другую, всегда будет одной и той же длины вне зависимости от того, из какой именно точки его опустили.

Видео:19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямымиСкачать

19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямыми

Метод координат для определения расстояния между скрещивающимися прямыми

Расстояние между скрещивающимися прямыми в пространстве можно найти используя метод координат, для этого необходимо:

Готовые работы на аналогичную тему

  1. Найти координаты точек $M_1$ и $M_2$, лежащих на прямых $a$ и $b$ соответственно.
  2. Вычислить икс, игрек и зет направляющих векторов для прямых $a$ и $b$.
  3. С помощью векторного произведения векторов $overline$ и $overline$ нужно найти вектор-нормаль для плоскости, в которой лежит прямая $b$. Затем необходимо записать общее уравнение плоскости: $A (x – x_0) + B(y – y_0) + C(z – z_0) = 0$, и от него перейти к нормированному виду уравнения плоскости следующего вида: $ x cdot cos α + y cdot cos β + z cdot cos – p = 0$, где $cos α, cos β$ и $cos γ$ — координаты единичного нормального вектора плоскости, а $p$ — свободный член, это число равно расстоянию от точки начала координат до плоскости.
  4. Для вычисления расстояния от точки $M$ до искомой плоскости, нужно воспользоваться следующим уравнением: $M_1H_1 = |x_1 cdot cos α + y_1 cdot cos β + z_1 cdot cos – p|$, где $x_1, y_1, z_1$ – координаты точки $M_1$, лежащей на прямой $a$, а $H_1$ — точка, лежащая на искомой плоскости.

Найти расстояние между двумя скрещивающимися прямыми, заданными уравнениями: $d_1$: $frac = frac = frac$

Рисунок 1. Расстояние между двумя скрещивающимися прямыми в пространстве

Для этого воспользуемся следующей формулой:

Сначала найдём смешанное произведение векторов. Для этого найдём точки, лежащие на данных прямых, и их направляющие вектора:

$d_1$: $frac = frac = frac$, точка, лежащая на прямой — $M_1$ с координатами $(2;-1;0)$, а направляющий вектор — $overline

$ с координатами $(2; -3; -1)$

$d_2$: $begin frac = frac \ z – 1 = 0 end$, точка, лежающая на прямой — $M_2$ с координатами $(-1; 0; 1)$,

а её направляющий вектор — $overline

$ с координатами $(1; -2; 0)$

Теперь найдём вектор $overline$:

Найдём смешанное произведение векторов:

$overline

cdot overline

cdot overline = begin 2& 1 & -3 \ -3& -2 & 1 \ -1 & 0 & 1 \ end = — begin 1 & -3 \ -2 & 1 \ end + begin 2 & 1 \ -3 & -2 \ end = -(1 — 6) + (4 + 3) = 4$

Теперь найдём векторное произведение векторов:

$[|overline

× overline

|] = begin i& j & k \ 2 & -3 & -1 \ 1 & -2 & 0 end = begin -3 & -1 \ -2 & 0 end cdot overline — begin 2 & -1 \ 1 & 0 end cdot overline + begin 2 & -3 \ 1 & -2 end cdot overline$

$[|overline

× overline

|]= -2 overline — overline — overline$

Длина этого векторного произведения составит:

Соответственно, длина между скрещивающимися прямыми составит:

Даны две параллельные несовпадающие прямые $g$ и $m$, ниже приведены уравнения для них. Определить расстояние между ними.

Расстояние в этом случае для них вычисляется по следующей формуле:

$overline, overline$ — радиус-векторы для каждой прямой, а $s_1$ — направляющий вектор.

Радиус-вектор для первой прямой будет $r_1=$, а направляющий вектор $s_1 = $.

Радиус-вектор для второй прямой будет $r_2=$, а направляющий вектор $s_2 = $.

Найдём векторную разность радиус-векторов:

Теперь найдём её произведение с направляющим вектором для первой прямой:

$[overline — overline × overline] = begin i & j & k \ -2 & 0 & 0 \ 4 & 6 & 8 \ end = — 16j – 12k = $

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 09 01 2022

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Четыре способа решения задач на нахождение расстояния между скрещивающимися прямыми

Разделы: Математика

Среди огромного количества стереометрических задач в учебниках геометрии, в различных сборниках задач, пособиях по подготовке в ВУЗы крайне редко встречаются задачи на нахождение расстояния между скрещивающимися прямыми. Возможно, это обусловлено как узостью их практического применения (относительно школьной программы, в отличие от «выигрышных» задач на вычисление площадей и объемов), так и сложностью данной темы.

Практика проведения ЕГЭ показывает, что многие учащиеся вообще не приступают к выполнению заданий по геометрии, входящих в экзаменационную работу. Для обеспечения успешного выполнения геометрических заданий повышенного уровня сложности необходимо развивать гибкость мышления, способность анализировать предполагаемую конфигурацию и вычленять в ней части, рассмотрение которых позволяет найти путь решения задачи.

Школьный курс предполагает изучение четырех способов решения задач на нахождение расстояния между скрещивающимися прямыми. Выбор способа обусловлен, в первую очередь, особенностями конкретной задачи, предоставленными ею возможностями для выбора, и, во вторую очередь, способностями и особенностями «пространственного мышления» конкретного учащегося. Каждый из этих способов позволяет решить самую главную часть задачи — построение отрезка, перпендикулярного обеим скрещивающимся прямым (для вычислительной же части задач деление на способы не требуется).

Основные способы решения задач на нахождение расстояния между скрещивающимися прямыми

Нахождение длины общего перпендикуляра двух скрещивающихся прямых, т.е. отрезка с концами на этих прямых и перпендикулярного каждой из этих прямых.

Нахождение расстояния от одной из скрещивающихся прямых до параллельной ей плоскости, проходящей через другую прямую.

Нахождение расстояния между двумя параллельными плоскостями, проходящими через заданные скрещивающиеся прямые.

Нахождение расстояния от точки, являющейся проекцией одной из скрещивающихся прямых, на перпендикулярную ей плоскость (так называемый «экран») до проекции другой прямой на ту же самую плоскость.

Проведем демонстрацию всех четырех способов на следующей простейшей задаче: «В кубе с ребром а найти расстояние между любым ребром и диагональю не пересекающей его грани». Ответ: Расстояние между прямыми заданными параметрическими уравнениями.

Расстояние между прямыми заданными параметрическими уравнениями

hскр перпендикулярна плоскости боковой грани, содержащей диагональ d и перпендикулярна ребру, следовательно, hскр и является расстоянием между ребром а и диагональю d.

Расстояние между прямыми заданными параметрическими уравнениями

Плоскость A параллельна ребру и проходит через данную диагональ, следовательно, данная hскр является не только расстоянием от ребра до плоскости A, но и расстоянием от ребра до данной диагонали.

Расстояние между прямыми заданными параметрическими уравнениями

Плоскости A и B параллельны и проходят через две данные скрещивающиеся прямые, следовательно, расстояние между этими плоскостями равно расстоянию между двумя скрещивающимися прямыми.

Расстояние между прямыми заданными параметрическими уравнениями

Плоскость A перпендикулярна ребру куба. При проекции на A диагонали d данная диагональ обращается в одну из сторон основания куба. Данная hскр является расстоянием между прямой, содержащей ребро, и проекцией диагонали на плоскость C, а значит и между прямой, содержащей ребро, и диагональю.

Остановимся подробнее на применении каждого способа для изучаемых в школе многогранников.

Применение первого способа достаточно ограничено: он хорошо применяется лишь в некоторых задачах, так как достаточно сложно определить и обосновать в простейших задачах точное, а в сложных — ориентировочное местоположение общего перпендикуляра двух скрещивающихся прямых. Кроме того, при нахождении длины этого перпендикуляра в сложных задачах можно столкнуться с непреодолимыми трудностями.

Задача 1. В прямоугольном параллелепипеде с размерами a, b, h найти расстояние между боковым ребром и не пересекающейся с ним диагональю основания.

Расстояние между прямыми заданными параметрическими уравнениями

Пусть AHРасстояние между прямыми заданными параметрическими уравнениямиBD. Так как А1А перпендикулярна плоскости АВСD , то А1А Расстояние между прямыми заданными параметрическими уравнениямиAH.

AH перпендикулярна обеим из двух скрещивающихся прямых, следовательно AH?- расстояние между прямыми А1А и BD. В прямоугольном треугольнике ABD, зная длины катетов AB и AD, находим высоту AH, используя формулы для вычисления площади прямоугольного треугольника. Ответ: Расстояние между прямыми заданными параметрическими уравнениями

Задача 2. В правильной 4-угольной пирамиде с боковым ребром L и стороной основания a найти расстояние между апофемой и стороной основания, пересекающей боковую грань, содержащую эту апофему.

Расстояние между прямыми заданными параметрическими уравнениями

SHРасстояние между прямыми заданными параметрическими уравнениямиCD как апофема, ADРасстояние между прямыми заданными параметрическими уравнениямиCD, так как ABCD — квадрат. Следовательно, DH — расстояние между прямыми SH и AD. DH равно половине стороны CD. Ответ:Расстояние между прямыми заданными параметрическими уравнениями

Применение этого способа также ограничено в связи с тем, что если можно быстро построить (или найти уже готовую) проходящую через одну из скрещивающихся прямых плоскость, параллельную другой прямой, то затем построение перпендикуляра из любой точки второй прямой к этой плоскости (внутри многогранника) вызывает трудности. Однако в несложных задачах, где построение (или отыскивание) указанного перпендикуляра трудностей не вызывает, данный способ является самым быстрым и легким, и поэтому доступен.

Задача 2. Решение уже указанной выше задачи данным способом особых трудностей не вызывает.

Расстояние между прямыми заданными параметрическими уравнениями

Плоскость EFM параллельна прямой AD, т. к AD || EF. Прямая MF лежит в этой плоскости, следовательно, расстояние между прямой AD и плоскостью EFM равно расстоянию между прямой AD и прямой MF. Проведем OHРасстояние между прямыми заданными параметрическими уравнениямиAD. OHРасстояние между прямыми заданными параметрическими уравнениямиEF, OHРасстояние между прямыми заданными параметрическими уравнениямиMO, следовательно, OHРасстояние между прямыми заданными параметрическими уравнениями(EFM), следовательно, OH — расстояние между прямой AD и плоскостью EFM, а значит, и расстояние между прямой AD и прямой MF. Находим OH из треугольника AOD.

Ответ:Расстояние между прямыми заданными параметрическими уравнениями

Задача 3. В прямоугольном параллелепипеде с размерами a,b и h найти расстояние между боковым ребром и не пересекающейся с ним диагональю параллелепипеда.

Расстояние между прямыми заданными параметрическими уравнениями

Прямая AA1 параллельна плоскости BB1D1D, B1D принадлежит этой плоскости, следовательно расстояние от AA1 до плоскости BB1D1D равно расстоянию между прямыми AA1 и B1D. Проведем AHРасстояние между прямыми заданными параметрическими уравнениямиBD. Также, AH Расстояние между прямыми заданными параметрическими уравнениямиB1B, следовательно AHРасстояние между прямыми заданными параметрическими уравнениями(BB1D1D), следовательно AHРасстояние между прямыми заданными параметрическими уравнениямиB1D, т. е. AH — искомое расстояние. Находим AH из прямоугольного треугольника ABD.

Ответ: Расстояние между прямыми заданными параметрическими уравнениями

Задача 4. В правильной шестиугольной призме A:F1 c высотой h и стороной основания a найти расстояние между прямыми:

Расстояние между прямыми заданными параметрическими уравнениями

Рассмотрим плоскость E1EDD1. A1E1Расстояние между прямыми заданными параметрическими уравнениямиEE1, A1E1Расстояние между прямыми заданными параметрическими уравнениямиE1D1, следовательно

A1E1 Расстояние между прямыми заданными параметрическими уравнениями(E1EDD1). Также A1E1 Расстояние между прямыми заданными параметрическими уравнениямиAA1. Следовательно, A1E1 является расстоянием от прямой AA1 до плоскости E1EDD1. ED1Расстояние между прямыми заданными параметрическими уравнениями(E1EDD1)., следовательно AE1 — расстояние от прямой AA1 до прямой ED1. Находим A1E1 из треугольника F1A1E1 по теореме косинусов. Ответ:Расстояние между прямыми заданными параметрическими уравнениями

б) AF и диагональю BE1.

Проведем из точки F прямую FH перпендикулярно BE. EE1Расстояние между прямыми заданными параметрическими уравнениямиFH, FHРасстояние между прямыми заданными параметрическими уравнениямиBE, следовательно FHРасстояние между прямыми заданными параметрическими уравнениями(BEE1B1), следовательно FH является расстоянием между прямой AF и (BEE1B1), а значит и расстоянием между прямой AF и диагональю BE1. Ответ:Расстояние между прямыми заданными параметрическими уравнениями

Применение этого способа крайне ограничено, так как плоскость, параллельную одной из прямых (способ II) строить легче, чем две параллельные плоскости, однако способ III можно использовать в призмах, если скрещивающиеся прямые принадлежат параллельным граням, а также в тех случаях, когда в многограннике несложно построить параллельные сечения, содержащие заданные прямые.

Расстояние между прямыми заданными параметрическими уравнениями

а) Плоскости BAA1B1 и DEE1D1 параллельны, так как AB || ED и AA1 || EE1. ED1Расстояние между прямыми заданными параметрическими уравнениямиDEE1D1, AA1Расстояние между прямыми заданными параметрическими уравнениями(BAA1B1), следовательно, расстояние между прямыми AA1 и ED1 равно расстоянию между плоскостями BAA1B1 и DEE1D1. A1E1Расстояние между прямыми заданными параметрическими уравнениямиAA1, A1E1Расстояние между прямыми заданными параметрическими уравнениямиA1B1, следовательно, A1E1Расстояние между прямыми заданными параметрическими уравнениямиBAA1B1. Аналогично доказываем, что A1E1Расстояние между прямыми заданными параметрическими уравнениями(DEE1D1). Т.о., A1E1 является расстоянием между плоскостями BAA1B1 и DEE1D1, а значит, и между прямыми AA1 и ED1. Находим A1E1 из треугольника A1F1E1, который является равнобедренным с углом A1F1E1, равным Расстояние между прямыми заданными параметрическими уравнениями. Ответ:Расстояние между прямыми заданными параметрическими уравнениями

Расстояние между прямыми заданными параметрическими уравнениями

б) Расстояние между AF и диагональю BE1 находится аналогично.

Ответ:Расстояние между прямыми заданными параметрическими уравнениями.

Задача 5. В кубе с ребром а найти расстояние между двумя непересекающимися диагоналями двух смежных граней.

Данная задача рассматривается как классическая в некоторых пособиях, но, как правило, ее решение дается способом IV, однако является вполне доступной для решения с помощью способа III.

Расстояние между прямыми заданными параметрическими уравнениями

Некоторую трудность в данной задаче вызывает доказательство перпендикулярности диагонали A1C обеим параллельным плоскостям (AB1D1 || BC1D). B1CРасстояние между прямыми заданными параметрическими уравнениямиBC1 и BC1Расстояние между прямыми заданными параметрическими уравнениямиA1B1, следовательно, прямая BC1 перпендикулярна плоскости A1B1C, и следовательно, BC1Расстояние между прямыми заданными параметрическими уравнениямиA1C. Также, A1CРасстояние между прямыми заданными параметрическими уравнениямиBD. Следовательно, прямая A1C перпендикулярна плоскости BC1D. Вычислительная же часть задачи особых трудностей не вызывает, так как hскр = EF находится как разность между диагональю куба и высотами двух одинаковых правильных пирамид A1AB1D1 и CC1BD.

Ответ:Расстояние между прямыми заданными параметрическими уравнениями

Данный способ имеет достаточно широкое применение. Для задач средней и повышенной трудности его можно считать основным. Нет необходимости применять его только тогда, когда один из трех предыдущих способов работает проще и быстрее, так как в таких случаях способ IV может только усложнить решение задачи, или сделать его труднодоступным. Данный способ очень выгодно использовать в случае перпендикулярности скрещивающихся прямых, так как нет необходимости построения проекции одной из прямых на «экран»

Задача 5. Все та же «классическая» задача (с непересекающимися диагоналями двух смежных граней куба) перестает казаться сложной, как только находится «экран» — диагональное сечение куба.

Расстояние между прямыми заданными параметрическими уравнениями

Расстояние между прямыми заданными параметрическими уравнениями

Рассмотрим плоскость A1B1CD. C1F Расстояние между прямыми заданными параметрическими уравнениями(A1B1CD), т. к. C1FРасстояние между прямыми заданными параметрическими уравнениямиB1C и C1FРасстояние между прямыми заданными параметрическими уравнениямиA1B1. Тогда проекцией C1D на «экран» будет являться отрезок DF. Проведем EMРасстояние между прямыми заданными параметрическими уравнениямиDF. Отрезок EM и будет являться расстоянием между двумя непересекающимися диагоналями двух смежных граней. Находим EM из прямоугольного треугольника EDF. Ответ:Расстояние между прямыми заданными параметрическими уравнениями.

Задача 6. В правильной треугольной пирамиде найти расстояние и угол между скрещивающимися прямыми: боковым ребром l и стороной основания a.

Расстояние между прямыми заданными параметрическими уравнениями

В данной и аналогичных ей задачах способ IV быстрее других способов приводит к решению, так как построив сечение, играющее роль «экрана», перпендикулярно AC (треугольник BDM), видно, что далее нет необходимости строить проекцию другой прямой (BM) на этот экран. DH — искомое расстояние. DH находим из треугольника MDB, используя формулы площади. Ответ: Расстояние между прямыми заданными параметрическими уравнениями.

📹 Видео

Расстояние между скрещивающимися прямыми и уравнение их общего перпендикуляра.Скачать

Расстояние между скрещивающимися прямыми и уравнение их общего перпендикуляра.

Расстояние между скрещивающимися прямымиСкачать

Расстояние между скрещивающимися прямыми

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

✓ Расстояние между скрещивающимися прямыми | ЕГЭ-2018. Задание 13. Математика | Борис ТрушинСкачать

✓ Расстояние между скрещивающимися прямыми | ЕГЭ-2018. Задание 13. Математика | Борис Трушин

Расстояние между скрещивающимися прямыми #2Скачать

Расстояние между скрещивающимися прямыми #2

Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекцииСкачать

Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекции

Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать

Математика без Ху!ни.  Взаимное расположение прямой и плоскости.

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Расстояние между параллельными прямымиСкачать

Расстояние между параллельными прямыми

15. Взаимное расположение прямых в пространствеСкачать

15. Взаимное расположение прямых в пространстве

Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Задача C2: расстояние между двумя прямымиСкачать

Задача C2: расстояние между двумя прямыми

7 класс, 38 урок, Расстояние от точки до прямой. Расстояние между параллельными прямымиСкачать

7 класс, 38 урок, Расстояние от точки до прямой. Расстояние между параллельными прямыми

№194. Ребро куба равно а. Найдите расстояние между скрещивающимися прямыми, содержащимиСкачать

№194. Ребро куба равно а. Найдите расстояние между скрещивающимися прямыми, содержащими

Длина отрезкаСкачать

Длина отрезка
Поделиться или сохранить к себе: