Распредели уравнения по количеству переменных

Уравнение с одной переменной

Уравнение с одной переменной.

Уравнение – это равенство, в котором присутствует одна или несколько переменных.
Мы рассмотрим случай, когда в уравнении одна переменная, то есть одно неизвестное число. По сути, уравнение – это вид математической модели. Поэтому в первую очередь уравнения необходимы нам для решения задач.

Распредели уравнения по количеству переменных

Вспомним, как составляется математическая модель для решения задачи.
Например, в новом учебном году количество учащихся в школе №5 увеличилось вдвое. После того, как 20 учеников перешли в другую школу, в общей сложности в школе №5 стало учиться 720 учеников. Сколько учащихся было в прошлом году?

Нам нужно выразить то, что сказано в условии математическим языком. Пусть количество учащихся в прошлом году будет X. Тогда согласно условию задачи,
2X – 20 = 720. У нас получилась математическая модель, которая представляет собой уравнение с одной переменной. Если точнее, то это уравнение первой степени с одной переменной. Осталось найти его корень.


Что такое корень уравнения?

То значение переменной, при котором наше уравнение обратится в верное равенство, называется корнем уравнения. Бывают такие уравнения, у которых много корней. Например, в уравнении 2*X = (5-3)*X любое значение X является корнем. А уравнение X = X +5 вообще не имеет корней, так как какое бы мы не подставили значение X, у нас не получится верное равенство. Решить уравнение означает найти все его корни, или определить, что оно не имеет корней. Таким образом, чтобы ответить на наш вопрос, нам нужно решить уравнение 2X – 20 = 720.

Как решать уравнения с одной переменной?

Для начала запишем базовые определения. Каждое уравнение имеет правую и левую части. В нашем случае, (2X – 20) – левая часть уравнения (она стоит слева от знака равенства), а 720 – правая часть уравнения. Слагаемые правой и левой части уравнения называются членами уравнения. У нас членами уравнения являются 2X, -20 и 720.

Сразу скажем про 2 свойства уравнений:

  1. Любой член уравнения можно переносить из правой части уравнения в левую, и наоборот. При этом надо изменить знак этого члена уравнения на противоположный. То есть, записи вида 2X – 20 = 720, 2X – 20 – 720 = 0, 2X = 720 + 20, -20 = 720 – 2X равносильны.
  2. Обе части уравнения можно умножить или разделить на одно и то же число. Это число не должно быть равно нулю. То есть, записи вида 2X – 20 = 720, 5*(2X – 20) = 720*5, (2X – 20):2 = 720:2 также равносильны.

Воспользуемся этими свойствами для решения нашего уравнения.

Перенесем -20 в правую часть с противоположным знаком. Получим:

2X = 720 + 20. Сложим то, что у нас в правой части. Получим, что 2X = 740.

Теперь разделим левую и правую части уравнения на 2.

2X:2 = 740:2 или X = 370. Мы нашли корень нашего уравнения и заодно нашли ответ на вопрос нашей задачи. В прошлом году в школе №5 было 370 учеников.

Проверим, действительно ли наш корень обращает уравнение в верное равенство. Подставим вместо X число 370 в уравнение 2X – 20 = 720.

Итак, чтобы решить уравнение с одной переменной его нужно привести к так называемому линейному уравнению вида ax = b, где a и b – некоторые числа. Затем левую и правую часть разделить на число a. Получим, что x = b:a.

Что означает привести уравнение к линейному уравнению?

Рассмотрим такое уравнение:

5X — 2X + 10 = 59 — 7X +3X.

Это также уравнение с одной неизвестной переменной X. Наша задача привести это уравнение к виду ax = b.

Для этого сначала соберем все слагаемые, имеющие в качестве множителя X в левой части уравнения, а остальные слагаемые — в правой части. Слагаемые, имеющие в качестве множителя одну и ту же букву, называют подобными слагаемыми.

5X — 2X + 7X – 3X = 59 – 10.

Согласно распределительному свойству умножения мы можем вынести одинаковый множитель за скобки, а коэффициенты (множители при переменной x) сложить. Этот процесс также называют приведением подобных слагаемых.

7X = 49. Мы привели уравнение к виду ax = b, где a = 7, b = 49.

А как мы написали выше, корнем уравнения вида ax = b будет x = b:a.

То есть X = 49:7 = 7.

Алгоритм нахождения корней уравнения с одной переменной.

  1. Собрать подобные слагаемые в левой части уравнения, остальные слагаемые – в правой части уравнения.
  2. Привести подобные слагаемые.
  3. Привести уравнение к виду ax = b.
  4. Найти корни по формуле x = b:a.

Примечание. В данной статье мы не рассматривали те случаи, когда переменная возводится в какую-нибдуь степень. Иначе говоря мы рассматривали уравнения первой степени с одной переменной.

Содержание
  1. Системы линейных уравнений
  2. Линейные уравнения с двумя переменными
  3. Система двух линейных уравнений с двумя переменными
  4. Метод подстановки
  5. Метод сложения
  6. Система линейных уравнений с тремя переменными
  7. Задачи на составление систем линейных уравнений
  8. Уравнения с двумя переменными (неопределенные уравнения)
  9. Урок 1.
  10. Ход урока.
  11. 1) Орг. момент.
  12. 2) Актуализация опорных знаний.

    Определение. Линейным уравнением с двумя переменными называется уравнение вида mx + ny = k, где m, n, k – числа, x, y – переменные. Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство. Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными. 1. 5x+2y=12 (2)y = -2.5x+6 Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y. Пусть x = 2, y = -2.5•2+6 = 1 x = 4, y = -2.5•4+6 =- 4 Пары чисел (2;1); (4;-4) – решения уравнения (1). Данное уравнение имеет бесконечно много решений. 3) Историческая справка Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной. В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику. Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени. 4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах:
  13. 9x – 18y = 5 x + y= xy Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  14. 🔥 Видео
Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором. Урок 2. 1) Организационный момент 2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6. 3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) => 4) Домашнее задание. Примеры. Решить уравнение в целых числах: а) 2x = 4 2x = 5 2x = 5 x = 2 x = 5/2 x = 5/2 y = 0 не подходит не подходит 2x = -4 не подходит не подходит x = -2 y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах. а) 8x + 12y = 32 x = 1 + 3n, y = 2 — 2n, n Z б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения: а) 8x + 65y = 81 x = 2, y = 1 б) 17x + 23y = 183 x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям а) x + y = xy (0;0), (2;2) б) (1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители: a) б) в) г) в) (11;12), (-11;-12), (-11;12), (11;-12) г) (24;23), (24;-23), (-24;-23), (-24;23) д) (48;0), (24;1), (24;-1) е) x = 3m; y = 2m, mZ ж) y = 2x – 1 x = m: y = 2m – 1, m Z з) x = 2m; y = m; x = 2m; y = -m, m Z и) решений нет 4) Решить уравнения в целых числах (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4) (x — 3)(xy + 5) = 5 (-2;3), (2;-5), (4;0) (y + 1)(xy – 1)=3 (0;-4), (1;-2), (1;2) (-4;-1), (-2;1), (2;-1), (4;1) (-11;-12), (-11;12), (11;-12), (11;12) (-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах. а) (-1;0) б) (5;0) в) (2;-1) г) (2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г. Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г. Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г. Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г. Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • 3) Историческая справка
  • 4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах:
  • 9x – 18y = 5 x + y= xy Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки? Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором. Урок 2. 1) Организационный момент 2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6. 3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) => 4) Домашнее задание. Примеры. Решить уравнение в целых числах: а) 2x = 4 2x = 5 2x = 5 x = 2 x = 5/2 x = 5/2 y = 0 не подходит не подходит 2x = -4 не подходит не подходит x = -2 y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах. а) 8x + 12y = 32 x = 1 + 3n, y = 2 — 2n, n Z б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения: а) 8x + 65y = 81 x = 2, y = 1 б) 17x + 23y = 183 x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям а) x + y = xy (0;0), (2;2) б) (1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители: a) б) в) г) в) (11;12), (-11;-12), (-11;12), (11;-12) г) (24;23), (24;-23), (-24;-23), (-24;23) д) (48;0), (24;1), (24;-1) е) x = 3m; y = 2m, mZ ж) y = 2x – 1 x = m: y = 2m – 1, m Z з) x = 2m; y = m; x = 2m; y = -m, m Z и) решений нет 4) Решить уравнения в целых числах (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4) (x — 3)(xy + 5) = 5 (-2;3), (2;-5), (4;0) (y + 1)(xy – 1)=3 (0;-4), (1;-2), (1;2) (-4;-1), (-2;1), (2;-1), (4;1) (-11;-12), (-11;12), (11;-12), (11;12) (-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах. а) (-1;0) б) (5;0) в) (2;-1) г) (2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г. Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г. Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г. Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г. Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • Урок 2.
  • 1) Организационный момент
  • 2) Проверка домашнего задания
  • 3) Изучение нового материала
  • 4) Домашнее задание.
  • Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

    Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

    Системы линейных уравнений

    Видео:Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

    Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

    Линейные уравнения с двумя переменными

    У школьника имеется 200 рублей, чтобы пообедать в школе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе можно накупить на 200 рублей?

    Обозначим количество пирожных через x , а количество чашек кофе через y . Тогда стоимость пирожных будет обозначаться через выражение 25x , а стоимость чашек кофе через 10y .

    25x — стоимость x пирожных
    10y — стоимость y чашек кофе

    Итоговая сумма должна равняться 200 рублей. Тогда получится уравнение с двумя переменными x и y

    Сколько корней имеет данное уравнение?

    Всё зависит от аппетита школьника. Если он купит 6 пирожных и 5 чашек кофе, то корнями уравнения будут числа 6 и 5.

    Распредели уравнения по количеству переменных

    Говорят, что пара значений 6 и 5 являются корнями уравнения 25x + 10y = 200 . Записывается как (6; 5) , при этом первое число является значением переменной x , а второе — значением переменной y .

    6 и 5 не единственные корни, которые обращают уравнение 25x + 10y = 200 в тождество. При желании на те же 200 рублей школьник может купить 4 пирожных и 10 чашек кофе:

    Распредели уравнения по количеству переменных

    В этом случае корнями уравнения 25x + 10y = 200 является пара значений (4; 10) .

    Более того, школьник может вообще не покупать кофе, а купить пирожные на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 8 и 0

    Распредели уравнения по количеству переменных

    Или наоборот, не покупать пирожные, а купить кофе на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 0 и 20

    Распредели уравнения по количеству переменных

    Попробуем перечислить все возможные корни уравнения 25x + 10y = 200 . Условимся, что значения x и y принадлежат множеству целых чисел. И пусть эти значения будут бóльшими или равными нулю:

    Так будет удобно и самому школьнику. Пирожные удобнее покупать целыми, чем к примеру несколько целых пирожных и половину пирожного. Кофе также удобнее брать целыми чашками, чем к примеру несколько целых чашек и половину чашки.

    Заметим, что при нечетном x невозможно достичь равенства ни при каком y . Тогда значениями x будут следующие числа 0, 2, 4, 6, 8. А зная x можно без труда определить y

    Распредели уравнения по количеству переменных

    Таким образом, мы получили следующие пары значений (0; 20), (2; 15), (4; 10), (6; 5), (8; 0). Эти пары являются решениями или корнями уравнения 25x + 10y = 200 . Они обращают данное уравнение в тождество.

    Уравнение вида ax + by = c называют линейным уравнением с двумя переменными. Решением или корнями этого уравнения называют пару значений ( x; y ), которая обращает его в тождество.

    Отметим также, что если линейное уравнение с двумя переменными записано в виде ax + b y = c , то говорят, что оно записано в каноническом (нормальном) виде.

    Некоторые линейные уравнения с двумя переменными могут быть приведены к каноническому виду.

    Например, уравнение 2(16x + 3y − 4) = 2(12 + 8xy) можно привести к виду ax + by = c . Раскроем скобки в обеих частях этого уравнения, получим 32x + 6y − 8 = 24 + 16x − 2y . Слагаемые, содержащие неизвестные сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой. Тогда получим 32x − 16x + 6y + 2y = 24 + 8 . Приведём подобные слагаемые в обеих частях, получим уравнение 16x + 8y = 32. Это уравнение приведено к виду ax + by = c и является каноническим.

    Рассмотренное ранее уравнение 25x + 10y = 200 также является линейным уравнением с двумя переменными в каноническом виде . В этом уравнении параметры a , b и c равны значениям 25, 10 и 200 соответственно.

    На самом деле уравнение ax + by = c имеет бесчисленное множество решений. Решая уравнение 25x + 10y = 200, мы искали его корни только на множестве целых чисел. В результате получили несколько пар значений, которые обращали данное уравнение в тождество. Но на множестве рациональных чисел уравнение 25x + 10y = 200 будет иметь бесчисленное множество решений.

    Для получения новых пар значений, нужно взять произвольное значение для x , затем выразить y . К примеру, возьмем для переменной x значение 7. Тогда получим уравнение с одной переменной 25 × 7 + 10y = 200 в котором можно выразить y

    Распредели уравнения по количеству переменных

    Пусть x = 15 . Тогда уравнение 25x + 10y = 200 примет вид 25 × 15 + 10y = 200. Отсюда находим, что y = −17,5

    Распредели уравнения по количеству переменных

    Пусть x = −3 . Тогда уравнение 25x + 10y = 200 примет вид 25 × (−3) + 10y = 200. Отсюда находим, что y = 27,5

    Распредели уравнения по количеству переменных

    Видео:Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!Скачать

    Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!

    Система двух линейных уравнений с двумя переменными

    Для уравнения ax + by = c можно сколько угодно раз брать произвольные значение для x и находить значения для y . Отдельно взятое такое уравнение будет иметь бесчисленное множество решений.

    Но бывает и так, что переменные x и y связаны не одним, а двумя уравнениями. В этом случае они образуют так называемую систему линейных уравнений с двумя переменными. Такая система уравнений может иметь одну пару значений (или по-другому: «одно решение»).

    Может случиться и так, что система вовсе не имеет решений. Бесчисленное множество решений система линейных уравнений может иметь в редких и в исключительных случаях.

    Два линейных уравнения образуют систему тогда, когда значения x и y входят в каждое из этих уравнений.

    Вернемся к самому первому уравнению 25x + 10y = 200 . Одной из пар значений для этого уравнения была пара (6; 5) . Это случай, когда на 200 рублей можно можно было купить 6 пирожных и 5 чашек кофе.

    Составим задачу так, чтобы пара (6; 5) стала единственным решением для уравнения 25x + 10y = 200 . Для этого составим ещё одно уравнение, которое связывало бы те же x пирожных и y чашечек кофе.

    Поставим текст задачи следующим образом:

    «Школьник купил на 200 рублей несколько пирожных и несколько чашек кофе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе купил школьник, если известно что количество пирожных на одну единицу больше количества чашек кофе?»

    Первое уравнение у нас уже есть. Это уравнение 25x + 10y = 200 . Теперь составим уравнение к условию «количество пирожных на одну единицу больше количества чашек кофе» .

    Количество пирожных это x , а количество чашек кофе это y . Можно записать эту фразу с помощью уравнения x − y = 1. Это уравнение будет означать, что разница между пирожными и кофе составляет 1.

    Либо второе уравнение можно записать как x = y + 1 . Это уравнение означает, что количество пирожных на единицу больше, чем количество чашек кофе. Поэтому для получения равенства, к количеству чашек кофе прибавлена единица. Это легко можно понять, если воспользоваться моделью весов, которые мы рассматривали при изучении простейших задач:

    Распредели уравнения по количеству переменных

    Получили два уравнения: 25x + 10y = 200 и x = y + 1. Поскольку значения x и y , а именно 6 и 5 входят в каждое из этих уравнений , то вместе они образуют систему. Запишем эту систему. Если уравнения образуют систему, то они обрамляются знаком системы. Знак системы это фигурная скобка:

    Распредели уравнения по количеству переменных

    Давайте решим данную систему. Это позволит увидеть, как мы придём к значениям 6 и 5. Существует много методов решения таких систем. Рассмотрим наиболее популярные из них.

    Видео:Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать

    Линейное уравнение с одной переменной. Практическая часть. 6 класс.

    Метод подстановки

    Название этого метода говорит само за себя. Суть его заключается в том, чтобы одно уравнение подставить в другое, предварительно выразив одну из переменных.

    В нашей системе ничего выражать не нужно. Во втором уравнении x = y + 1 переменная x уже выражена. Эта переменная равна выражению y + 1 . Тогда можно подставить это выражение в первое уравнение вместо переменной x

    Распредели уравнения по количеству переменных

    После подстановки выражения y + 1 в первое уравнение вместо x , получим уравнение 25(y + 1) + 10y = 200 . Это линейное уравнение с одной переменной. Такое уравнение решить довольно просто:

    Распредели уравнения по количеству переменных

    Мы нашли значение переменной y . Теперь подставим это значение в одно из уравнений и найдём значение x . Для этого удобно использовать второе уравнение x = y + 1 . В него и подставим значение y

    Распредели уравнения по количеству переменных

    Значит пара (6; 5) является решением системы уравнений, как мы и задумывали. Выполняем проверку и убеждаемся, что пара (6; 5) удовлетворяет системе:

    Распредели уравнения по количеству переменных

    Пример 2. Решить методом подстановки следующую систему уравнений:

    Распредели уравнения по количеству переменных

    Подставим первое уравнение x = 2 + y во второе уравнение 3x − 2y = 9 . В первом уравнении переменная x равна выражению 2 + y . Это выражение и подставим во второе уравнение вместо x

    Распредели уравнения по количеству переменных

    Теперь найдём значение x . Для этого подставим значение y в первое уравнение x = 2 + y

    Распредели уравнения по количеству переменных

    Значит решением системы Распредели уравнения по количеству переменныхявляется пара значение (5; 3)

    Пример 3. Решить методом подстановки следующую систему уравнений:

    Распредели уравнения по количеству переменных

    Здесь в отличие от предыдущих примеров, одна из переменных не выражена явно.

    Чтобы подставить одно уравнение в другое, сначала нужно выразить одну из переменных.

    Выражать желательно ту переменную, которая имеет коэффициент единицу. Коэффициент единицу имеет переменная x , которая содержится в первом уравнении x + 2y = 11 . Эту переменную и выразим.

    После выражения переменной x , наша система примет следующий вид:

    Распредели уравнения по количеству переменных

    Теперь подставим первое уравнение во второе и найдем значение y

    Распредели уравнения по количеству переменных

    Подставим y в первое уравнение и найдём x

    Распредели уравнения по количеству переменных

    Значит решением системы Распредели уравнения по количеству переменныхявляется пара значений (3; 4)

    Конечно, выражать можно и переменную y . Корни от этого не изменятся. Но если выразить y, получится не очень-то и простое уравнение, на решение которого уйдет больше времени. Выглядеть это будет следующим образом:

    Распредели уравнения по количеству переменных

    Видим, что в данном примере выражать x намного удобнее, чем выражать y .

    Пример 4. Решить методом подстановки следующую систему уравнений:

    Распредели уравнения по количеству переменных

    Выразим в первом уравнении x . Тогда система примет вид:

    Распредели уравнения по количеству переменных

    Подставим первое уравнение во второе и найдём y

    Распредели уравнения по количеству переменных

    Подставим y в первое уравнение и найдём x . Можно воспользоваться изначальным уравнением 7x + 9y = 8 , либо воспользоваться уравнением Распредели уравнения по количеству переменных, в котором выражена переменная x . Этим уравнением и воспользуемся, поскольку это удобно:

    Распредели уравнения по количеству переменных

    Значит решением системы Распредели уравнения по количеству переменныхявляется пара значений (5; −3)

    Видео:Линейное уравнение с одной переменной. 6 класс.Скачать

    Линейное уравнение с одной переменной. 6 класс.

    Метод сложения

    Метод сложения заключается в том, чтобы почленно сложить уравнения, входящие в систему. Это сложение приводит к тому, что образуется новое уравнение с одной переменной. А решить такое уравнение довольно просто.

    Решим следующую систему уравнений:

    Распредели уравнения по количеству переменных

    Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. Получим следующее равенство:

    Распредели уравнения по количеству переменных

    Приведем подобные слагаемые:

    Распредели уравнения по количеству переменных

    В результате получили простейшее уравнение 3x = 27 корень которого равен 9. Зная значение x можно найти значение y . Подставим значение x во второе уравнение x − y = 3 . Получим 9 − y = 3 . Отсюда y = 6 .

    Значит решением системы Распредели уравнения по количеству переменныхявляется пара значений (9; 6)

    Пример 2. Решить следующую систему уравнений методом сложения:

    Распредели уравнения по количеству переменных

    Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. В получившемся равенстве приведем подобные слагаемые:

    Распредели уравнения по количеству переменных

    В результате получили простейшее уравнение 5 x = 20, корень которого равен 4. Зная значение x можно найти значение y . Подставим значение x в первое уравнение 2 x + y = 11 . Получим 8 + y = 11 . Отсюда y = 3 .

    Значит решением системы Распредели уравнения по количеству переменныхявляется пара значений (4;3)

    Процесс сложения подробно не расписывают. Его нужно выполнять в уме. При сложении оба уравнения должны быть приведены к каноническому виду. То есть к виду ax + by = c .

    Из рассмотренных примеров видно, что основная цель сложения уравнений это избавление от одной из переменных. Но не всегда удаётся сразу решить систему уравнений методом сложения. Чаще всего систему предварительно приводят к виду, при котором можно сложить уравнения, входящие в эту систему.

    Например, систему Распредели уравнения по количеству переменныхможно сразу решить методом сложения. При сложении обоих уравнений, слагаемые y и −y исчезнут, поскольку их сумма равна нулю. В результате образуется простейшее уравнение 11x = 22 , корень которого равен 2. Затем можно будет определить y равный 5.

    А систему уравнений Распредели уравнения по количеству переменныхметодом сложения сразу решить нельзя, поскольку это не приведёт к исчезновению одной из переменных. Сложение приведет к тому, что образуется уравнение 8x + y = 28 , имеющее бесчисленное множество решений.

    Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному. Это правило справедливо и для системы линейных уравнений с двумя переменными. Одно из уравнений (или оба уравнения) можно умножить на какое-нибудь число. В результате получится равносильная система, корни которой будут совпадать с предыдущей.

    Вернемся к самой первой системе Распредели уравнения по количеству переменных, которая описывала сколько пирожных и чашек кофе купил школьник. Решением этой системы являлась пара значений (6; 5) .

    Умножим оба уравнения, входящие в эту систему на какие-нибудь числа. Скажем первое уравнение умножим на 2, а второе на 3

    Распредели уравнения по количеству переменных

    В результате получили систему Распредели уравнения по количеству переменных
    Решением этой системы по-прежнему является пара значений (6; 5)

    Распредели уравнения по количеству переменных

    Это значит, что уравнения входящие в систему можно привести к виду, пригодному для применения метода сложения.

    Вернемся к системе Распредели уравнения по количеству переменных, которую мы не смогли решить методом сложения.

    Умножим первое уравнение на 6, а второе на −2

    Распредели уравнения по количеству переменных

    Тогда получим следующую систему:

    Распредели уравнения по количеству переменных

    Сложим уравнения, входящие в эту систему. Сложение компонентов 12x и −12x даст в результате 0, сложение 18y и 4y даст 22y , а сложение 108 и −20 даст 88. Тогда получится уравнение 22y = 88 , отсюда y = 4 .

    Если первое время тяжело складывать уравнения в уме, то можно записывать как складывается левая часть первого уравнения с левой частью второго уравнения, а правая часть первого уравнения с правой частью второго уравнения:

    Распредели уравнения по количеству переменных

    Зная, что значение переменной y равно 4, можно найти значение x. Подставим y в одно из уравнений, например в первое уравнение 2x + 3y = 18 . Тогда получим уравнение с одной переменной 2x + 12 = 18 . Перенесем 12 в правую часть, изменив знак, получим 2x = 6 , отсюда x = 3 .

    Пример 4. Решить следующую систему уравнений методом сложения:

    Распредели уравнения по количеству переменных

    Умножим второе уравнение на −1. Тогда система примет следующий вид:

    Распредели уравнения по количеству переменных

    Сложим оба уравнения. Сложение компонентов x и −x даст в результате 0, сложение 5y и 3y даст 8y , а сложение 7 и 1 даст 8. В результате получится уравнение 8y = 8 , корень которого равен 1. Зная, что значение y равно 1, можно найти значение x .

    Подставим y в первое уравнение, получим x + 5 = 7 , отсюда x = 2

    Пример 5. Решить следующую систему уравнений методом сложения:

    Распредели уравнения по количеству переменных

    Желательно, чтобы слагаемые содержащие одинаковые переменные, располагались друг под другом. Поэтому во втором уравнении слагаемые 5y и −2x поменяем местами. В результате система примет вид:

    Распредели уравнения по количеству переменных

    Умножим второе уравнение на 3. Тогда система примет вид:

    Распредели уравнения по количеству переменных

    Теперь сложим оба уравнения. В результате сложения получим уравнение 8y = 16 , корень которого равен 2.

    Подставим y в первое уравнение, получим 6x − 14 = 40 . Перенесем слагаемое −14 в правую часть, изменив знак, получим 6x = 54 . Отсюда x = 9.

    Пример 6. Решить следующую систему уравнений методом сложения:

    Распредели уравнения по количеству переменных

    Избавимся от дробей. Умножим первое уравнение на 36, а второе на 12

    Распредели уравнения по количеству переменных

    В получившейся системе Распредели уравнения по количеству переменныхпервое уравнение можно умножить на −5, а второе на 8

    Распредели уравнения по количеству переменных

    Сложим уравнения в получившейся системе. Тогда получим простейшее уравнение −13y = −156 . Отсюда y = 12 . Подставим y в первое уравнение и найдем x

    Распредели уравнения по количеству переменных

    Пример 7. Решить следующую систему уравнений методом сложения:

    Распредели уравнения по количеству переменных

    Приведем оба уравнения к нормальному виду. Здесь удобно применить правило пропорции в обоих уравнениях. Если в первом уравнении правую часть представить как Распредели уравнения по количеству переменных, а правую часть второго уравнения как Распредели уравнения по количеству переменных, то система примет вид:

    Распредели уравнения по количеству переменных

    У нас получилась пропорция. Перемножим её крайние и средние члены. Тогда система примет вид:

    Распредели уравнения по количеству переменных

    Первое уравнение умножим на −3, а во втором раскроем скобки:

    Распредели уравнения по количеству переменных

    Теперь сложим оба уравнения. В результате сложения этих уравнений, мы получим равенство, в обеих частях которого будет ноль:

    Распредели уравнения по количеству переменных

    Получается, что система Распредели уравнения по количеству переменныхимеет бесчисленное множество решений.

    Но мы не можем просто так взять с неба произвольные значения для x и y . Мы можем указать одно из значений, а другое определится в зависимости от значения, указанного нами. Например, пусть x = 2 . Подставим это значение в систему:

    Распредели уравнения по количеству переменных

    В результате решения одного из уравнений, определится значение для y , которое будет удовлетворять обоим уравнениям:

    Распредели уравнения по количеству переменных

    Получившаяся пара значений (2; −2) будет удовлетворять системе:

    Распредели уравнения по количеству переменных

    Найдём еще одну пару значений. Пусть x = 4. Подставим это значение в систему:

    Распредели уравнения по количеству переменных

    На глаз можно определить, что значение y равно нулю. Тогда получим пару значений (4; 0), которая удовлетворяет нашей системе:

    Распредели уравнения по количеству переменных

    Пример 8. Решить следующую систему уравнений методом сложения:

    Распредели уравнения по количеству переменных

    Умножим первое уравнение на 6, а второе на 12

    Распредели уравнения по количеству переменных

    Перепишем то, что осталось:

    Распредели уравнения по количеству переменных

    Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

    Распредели уравнения по количеству переменных

    Первое уравнение умножим на −1. Тогда система примет вид:

    Распредели уравнения по количеству переменных

    Теперь сложим оба уравнения. В результате сложения образуется уравнение 6b = 48 , корень которого равен 8. Подставим b в первое уравнение и найдём a

    Распредели уравнения по количеству переменных

    Видео:Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.Скачать

    Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.

    Система линейных уравнений с тремя переменными

    В линейное уравнение с тремя переменными входит три переменные с коэффициентами, а также свободный член. В каноническом виде его можно записать следующим образом:

    Данное уравнение имеет бесчисленное множество решений. Придавая двум переменным различные значения, можно найти третье значение. Решением в этом случае является тройка значений (x; y; z) которая обращает уравнение в тождество.

    Если переменные x, y, z связаны между собой тремя уравнениями, то образуется система трех линейных уравнений с тремя переменными. Для решения такой системы можно применять те же методы, которые применяются к линейным уравнениям с двумя переменными: метод подстановки и метод сложения.

    Пример 1. Решить следующую систему уравнений методом подстановки:

    Распредели уравнения по количеству переменных

    Выразим в третьем уравнении x . Тогда система примет вид:

    Распредели уравнения по количеству переменных

    Теперь выполним подстановку. Переменная x равна выражению 3 − 2y − 2z . Подставим это выражение в первое и второе уравнение:

    Распредели уравнения по количеству переменных

    Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

    Распредели уравнения по количеству переменных

    Мы пришли к системе линейных уравнений с двумя переменными. В данном случае удобно применить метод сложения. В результате переменная y исчезнет, и мы сможем найти значение переменной z

    Распредели уравнения по количеству переменных

    Теперь найдём значение y . Для этого удобно воспользоваться уравнением −y + z = 4. Подставим в него значение z

    Распредели уравнения по количеству переменных

    Теперь найдём значение x . Для этого удобно воспользоваться уравнением x = 3 − 2y − 2z . Подставим в него значения y и z

    Распредели уравнения по количеству переменных

    Таким образом, тройка значений (3; −2; 2) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

    Распредели уравнения по количеству переменных

    Пример 2. Решить систему методом сложения

    Распредели уравнения по количеству переменных

    Сложим первое уравнение со вторым, умноженным на −2.

    Если второе уравнение умножить на −2, то оно примет вид −6x + 6y − 4z = −4 . Теперь сложим его с первым уравнением:

    Распредели уравнения по количеству переменных

    Видим, что в результате элементарных преобразований, определилось значение переменной x . Оно равно единице.

    Вернемся к главной системе. Сложим второе уравнение с третьим, умноженным на −1. Если третье уравнение умножить на −1, то оно примет вид −4x + 5y − 2z = −1 . Теперь сложим его со вторым уравнением:

    Распредели уравнения по количеству переменных

    Получили уравнение x − 2y = −1 . Подставим в него значение x , которое мы находили ранее. Тогда мы сможем определить значение y

    Распредели уравнения по количеству переменных

    Теперь нам известны значения x и y . Это позволяет определить значение z . Воспользуемся одним из уравнений, входящим в систему:

    Распредели уравнения по количеству переменных

    Таким образом, тройка значений (1; 1; 1) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

    Распредели уравнения по количеству переменных

    Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать

    Алгебра 7 Линейное уравнение с одной переменной

    Задачи на составление систем линейных уравнений

    Задача на составление систем уравнений решается путем ввода нескольких переменных. Далее составляются уравнения на основании условий задачи. Из составленных уравнений образуют систему и решают её. Решив систему, необходимо выполнить проверку на то, удовлетворяет ли её решение условиям задачи.

    Задача 1. Из города в колхоз выехала машина «Волга». Обратно она возвращалась по другой дороге, которая была на 5 км короче первой. Всего в оба конца машина проехала 35 км. Сколько километров составляет длина каждой дороги?

    Решение

    Пусть x — длина первой дороги, y — длина второй. Если в оба конца машина проехала 35 км, то первое уравнение можно записать как x + y = 35. Это уравнение описывает сумму длин обеих дорог.

    Сказано, что обратно машина возвращалась по дороге которая была короче первой на 5 км. Тогда второе уравнение можно записать как xy = 5. Это уравнение показывает, что разница между длинами дорог составляет 5 км.

    Либо второе уравнение можно записать как x = y + 5 . Этим уравнением и воспользуемся.

    Поскольку переменные x и y в обоих уравнениях обозначают одно и то же число, то мы можем образовать из них систему:

    Распредели уравнения по количеству переменных

    Решим эту систему каким-нибудь из изученных ранее методов. В данном случае удобно воспользоваться методом подстановки, поскольку во втором уравнении переменная x уже выражена.

    Подставим второе уравнение в первое и найдём y

    Распредели уравнения по количеству переменных

    Подставим найденное значение y в во второе уравнение x = y + 5 и найдём x

    Распредели уравнения по количеству переменных

    Длина первой дороги была обозначена через переменную x . Теперь мы нашли её значение. Переменная x равна 20. Значит длина первой дороги составляет 20 км.

    А длина второй дороги была обозначена через y . Значение этой переменной равно 15. Значит длина второй дороги составляет 15 км.

    Выполним проверку. Для начала убедимся, что система решена правильно:

    Распредели уравнения по количеству переменных

    Теперь проверим удовлетворяет ли решение (20; 15) условиям задачи.

    Было сказано, что всего в оба конца машина проехала 35 км. Складываем длины обеих дорог и убеждаемся, что решение (20; 15) удовлетворяет данному условию: 20 км + 15 км = 35 км

    Следующее условие: обратно машина возвращалась по другой дороге, которая была на 5 км короче первой . Видим, что решение (20; 15) удовлетворяет и этому условию, поскольку 15 км короче, чем 20 км на 5 км: 20 км − 15 км = 5 км

    При составлении системы важно, чтобы переменные обозначали одни и те же числа во всех уравнениях, входящих в эту систему.

    Так наша система Распредели уравнения по количеству переменныхсодержит два уравнения. Эти уравнения в свою очередь содержат переменные x и y , которые обозначают одни и те же числа в обоих уравнениях, а именно длины дорог, равных 20 км и 15 км.

    Задача 2. На платформу были погружены дубовые и сосновые шпалы, всего 300 шпал. Известно, что все дубовые шпалы весили на 1 т меньше, чем все сосновые. Определить, сколько было дубовых и сосновых шпал отдельно, если каждая дубовая шпала весила 46 кг, а каждая сосновая 28 кг.

    Решение

    Пусть x дубовых и y сосновых шпал было погружено на платформу. Если всего шпал было 300, то первое уравнение можно записать как x + y = 300 .

    Все дубовые шпалы весили 46x кг, а сосновые весили 28y кг. Поскольку дубовые шпалы весили на 1 т меньше, чем сосновые, то второе уравнение можно записать, как 28y − 46x = 1000 . Это уравнение показывает, что разница масс между дубовыми и сосновыми шпалами, составляет 1000 кг.

    В результате получаем два уравнения, которые образуют систему

    Распредели уравнения по количеству переменных

    Решим данную систему. Выразим в первом уравнении x . Тогда система примет вид:

    Распредели уравнения по количеству переменных

    Подставим первое уравнение во второе и найдём y

    Распредели уравнения по количеству переменных

    Подставим y в уравнение x = 300 − y и узнаем чему равно x

    Распредели уравнения по количеству переменных

    Значит на платформу было погружено 100 дубовых и 200 сосновых шпал.

    Проверим удовлетворяет ли решение (100; 200) условиям задачи. Для начала убедимся, что система решена правильно:

    Распредели уравнения по количеству переменных

    Было сказано, что всего было 300 шпал. Складываем количество дубовых и сосновых шпал и убеждаемся, что решение (100; 200) удовлетворяет данному условию: 100 + 200 = 300.

    Следующее условие: все дубовые шпалы весили на 1 т меньше, чем все сосновые . Видим, что решение (100; 200) удовлетворяет и этому условию, поскольку 46 × 100 кг дубовых шпал легче, чем 28 × 200 кг сосновых шпал: 5600 кг − 4600 кг = 1000 кг.

    Задача 3. Взяли три куска сплава меди с никелем в отношениях 2 : 1 , 3 : 1 и 5 : 1 по массе. Из них сплавлен кусок массой 12 кг с отношением содержания меди и никеля 4 : 1 . Найдите массу каждого исходного куска, если масса первого из них вдвое больше массы второго.

    Решение

    Пусть x — масса первого куска, y — масса второго куска, z — масса третьего куска. Если из этих кусков сплавлен кусок массой 12 кг, то первое уравнение можно записать как x + y + z = 12 .

    Масса первого куска вдвое больше массы второго куска. Тогда второе уравнение можно записать как x = 2y .

    Полученных двух уравнений недостаточно для решения данной задачи. Если второе уравнение подставить в первое, то мы получим уравнение 2y + y + z = 12 , откуда 3y + z = 12 . Это уравнение имеет бесчисленное множество решений.

    Составим ещё одно уравнение. Пусть это уравнение будет описывать количество меди, взятого с каждого сплава и сколько меди оказалось в получившемся сплаве.

    Если первый сплав имеет массу x , а медь и никель находится нём в отношении 2 : 1 , то можно записать, что в новом сплаве содержится Распредели уравнения по количеству переменныхмеди от первого куска.

    Если второй сплав имеет массу y , а медь и никель находится в нём в отношении 3 : 1 , то можно записать, что в новом сплаве содержится Распредели уравнения по количеству переменныхмеди от второго куска.

    Если третий сплав имеет массу z , а медь и никель находится в отношении 5 : 1 , то можно записать, что в новом сплаве содержится Распредели уравнения по количеству переменныхмеди от третьего куска.

    Полученный сплав имеет имеет массу 12 кг, а медь и никель находится в нём в отношении 4 : 1 . Тогда можно записать, что в полученном сплаве содержится Распредели уравнения по количеству переменныхмеди.

    Сложим Распредели уравнения по количеству переменных, Распредели уравнения по количеству переменных, Распредели уравнения по количеству переменныхи приравняем эту сумму к 9,6. Это и будет нашим третьим уравнением:

    Распредели уравнения по количеству переменных

    Попробуем решить данную систему.

    Для начала упростим третье уравнение. Подставим в него второе уравнение и посмотрим, что из этого выйдет:

    Распредели уравнения по количеству переменных

    Теперь в главной системе вместо уравнения Распредели уравнения по количеству переменныхзапишем уравнение, которое мы сейчас получили, а именно уравнение 25y + 10z = 115,2

    Распредели уравнения по количеству переменных

    Подставим второе уравнение в первое:

    Распредели уравнения по количеству переменных

    Умножим первое уравнение на −10 . Тогда система примет вид:

    Распредели уравнения по количеству переменных

    Сложим оба уравнения. Тогда получим простейшее уравнение −5y = −4,8 откуда найдём y равный 0,96 . Значит масса второго сплава составляет 0,96 кг .

    Теперь найдём x . Для этого удобно воспользоваться уравнением x = 2y. Значение y уже известно. Осталось только подставить его:

    Распредели уравнения по количеству переменных

    Значит масса первого сплава составляет 1,92 кг .

    Теперь найдём z . Для этого удобно воспользоваться уравнением x + y + z = 12 . Значения x и y уже известны. Подставим их куда нужно:

    Распредели уравнения по количеству переменных

    Значит масса третьего сплава составляет 9,12 кг.

    Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

    Линейное уравнение с двумя переменными. 7 класс.

    Уравнения с двумя переменными (неопределенные уравнения)

    Разделы: Математика

    Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

    Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

    В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

    Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

    Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

    Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

    Цель урока:

      повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
    • воспитание познавательного интереса к учебному предмету
    • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

    Урок 1.

    Ход урока.

    1) Орг. момент.

    2) Актуализация опорных знаний.

    Определение. Линейным уравнением с двумя переменными называется уравнение вида

    mx + ny = k, где m, n, k – числа, x, y – переменные.

    Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

    Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

    1. 5x+2y=12 Распредели уравнения по количеству переменных(2)y = -2.5x+6

    Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

    Пусть x = 2, y = -2.5•2+6 = 1

    x = 4, y = -2.5•4+6 =- 4

    Пары чисел (2;1); (4;-4) – решения уравнения (1).

    Данное уравнение имеет бесконечно много решений.

    3) Историческая справка

    Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

    В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

    Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

    4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Распредели уравнения по количеству переменныхZ kРаспредели уравнения по количеству переменных0

    Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

    Пример: 34x – 17y = 3.

    НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

    Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

    Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

    Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

    Распредели уравнения по количеству переменныхгде (Распредели уравнения по количеству переменных; Распредели уравнения по количеству переменных) – какое-либо решение уравнения (1), t Распредели уравнения по количеству переменныхZ

    Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

    m, n, x, y Распредели уравнения по количеству переменныхZ

    Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид Распредели уравнения по количеству переменных

    5) Домашнее задание. Решить уравнение в целых числах:

  • 9x – 18y = 5
  • x + y= xy
  • Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  • Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

    Урок 2.

    1) Организационный момент

    2) Проверка домашнего задания

    5 не делится нацело на 9, в целых числах решений нет.

    Методом подбора можно найти решение

    3) Составим уравнение:

    Пусть мальчиков x, x Распредели уравнения по количеству переменныхZ, а девочек у, y Распредели уравнения по количеству переменныхZ, то можно составить уравнение 21x + 15y = 174

    Многие учащиеся, составив уравнение, не смогут его решить.

    Ответ: мальчиков 4, девочек 6.

    3) Изучение нового материала

    Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

    I. Метод рассмотрения остатков от деления.

    Пример. Решить уравнение в целых числах 3x – 4y = 1.

    Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

    1. Если y = 3m, m Распредели уравнения по количеству переменныхZ, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
    2. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
    3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2.

    Ответ: Распредели уравнения по количеству переменныхгде m Распредели уравнения по количеству переменныхZ.

    Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

    Пример: Решить уравнения в целых числах.

    Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4.

    y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

    y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

    y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

    Следовательно, y = 4n, тогда

    4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n

    Ответ: Распредели уравнения по количеству переменных, где n Распредели уравнения по количеству переменныхZ.

    II. Неопределенные уравнения 2-ой степени

    Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

    И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

    Пример: Решить уравнение в целых числах.

    Распредели уравнения по количеству переменных

    13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1)

    Рассмотрим эти случаи

    а) Распредели уравнения по количеству переменных=> Распредели уравнения по количеству переменных

    б) Распредели уравнения по количеству переменных=> Распредели уравнения по количеству переменных

    в) Распредели уравнения по количеству переменных=> Распредели уравнения по количеству переменных

    г) Распредели уравнения по количеству переменных=> Распредели уравнения по количеству переменных

    4) Домашнее задание.

    Примеры. Решить уравнение в целых числах:

    а) Распредели уравнения по количеству переменных

    Распредели уравнения по количеству переменныхРаспредели уравнения по количеству переменныхРаспредели уравнения по количеству переменных
    2x = 42x = 52x = 5
    x = 2x = 5/2x = 5/2
    y = 0не подходитне подходит
    Распредели уравнения по количеству переменныхРаспредели уравнения по количеству переменныхРаспредели уравнения по количеству переменных
    2x = -4не подходитне подходит
    x = -2
    y = 0

    б) Распредели уравнения по количеству переменных

    в) Распредели уравнения по количеству переменных

    Итоги. Что значит решить уравнение в целых числах?

    Какие методы решения неопределенных уравнений вы знаете?

    Упражнения для тренировки.

    1) Решите в целых числах.

    а) 8x + 12y = 32x = 1 + 3n, y = 2 — 2n, n Распредели уравнения по количеству переменныхZ
    б) 7x + 5y = 29x = 2 + 5n, y = 3 – 7n, n Распредели уравнения по количеству переменныхZ
    в) 4x + 7y = 75x = 3 + 7n, y = 9 – 4n, n Распредели уравнения по количеству переменныхZ
    г) 9x – 2y = 1x = 1 – 2m, y = 4 + 9m, m Распредели уравнения по количеству переменныхZ
    д) 9x – 11y = 36x = 4 + 11n, y = 9n, n Распредели уравнения по количеству переменныхZ
    е) 7x – 4y = 29x = 3 + 4n, y = -2 + 7n, n Распредели уравнения по количеству переменныхZ
    ж) 19x – 5y = 119x = 1 + 5p, y = -20 + 19p, p Распредели уравнения по количеству переменныхZ
    з) 28x – 40y = 60x = 45 + 10t, y = 30 + 7t, t Распредели уравнения по количеству переменныхZ

    2) Найти целые неотрицательные решения уравнения:

    а) 8x + 65y = 81x = 2, y = 1
    б) 17x + 23y = 183x = 4, y = 5

    3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям

    а) x + y = xy(0;0), (2;2)
    б) Распредели уравнения по количеству переменных(1;2), (5;2), (-1;-1), (-5;-2)

    Распредели уравнения по количеству переменных

    Число 3 можно разложить на множители:

    a) Распредели уравнения по количеству переменныхб) Распредели уравнения по количеству переменныхв) Распредели уравнения по количеству переменныхг) Распредели уравнения по количеству переменных
    в) Распредели уравнения по количеству переменных(11;12), (-11;-12), (-11;12), (11;-12)
    г) Распредели уравнения по количеству переменных(24;23), (24;-23), (-24;-23), (-24;23)
    д) Распредели уравнения по количеству переменных(48;0), (24;1), (24;-1)
    е) Распредели уравнения по количеству переменныхx = 3m; y = 2m, mРаспредели уравнения по количеству переменныхZ
    ж) y = 2x – 1x = m: y = 2m – 1, m Распредели уравнения по количеству переменныхZ
    з) Распредели уравнения по количеству переменныхx = 2m; y = m; x = 2m; y = -m, m Распредели уравнения по количеству переменныхZ
    и)Распредели уравнения по количеству переменныхрешений нет

    4) Решить уравнения в целых числах

    Распредели уравнения по количеству переменных(-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
    (x — 3)(xy + 5) = 5(-2;3), (2;-5), (4;0)
    (y + 1)(xy – 1)=3(0;-4), (1;-2), (1;2)
    Распредели уравнения по количеству переменных(-4;-1), (-2;1), (2;-1), (4;1)
    Распредели уравнения по количеству переменных(-11;-12), (-11;12), (11;-12), (11;12)
    Распредели уравнения по количеству переменных(-24;23), (-24;23), (24;-23), (24;23)

    5) Решить уравнения в целых числах.

    а) Распредели уравнения по количеству переменных(-1;0)
    б)Распредели уравнения по количеству переменных(5;0)
    в) Распредели уравнения по количеству переменных(2;-1)
    г) Распредели уравнения по количеству переменных(2; -1)
  • Детская энциклопедия “Педагогика”, Москва, 1972 г.
  • Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
  • Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
  • Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
  • Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • 🔥 Видео

    Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

    Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

    Как решить уравнение #россия #сша #америка #уравненияСкачать

    Как решить уравнение #россия #сша #америка #уравнения

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

    ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

    ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

    Виды уравнений. Свойства уравнений. Перенос слагаемых из одной части уравнения в другую. Алгебра 7.Скачать

    Виды уравнений. Свойства уравнений. Перенос слагаемых из одной части уравнения в другую. Алгебра 7.

    Как решают уравнения в России и США!?Скачать

    Как решают уравнения в России и США!?

    МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

    МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

    7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать

    7 класс, 4 урок, Линейное уравнение с одной переменной

    Линейное уравнение с одной переменнойСкачать

    Линейное уравнение с одной переменной

    Уравнения с одной переменной. Видеоурок по алгебре за 7 класс.Скачать

    Уравнения с одной переменной. Видеоурок по алгебре за 7 класс.

    Линейное уравнение. Что это?Скачать

    Линейное уравнение. Что это?

    Как решают уравнения в России и СШАСкачать

    Как решают уравнения в России и США
    Поделиться или сохранить к себе: