Распредели уравнения по числу переменных учи

Ответы на олимпиаду Учи.ру по математике 5-11 классы (с 1 февраля 2022г)

Распредели уравнения по числу переменных учи

Ответы по математике для 1-4 классов здесь: 1-4 классы

Для 5-11 классов предлагается выполнить следующие 8 заданий:

  1. Карта вселенной
  2. Самоссылающийся текст
  3. Мосты
  4. Тайна древнего храма
  5. Узлы
  6. Цветные кирпичи
  7. Субботник
  8. Кубики с числами

Ниже представлены ответы на задания олимпиады. Все задания решены правильно, на максимальное количество баллов. Мы не призываем никого списывать, решайте самостоятельно.

Обращаем ваше внимание! Задание “Узлы” за 5,6,7 класс у нас было оценено на 0 баллов, хотя оно 100% решено верно. Это скорее всего ошибка программы Учи.ру. Эту ошибку возможно программисты Учи.ру уже устранили или устранят. Те же самые ответы за 8-11 классы дают 100% правильное решение.

Содержание
  1. 1. Карта вселенной
  2. 2. Самоссылающийся текст
  3. 3. Мосты
  4. 4. Тайна древнего храма
  5. 5, 6 класс
  6. 7-9 класс
  7. 10-11 класс
  8. 5. Узлы
  9. 6. Цветные кирпичи
  10. 7. Субботник
  11. 8. Кубики с числами
  12. Уравнения с двумя переменными (неопределенные уравнения)
  13. Урок 1.
  14. Ход урока.
  15. 1) Орг. момент.
  16. 2) Актуализация опорных знаний.

    Определение. Линейным уравнением с двумя переменными называется уравнение вида mx + ny = k, где m, n, k – числа, x, y – переменные. Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство. Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными. 1. 5x+2y=12 (2)y = -2.5x+6 Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y. Пусть x = 2, y = -2.5•2+6 = 1 x = 4, y = -2.5•4+6 =- 4 Пары чисел (2;1); (4;-4) – решения уравнения (1). Данное уравнение имеет бесконечно много решений. 3) Историческая справка Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной. В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику. Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени. 4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах:
  17. 9x – 18y = 5 x + y= xy Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  18. 🔍 Видео
Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором. Урок 2. 1) Организационный момент 2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6. 3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) => 4) Домашнее задание. Примеры. Решить уравнение в целых числах: а) 2x = 4 2x = 5 2x = 5 x = 2 x = 5/2 x = 5/2 y = 0 не подходит не подходит 2x = -4 не подходит не подходит x = -2 y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах. а) 8x + 12y = 32 x = 1 + 3n, y = 2 — 2n, n Z б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения: а) 8x + 65y = 81 x = 2, y = 1 б) 17x + 23y = 183 x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям а) x + y = xy (0;0), (2;2) б) (1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители: a) б) в) г) в) (11;12), (-11;-12), (-11;12), (11;-12) г) (24;23), (24;-23), (-24;-23), (-24;23) д) (48;0), (24;1), (24;-1) е) x = 3m; y = 2m, mZ ж) y = 2x – 1 x = m: y = 2m – 1, m Z з) x = 2m; y = m; x = 2m; y = -m, m Z и) решений нет 4) Решить уравнения в целых числах (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4) (x — 3)(xy + 5) = 5 (-2;3), (2;-5), (4;0) (y + 1)(xy – 1)=3 (0;-4), (1;-2), (1;2) (-4;-1), (-2;1), (2;-1), (4;1) (-11;-12), (-11;12), (11;-12), (11;12) (-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах. а) (-1;0) б) (5;0) в) (2;-1) г) (2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г. Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г. Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г. Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г. Алгебра 7, Макарычев Ю.Н., “Просвещение”. Уравнение с двумя переменными Уравнение с двумя переменными и его решение Уравнение вида ax+by = c , где a,b,c — данные числа, называется линейным уравнением с двумя переменными x и y. Например: 2x+5y = 6; -x+1,5y = 0; $frac$ x-8y = 7 Уравнение с двумя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x и y. Например: $2x^2+y^2 = 3, x-5y^2 = 1, 7x^3+y = 7$ Решением уравнения с двумя переменными называется упорядоченная пара значений переменных (x,y), обращающая это уравнение в тождество. О тождествах – см. §3 данного справочника Например: для уравнения 2x+5y=6 решениями являются пары x = -2, y = 2; x = -1,y = 1,6; x = -3,y = 2,4 и т.д. Уравнение имеет бесконечное множество решений. Свойства уравнения с двумя переменными Уравнения с двумя переменными, имеющие одни и те же решения, называют равносильными. Уравнения с двумя переменными, не имеющие решений, также считают равносильными. Уравнения с двумя переменными имеют такие же свойства, как и уравнения с одной переменной: если в уравнении перенести слагаемое из одной части в другую и изменить его знак, получится уравнение, равносильное данному; если обе части уравнения умножить или разделить на одно и то же, отличное от нуля число, то получится уравнение, равносильное данному. Например: $2x+5y = 6 ⟺5y = -2x+6 iff y = -0,4x+1,2$ Примеры Пример 1. Из данного линейного уравнения выразите y через x и x через y: Алгоритм: рассмотрим 3x+4y=10 1) оставим слагаемое с выражаемой переменной с одной стороны, остальные слагаемые перенесем в другую сторону: 4y=-3x+10 2) разделим полученное уравнение слева и справа на коэффициент при выражаемой переменной: y=-0,75x+2,5 — искомое выражение y(x). Аналогично для x(y): $3x+4y = 10 iff 3x = -4y+10 iff x = -1 frac y+3 frac$
  • 3) Историческая справка
  • 4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах:
  • 9x – 18y = 5 x + y= xy Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки? Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором. Урок 2. 1) Организационный момент 2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6. 3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) => 4) Домашнее задание. Примеры. Решить уравнение в целых числах: а) 2x = 4 2x = 5 2x = 5 x = 2 x = 5/2 x = 5/2 y = 0 не подходит не подходит 2x = -4 не подходит не подходит x = -2 y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах. а) 8x + 12y = 32 x = 1 + 3n, y = 2 — 2n, n Z б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения: а) 8x + 65y = 81 x = 2, y = 1 б) 17x + 23y = 183 x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям а) x + y = xy (0;0), (2;2) б) (1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители: a) б) в) г) в) (11;12), (-11;-12), (-11;12), (11;-12) г) (24;23), (24;-23), (-24;-23), (-24;23) д) (48;0), (24;1), (24;-1) е) x = 3m; y = 2m, mZ ж) y = 2x – 1 x = m: y = 2m – 1, m Z з) x = 2m; y = m; x = 2m; y = -m, m Z и) решений нет 4) Решить уравнения в целых числах (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4) (x — 3)(xy + 5) = 5 (-2;3), (2;-5), (4;0) (y + 1)(xy – 1)=3 (0;-4), (1;-2), (1;2) (-4;-1), (-2;1), (2;-1), (4;1) (-11;-12), (-11;12), (11;-12), (11;12) (-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах. а) (-1;0) б) (5;0) в) (2;-1) г) (2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г. Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г. Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г. Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г. Алгебра 7, Макарычев Ю.Н., “Просвещение”. Уравнение с двумя переменными Уравнение с двумя переменными и его решение Уравнение вида ax+by = c , где a,b,c — данные числа, называется линейным уравнением с двумя переменными x и y. Например: 2x+5y = 6; -x+1,5y = 0; $frac$ x-8y = 7 Уравнение с двумя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x и y. Например: $2x^2+y^2 = 3, x-5y^2 = 1, 7x^3+y = 7$ Решением уравнения с двумя переменными называется упорядоченная пара значений переменных (x,y), обращающая это уравнение в тождество. О тождествах – см. §3 данного справочника Например: для уравнения 2x+5y=6 решениями являются пары x = -2, y = 2; x = -1,y = 1,6; x = -3,y = 2,4 и т.д. Уравнение имеет бесконечное множество решений. Свойства уравнения с двумя переменными Уравнения с двумя переменными, имеющие одни и те же решения, называют равносильными. Уравнения с двумя переменными, не имеющие решений, также считают равносильными. Уравнения с двумя переменными имеют такие же свойства, как и уравнения с одной переменной: если в уравнении перенести слагаемое из одной части в другую и изменить его знак, получится уравнение, равносильное данному; если обе части уравнения умножить или разделить на одно и то же, отличное от нуля число, то получится уравнение, равносильное данному. Например: $2x+5y = 6 ⟺5y = -2x+6 iff y = -0,4x+1,2$ Примеры Пример 1. Из данного линейного уравнения выразите y через x и x через y: Алгоритм: рассмотрим 3x+4y=10 1) оставим слагаемое с выражаемой переменной с одной стороны, остальные слагаемые перенесем в другую сторону: 4y=-3x+10 2) разделим полученное уравнение слева и справа на коэффициент при выражаемой переменной: y=-0,75x+2,5 — искомое выражение y(x). Аналогично для x(y): $3x+4y = 10 iff 3x = -4y+10 iff x = -1 frac y+3 frac$
  • Урок 2.
  • 1) Организационный момент
  • 2) Проверка домашнего задания
  • 3) Изучение нового материала
  • 4) Домашнее задание.
  • Уравнение с двумя переменными
  • Уравнение с двумя переменными и его решение
  • Свойства уравнения с двумя переменными
  • Примеры
  • Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

    Как решать уравнения? уравнение 7 класс. Линейное уравнение

    1. Карта вселенной

    Расставь планеты в галактике согласно правилам: цвет планеты соответствует цвету в клетке, одна планета в строчке и в столбике, планеты не могут стоять рядом друг с другом, даже по диагонали.

    Распредели уравнения по числу переменных учи Распредели уравнения по числу переменных учи Распредели уравнения по числу переменных учи

    Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

    Линейное уравнение с двумя переменными. 7 класс.

    2. Самоссылающийся текст

    Отметь зелёным один правильный ответ для каждого вопроса. Для удобства можешь вычёркивать неправильные ответы.

    Распредели уравнения по числу переменных учи Распредели уравнения по числу переменных учи Распредели уравнения по числу переменных учи Распредели уравнения по числу переменных учи Распредели уравнения по числу переменных учи Распредели уравнения по числу переменных учи

    Видео:Линейное уравнение с одной переменной. 6 класс.Скачать

    Линейное уравнение с одной переменной. 6 класс.

    3. Мосты

    Рыцарю нужно добраться до замка через 3 рва. Чтобы их преодолеть, нужно над каждым построить мост. Собери мост из нескольких частей.

    Получить 5/3 при помощи 3 частей. Ответ: 1 + 1/3 + 1/3.

    Получить 8/5 при помощи 4 частей. Ответ: 1 + 1/5 + 1/5 + 1/5.

    Получить 3/4 при помощи 4 частей. Ответ: 1/6 + 1/6 + 1/6 + 1/4.

    Получить 7/5 при помощи 4 частей. Ответ: 1/2 + 1/2 + 1/5 + 1/5.

    Получить 11/6 при помощи 3 частей. Ответ: 1 + 1/2 + 1/3.

    Получить 17/10 при помощи 3 частей. Ответ: 1 + 1/2 + 1/5.

    Получить 9/10 при помощи 3 частей. Ответ: 1/2 + 1/5 + 1/5.

    Получить 13/6 при помощи 4 частей. Ответ: 1 + 1/2 + 1/3 + 1/3.

    Получить 23/15 при помощи 3 частей. Ответ: 1 + 1/5 + 1/3.

    Распредели уравнения по числу переменных учи

    Видео:Уравнение с двумя переменными и его график. Алгебра, 9 классСкачать

    Уравнение с двумя переменными и его график. Алгебра, 9 класс

    4. Тайна древнего храма

    Перемести камень на башню со слоном так, чтобы выражения на двух башнях совпали.

    5, 6 класс

    Получить 44. Выбираем последовательно (+1) (*3) (+1) (*3) (+1) (+1) (*3) (+1) (+1)

    Получить 82. Выбираем последовательно (+1) (+1) (+1) ( ) 2 ( ) 2 (+1)

    Получить 43. Выбираем последовательно (+1) (*3) (+1) (*3) (+1) (+1) (*3) (+1)

    7-9 класс

    Получить 67. Выбираем последовательно (+1) (+1) (*3) (+1) (*3) (+1) (*3) (+1)

    Получить 29. Выбираем последовательно (*4) (*2) (+1) (*3) (+1) (+1)

    10-11 класс

    Получить 75. Выбираем последовательно (+1) (+1) (*3) (+1) (+1) (*3) (+1) (*3)

    Получить -x+1. Выбираем последовательно (-1) (*x) (*x) (+x) (1/x-1) (+1)

    Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

    ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

    5. Узлы

    На картинках внизу замаскированы Трилистники, Восьмёрки и тривиальные узлы. Определи тип каждого узла.

    Распредели уравнения по числу переменных учи

    Видео:Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

    Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

    6. Цветные кирпичи

    Раскрась два отражения. Учти, что все кирпичи одинакового размера, цвета и формы.

    Распредели уравнения по числу переменных учи Распредели уравнения по числу переменных учи Распредели уравнения по числу переменных учи

    Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

    ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

    7. Субботник

    Проложи для робота самый короткий путь к базе так, чтобы он собрал весь мусор.

    Распредели уравнения по числу переменных учи Распредели уравнения по числу переменных учи Распредели уравнения по числу переменных учи

    Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать

    Алгебра 7 Линейное уравнение с одной переменной

    8. Кубики с числами

    Расставь все кубики с числами на поле. Каждая фишка равна сумме чисел на кубиках в ряду. Кубики не должны касаться друг друга.

    Видео:Линейное уравнение с одной переменнойСкачать

    Линейное уравнение с одной переменной

    Уравнения с двумя переменными (неопределенные уравнения)

    Разделы: Математика

    Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

    Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

    В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

    Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

    Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

    Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

    Цель урока:

      повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
    • воспитание познавательного интереса к учебному предмету
    • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

    Урок 1.

    Ход урока.

    1) Орг. момент.

    2) Актуализация опорных знаний.

    Определение. Линейным уравнением с двумя переменными называется уравнение вида

    mx + ny = k, где m, n, k – числа, x, y – переменные.

    Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

    Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

    1. 5x+2y=12 Распредели уравнения по числу переменных учи(2)y = -2.5x+6

    Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

    Пусть x = 2, y = -2.5•2+6 = 1

    x = 4, y = -2.5•4+6 =- 4

    Пары чисел (2;1); (4;-4) – решения уравнения (1).

    Данное уравнение имеет бесконечно много решений.

    3) Историческая справка

    Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

    В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

    Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

    4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Распредели уравнения по числу переменных учиZ kРаспредели уравнения по числу переменных учи0

    Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

    Пример: 34x – 17y = 3.

    НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

    Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

    Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

    Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

    Распредели уравнения по числу переменных учигде (Распредели уравнения по числу переменных учи; Распредели уравнения по числу переменных учи) – какое-либо решение уравнения (1), t Распредели уравнения по числу переменных учиZ

    Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

    m, n, x, y Распредели уравнения по числу переменных учиZ

    Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид Распредели уравнения по числу переменных учи

    5) Домашнее задание. Решить уравнение в целых числах:

  • 9x – 18y = 5
  • x + y= xy
  • Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  • Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

    Урок 2.

    1) Организационный момент

    2) Проверка домашнего задания

    5 не делится нацело на 9, в целых числах решений нет.

    Методом подбора можно найти решение

    3) Составим уравнение:

    Пусть мальчиков x, x Распредели уравнения по числу переменных учиZ, а девочек у, y Распредели уравнения по числу переменных учиZ, то можно составить уравнение 21x + 15y = 174

    Многие учащиеся, составив уравнение, не смогут его решить.

    Ответ: мальчиков 4, девочек 6.

    3) Изучение нового материала

    Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

    I. Метод рассмотрения остатков от деления.

    Пример. Решить уравнение в целых числах 3x – 4y = 1.

    Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

    1. Если y = 3m, m Распредели уравнения по числу переменных учиZ, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
    2. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
    3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2.

    Ответ: Распредели уравнения по числу переменных учигде m Распредели уравнения по числу переменных учиZ.

    Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

    Пример: Решить уравнения в целых числах.

    Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4.

    y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

    y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

    y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

    Следовательно, y = 4n, тогда

    4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n

    Ответ: Распредели уравнения по числу переменных учи, где n Распредели уравнения по числу переменных учиZ.

    II. Неопределенные уравнения 2-ой степени

    Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

    И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

    Пример: Решить уравнение в целых числах.

    Распредели уравнения по числу переменных учи

    13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1)

    Рассмотрим эти случаи

    а) Распредели уравнения по числу переменных учи=> Распредели уравнения по числу переменных учи

    б) Распредели уравнения по числу переменных учи=> Распредели уравнения по числу переменных учи

    в) Распредели уравнения по числу переменных учи=> Распредели уравнения по числу переменных учи

    г) Распредели уравнения по числу переменных учи=> Распредели уравнения по числу переменных учи

    4) Домашнее задание.

    Примеры. Решить уравнение в целых числах:

    а) Распредели уравнения по числу переменных учи

    Распредели уравнения по числу переменных учиРаспредели уравнения по числу переменных учиРаспредели уравнения по числу переменных учи
    2x = 42x = 52x = 5
    x = 2x = 5/2x = 5/2
    y = 0не подходитне подходит
    Распредели уравнения по числу переменных учиРаспредели уравнения по числу переменных учиРаспредели уравнения по числу переменных учи
    2x = -4не подходитне подходит
    x = -2
    y = 0

    б) Распредели уравнения по числу переменных учи

    в) Распредели уравнения по числу переменных учи

    Итоги. Что значит решить уравнение в целых числах?

    Какие методы решения неопределенных уравнений вы знаете?

    Упражнения для тренировки.

    1) Решите в целых числах.

    а) 8x + 12y = 32x = 1 + 3n, y = 2 — 2n, n Распредели уравнения по числу переменных учиZ
    б) 7x + 5y = 29x = 2 + 5n, y = 3 – 7n, n Распредели уравнения по числу переменных учиZ
    в) 4x + 7y = 75x = 3 + 7n, y = 9 – 4n, n Распредели уравнения по числу переменных учиZ
    г) 9x – 2y = 1x = 1 – 2m, y = 4 + 9m, m Распредели уравнения по числу переменных учиZ
    д) 9x – 11y = 36x = 4 + 11n, y = 9n, n Распредели уравнения по числу переменных учиZ
    е) 7x – 4y = 29x = 3 + 4n, y = -2 + 7n, n Распредели уравнения по числу переменных учиZ
    ж) 19x – 5y = 119x = 1 + 5p, y = -20 + 19p, p Распредели уравнения по числу переменных учиZ
    з) 28x – 40y = 60x = 45 + 10t, y = 30 + 7t, t Распредели уравнения по числу переменных учиZ

    2) Найти целые неотрицательные решения уравнения:

    а) 8x + 65y = 81x = 2, y = 1
    б) 17x + 23y = 183x = 4, y = 5

    3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям

    а) x + y = xy(0;0), (2;2)
    б) Распредели уравнения по числу переменных учи(1;2), (5;2), (-1;-1), (-5;-2)

    Распредели уравнения по числу переменных учи

    Число 3 можно разложить на множители:

    a) Распредели уравнения по числу переменных учиб) Распредели уравнения по числу переменных учив) Распредели уравнения по числу переменных учиг) Распредели уравнения по числу переменных учи
    в) Распредели уравнения по числу переменных учи(11;12), (-11;-12), (-11;12), (11;-12)
    г) Распредели уравнения по числу переменных учи(24;23), (24;-23), (-24;-23), (-24;23)
    д) Распредели уравнения по числу переменных учи(48;0), (24;1), (24;-1)
    е) Распредели уравнения по числу переменных учиx = 3m; y = 2m, mРаспредели уравнения по числу переменных учиZ
    ж) y = 2x – 1x = m: y = 2m – 1, m Распредели уравнения по числу переменных учиZ
    з) Распредели уравнения по числу переменных учиx = 2m; y = m; x = 2m; y = -m, m Распредели уравнения по числу переменных учиZ
    и)Распредели уравнения по числу переменных учирешений нет

    4) Решить уравнения в целых числах

    Распредели уравнения по числу переменных учи(-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
    (x — 3)(xy + 5) = 5(-2;3), (2;-5), (4;0)
    (y + 1)(xy – 1)=3(0;-4), (1;-2), (1;2)
    Распредели уравнения по числу переменных учи(-4;-1), (-2;1), (2;-1), (4;1)
    Распредели уравнения по числу переменных учи(-11;-12), (-11;12), (11;-12), (11;12)
    Распредели уравнения по числу переменных учи(-24;23), (-24;23), (24;-23), (24;23)

    5) Решить уравнения в целых числах.

    а) Распредели уравнения по числу переменных учи(-1;0)
    б)Распредели уравнения по числу переменных учи(5;0)
    в) Распредели уравнения по числу переменных учи(2;-1)
    г) Распредели уравнения по числу переменных учи(2; -1)
  • Детская энциклопедия “Педагогика”, Москва, 1972 г.
  • Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
  • Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
  • Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
  • Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • Видео:Как решить уравнение #россия #сша #америка #уравненияСкачать

    Как решить уравнение #россия #сша #америка #уравнения

    Уравнение с двумя переменными

    Уравнение с двумя переменными и его решение

    Уравнение вида ax+by = c , где a,b,c — данные числа, называется линейным уравнением с двумя переменными x и y.

    Например: 2x+5y = 6; -x+1,5y = 0; $frac$ x-8y = 7

    Уравнение с двумя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x и y.

    Например: $2x^2+y^2 = 3, x-5y^2 = 1, 7x^3+y = 7$

    Решением уравнения с двумя переменными называется упорядоченная пара значений переменных (x,y), обращающая это уравнение в тождество.

    О тождествах – см. §3 данного справочника

    Например: для уравнения 2x+5y=6 решениями являются пары

    x = -2, y = 2; x = -1,y = 1,6; x = -3,y = 2,4 и т.д.

    Уравнение имеет бесконечное множество решений.

    Свойства уравнения с двумя переменными

    Уравнения с двумя переменными, имеющие одни и те же решения, называют равносильными. Уравнения с двумя переменными, не имеющие решений, также считают равносильными.

    Уравнения с двумя переменными имеют такие же свойства, как и уравнения с одной переменной:

    • если в уравнении перенести слагаемое из одной части в другую и изменить его знак, получится уравнение, равносильное данному;
    • если обе части уравнения умножить или разделить на одно и то же, отличное от нуля число, то получится уравнение, равносильное данному.

    Например: $2x+5y = 6 ⟺5y = -2x+6 iff y = -0,4x+1,2$

    Примеры

    Пример 1. Из данного линейного уравнения выразите y через x и x через y:

    Алгоритм: рассмотрим 3x+4y=10

    1) оставим слагаемое с выражаемой переменной с одной стороны, остальные слагаемые перенесем в другую сторону: 4y=-3x+10

    2) разделим полученное уравнение слева и справа на коэффициент при выражаемой переменной: y=-0,75x+2,5 — искомое выражение y(x).

    Аналогично для x(y): $3x+4y = 10 iff 3x = -4y+10 iff x = -1 frac y+3 frac$

    🔍 Видео

    7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать

    7 класс, 4 урок, Линейное уравнение с одной переменной

    Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

    Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

    Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.Скачать

    Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.

    Линейное уравнение с двумя переменными.Скачать

    Линейное уравнение с двумя переменными.

    Уравнения с дробями. Алгебра 7 класс.Скачать

    Уравнения с дробями. Алгебра 7 класс.

    МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

    МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

    Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать

    Линейное уравнение с одной переменной. Практическая часть. 6 класс.

    Линейное уравнение с одной переменнойСкачать

    Линейное уравнение с одной переменной

    Как решать линейные уравнения #математика #математика7классСкачать

    Как решать линейные уравнения   #математика #математика7класс

    МЕРЗЛЯК-7. ЛИНЕЙНЫЕ УРАВНЕНИЯ. ПАРАГРАФ-2Скачать

    МЕРЗЛЯК-7. ЛИНЕЙНЫЕ УРАВНЕНИЯ. ПАРАГРАФ-2
    Поделиться или сохранить к себе: