Расчеты по уравнению менделеева клапейрона

Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

Калькулятор ниже предназначен для решения задач на использование уравнения Клапейрона-Менделеева, или уравнение состояния идеального газа. Некоторая теория изложена под калькулятором, ну а чтобы было понятно, о чем идет речь — пара примеров задач:

Примеры задач на уравнение Менделеева-Клапейрона

В колбе объемом 2,6 литра находится кислород при давлении 2,3 атмосфер и температуре 26 градусов Цельсия .
Вопрос: сколько молей кислорода содержится в колбе?

  • Некоторое количество гелия при 78 градусах Цельсия и давлении 45,6 атмосфер занимает объем 16,5 литров.
    Вопрос: Каков объем этого газа при нормальных условиях? (Напомню, что нормальными условиями для газов считается давление в 1 атмосферу и температура 0 градусов Цельсия)
  • В калькулятор вводим начальные условия, выбираем, что считать (число моль, новые объем, температуру или давление), заполняем при необходимости оставшиеся условия, и получаем результат.

    Расчеты по уравнению менделеева клапейрона

    Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

    Теперь немного формул.

    где
    P — давление газа (например, в атмосферах)
    V — объем газа (в литрах);
    T — температура газа (в кельвинах);
    R — газовая постоянная (0,0821 л·атм/моль·K).
    Если используется СИ, то газовая постоянная равна 8,314 Дж/K·моль

    Так как m-масса газа в (кг) и M-молярная масса газа кг/моль, то m/M — число молей газа, и уравнение можно записать также

    где n — число молей газа

    И как нетрудно заметить, соотношение

    есть величина постоянная для одного и того же количества моль газа.

    И эту закономерность опытным путем установили еще до вывода уравнения. Это так называемые газовые законы — законы Бойля-Мариотта, Гей-Люссака, Шарля.

    Так, закон Бойля-Мариотта гласит (это два человека):
    Для данной массы газа m при неизменной температуре Т произведение давления на объем есть величина постоянная.

    Закон Гей-Люссака (а вот это один человек):
    Для данной массы m при постоянном давлении P объем газа линейно зависит от температуры

    Закон Шарля:
    Для данной массы m при постоянном объеме V давление газа линейно зависит от температуры

    Посмотрев на уравнение, нетрудно убедиться в справедливости этих законов.

    Уравнение Менделеева-Клапейрона, также как и опытные законы Бойля-Мариотта, Гей-Люссака и Шарля справедливы для широкого интервала давлений, объемов и температур. То есть во многих случаях эти законы удобны для практического применения. Однако не стоит забывать, что когда давления превышают атмосферное в 300-400 раз, или температуры очень высоки, наблюдаются отклонения от этих законов.
    Собственно, идеальный газ потому и называют идеальным, что по определению это и есть газ, для которого не существует отклонений от этих законов.

    Видео:Расчеты по уравнениям химических реакций. 1 часть. 8 класс.Скачать

    Расчеты по уравнениям химических реакций. 1 часть. 8 класс.

    Уравнение Клапейрона-Менделеева

    Видео:Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»Скачать

    Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»

    Что такое уравнение Клапейрона-Менделеева

    Идеальный газ — это газ, в котором пренебрегают взаимодействием молекул газа между собой.

    Идеальными считают разреженные газы. Особенно близкими к идеальным считают гелий и водород.

    Идеальный газ — это упрощенная математическая модель, которая широко применяется для описания свойств и поведения реальных газов при атмосферном давлении и комнатной температуре.

    Давление, объем и температура — это основные параметры состояния системы, и они связаны друг с другом. Соотношение, при котором определяется данная связь, называется уравнением состояния данного газа.

    Существует эквивалентная макроскопическая формулировка идеального газа — это такой газ, который одновременно будет подчиняться закону Бойля-Мариотта и Гей-Люссака, то есть:

    p V = c o n s t * T

    В представленном выше уравнении состоянии газа под const подразумевается количество молей.

    Свойства классического и квазиклассического идеального газа описываются уравнением состояния идеального газа, которое называется уравнением Менделеева-Клапейрона, ниже представлена формула Менделеева-Клапейрона.

    p V = m M R T = n R T , где m — масса газа, M — молярная масса газа, R = 8 , 314 Д ж / ( м о л ь * К ) — универсальная газовая постоянная, T — температура (К), n — количество молей газа.

    Таким образом давление и объем прямо пропорциональны количеству молей и температуре.

    Также уравнение Клапейрона-Менделеева можно записать в ином виде:

    p V = N k T , где N — это количество молекул газа массой m , k = 1 , 38 * 10 — 23 Д ж / К — постоянная Больцмана, которая определяет «долю» газовой постоянной, приходящуюся на одну молекулу и определяется по формуле:

    N = m N A M , где

    N A = 6 . 02 * 10 23 м о л ь — 1 ; — это постоянная Авогадро.

    Видео:Задачи на уравнение Менделеева-Клапейрона. Ч.1. Краткая теория + решение задачиСкачать

    Задачи на уравнение Менделеева-Клапейрона. Ч.1. Краткая теория + решение задачи

    Какое значение имеет универсальная газовая постоянная

    Универсальная газовая постоянная (R) — это величина, которая является константой, численно равная работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 K.

    Значение данной константы находится как произведение постоянной Больцмана ( k = 1 , 38 * 10 — 23 Д ж / К ) на число Авогадро ( N A = 6 . 02 * 10 23 м о л ь — 1 ) . Таким образом универсальная газовая постоянная принимает следующее значение: R = 8 , 314 Д ж / ( м о л ь * К ) .

    Постоянную Больцмана используют в формулах, описывающих изучаемое явление или поведение рассматриваемого объекта с микроскопической точки зрения, тогда как универсальная газовая постоянная более удобна при расчетах, касающихся макроскопических систем, когда число частиц задано в молях.

    Видео:Успеть за 300 секунд, #3: Уравнение Клапейрона-МенделееваСкачать

    Успеть за 300 секунд, #3: Уравнение Клапейрона-Менделеева

    Связь с другими законами состояния идеального газа

    С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса и один трех макропараметров (давление, температура или объем) — остаются неизменными.

    Количественные зависимости между двумя параметрами газа при фиксированном третьем параметре называют газовыми законами, которые связывают эти параметры.

    Изопроцессы — это термодинамические процессы, во время протекания которых количество вещества и один из макропараметров состояния: давление, объем, температура или энтропия — остается неизменным.

    В зависимости от того, какой параметр остается неизменным различают разные процессы, которые выражаются законами, являющимися следствием уравнения состояния газа:

    • изотермический процесс (T=const);
    • изохорный процесс (V=const);
    • изобарный процесс (p=const).

    Изотермический процесс (T=const)

    Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим.

    Для поддержания температуры газа постоянной необходимо, чтобы он мог обмениваться теплотой с большой системой — термостатом. Им может служить атмосферный воздух, если температура его заметно не меняется на протяжении всего процесса.

    Согласно уравнению Клапейрона-Менделеева, в любом состоянии с неизменной температурой произведение давления газа на объем одно и то же, то есть постоянно:

    Этот закон был открыт экспериментально английским ученым Бойлем и несколько позднее французским ученым Мариоттом. Именно поэтому он называется закон Бойля-Мариотта.

    Закон Бойля-Мариотта справедлив для любых газов, а также для смеси газов (например, для воздуха).

    Зависимость давления газа от объема при постоянной температуре изображается графической кривой — изотермой. Изотерма для различных температур представлена в координатах pV на рис.1. и представляет собой гиперболу.

    Рис.1. Изотерма в pV — координатах.

    Изохорный процесс (V=const)

    Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным.

    Из уравнения состояния следует, что отношение давлений газа данной массы при постоянно объеме равно отношению его абсолютных температур:

    p 1 p 2 = T 1 T 2

    Газовый закон был установлен экспериментально в 1787 г. французским физиком Ж. Шарлем и носит название закона Шарля: давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре.

    Так, если в качестве одного из состояний газа выбрать состояние газа при нормальных условиях, тогда

    p = p 0 T T 0 = p 0 γ T

    Коэффициент γ называют температурным коэффициентом давления газа. Он одинаков для всех газов.

    Зависимость давления газа от температуры при постоянном объеме изображается графически прямой, которая называется изохорой (Рис.2).

    Рис.2 Изображение изохоры в pT-координатах.

    Изобарный процесс (p=const)

    Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным.

    Из уравнения Клапейрона-Менделеева вытекает, что отношение объемов газа данной массы при постоянном давлении равно отношению его абсолютных температур.

    V 1 V 2 = T 1 T 2

    Если в качестве второго состояния газа выбрать состояние при нормальных условиях (нормальном атмосферном давлении, температуре таяния льда) следует:

    V = V 0 T T 0 = V 0 α T

    Этот газовый закон был установлен экспериментально в 1802 г французским ученым Гей-Люссаком.

    Закон Гей-Люссака: объем данной массы газа при постоянном давлении прямо пропорционален абсолютной температуре.

    Коэффициент α называют температурным коэффициентом объемного расширения газов.

    Зависимость объема газа от температуры при постоянном давлении изображается графической прямой, которая называется изобарой (Рис.3).

    Рис. 3. Изобара в VT-координатах.

    Видео:Физика 10 класс: Уравнение Клапейрона-МенделееваСкачать

    Физика 10 класс: Уравнение Клапейрона-Менделеева

    Использование универсального уравнения для решения задачи

    В реальности проводятся различные физико-химические процессы. Рассмотрим каким образом уравнение состояния идеального газа и законы, связанные с ним находят применение для решения физических и химических задач.

    Определить давление кислорода в баллоне объемом 1 м 3 при температуре t = 27 C o . Масса кислорода 1 кг.

    Так как в уравнении даны объем и температура — два из трех макроскопических параметров, а третий (давление) нужно определить, то мы можем использовать уравнение Клапейрона-Менделеева:

    p V = n R T = m M R T

    Не забываем перевести температуру в Кельвины:

    T = t + 273 = 27 + 273 = 300 K

    Молярная масса кислорода известна из таблицы Менделеева:

    M ( O 2 ) = 2 * 16 = 32 г / м о л ь = 32 * 10 — 3 к г / м о л ь

    Выразим из уравнения состояния давления и поставим все имеющиеся данные:

    p = n R T V = m R T M V = 1 * 8 . 31 * 300 32 * 10 — 3 * 1 = 77 . 906 П а = 78 к П а

    Ответ: p = 78 кПа.

    Каким может быть наименьший объем баллона, содержащего кислород массой 6,4 кг, если его стенки при t = 20 C o выдерживают p = 1568 Н / с м 2 ?

    Используем уравнение Менделеева-Клапейрона, из которого выражаем объем кислорода, который нужно найти:

    p = n R T V = m R T M V

    Молярная масса кислорода предполагается равной:

    M ( O 2 ) = 2 * 16 = 32 г / м 3

    Не забываем перевести температуру в Кельвины:

    T = t + 273 = 20 + 273 = 293 K

    Переводим давление: p = 15680000 Па

    Выражаем из уравнения Клапейрона-Менделеева объем и подставляем значения, данные в условиях задачи:

    V = n R T p = m R T M p = 6 . 4 * 8 . 31 * 293 15680000 * 32 * 10 — 3 = 3 . 1 * 10 — 2 м 3 = 31 л .

    Используя уравнение состояния идеального газа, доказать, что плотность любого газа равна половине плотности водорода ( ρ Н 2 ) , взятого при тех же условиях, умноженной на относительную молекулярную массу этого газа M_r, то есть ρ = ρ Н 2 * M r 2 .

    Согласно уравнению Менделеева-Клапейрона:

    p = n R T V = m R T M V

    Плотность — это величина, характеризующая массу некоторого объема и находится по формуле:

    ρ = m V и л и V = m ρ

    Тогда p m ρ = n R T = m R T M

    Откуда выражаем плотность газа:

    Для водорода эта формула запишется следующим образом:

    ρ H 2 = p M H 2 R T

    По условию задачи водород и любой другой газ находятся при одинаковых условиях, откуда следует, что:

    ρ H 2 M H 2 = p R T

    Поставим последнее выражение в выражение для плотности любого газа:

    ρ = M * ρ H 2 M H 2

    Молярная масса водорода, исходя из таблицы Менделеева равна 2 г/моль и тогда. Молекулярная масса численно равная молярной и представляет собой массу молекулы в атомных единицах, поэтому в дальнейшем мы совершили переход к молекулярной массе.

    ρ = M r * ρ H 2 2

    Вывод: плотность любого газа равна половине плотности водорода ( ρ Н 2 ) , взятого при тех же условиях, умноженной на относительную молекулярную массу этого газа M_r, то есть ρ = ρ Н 2 * M r 2 .

    Рассмотрим несколько задач на законы, связанные с уравнение Клапейрона-Менделеева, то есть на изотермические, изохорные, изобарные процессы.

    При уменьшении давления газа в 2,5 раза его объем увеличился на 12 л. Какой объем занимал газ в начальном состоянии, если температура на протяжении всего процесса оставалась постоянной?

    По условию задачи температура в ходе всего процесса оставалась постоянной, откуда следует, что у нас изотермический процесс, и мы можем воспользоваться для решения законом Бойля-Мариотта.

    p 1 V 1 = p 2 V 2 , г д е p 1 – давление газа в начальном состоянии (до расширения), V 1 — объем газа в начальном состоянии, p 2 = p 1 2 . 5 — давление газа в конечном состоянии (после расширения), V 2 = V 1 + ∆ V — объем газа в конечном состоянии.

    Откуда можем найти начальный объем:

    p 1 V 1 = p 1 2 . 5 ( V 1 + ∆ V ) = p 1 2 . 5 V 1 + p 1 2 . 5 ∆ V

    V 1 ( p 1 — p 1 2 . 5 ) = p 1 2 . 5 ∆ V

    p 1 2 . 5 V 1 ( 2 . 5 — 1 ) = p 1 2 . 5 ∆ V

    V 1 = ∆ V 1 , 5 = 8 л

    Ответ: первоначальный объем газа был равен 8 л.

    Газ находится в баллоне при температуре 400 К. До какой температуры нужно нагреть газ, чтобы его давление увеличилось в 1,5 раза?

    Так как нагревание газа по условиям данной задачи происходит при постоянном объеме, значит перед нами изохорный процесс.

    При изохорном процессе:

    p 1 T 1 = p 2 T 2

    T 2 = p 2 T 1 p 1

    p 2 p 1 = 1 . 5 T 2 = 1 . 5 * T 1 = 1 . 5 * 400 = 600 K

    При 27°C объем газа равен 600 мл. Какой объем займет газ при 57°C, если давление будет оставаться постоянным?

    Так как давление по условию остается постоянным, то можем использовать закон Гей-Люссака.

    V 1 V 2 = T 1 T 2

    V_2 – искомый объем

    Для правильного расчета необходимо перевести температуры из Цельсий в Кельвины:

    T 1 = 273 + 27 = 300 K

    T 2 = 273 + 57 = 330 K

    T 2 V 1 T 1 = V 2

    V 2 = ( 600 * 330 ) / 300 = 660 м л

    Газ в трубе плавильной печи охлаждается от температуры t 1 = 1150 ° С д о t 2 = 200 ° С . Во сколько раз увеличивается плотность газа при этом? Давление газа не меняется.

    Так как по условию задания давления газа не изменяется, значит перед нами изобарный процесс. Для решения воспользуемся законом Гей-Люссака:

    V 1 V 2 = T 1 T 2

    Перейдем к абсолютной температуре:

    T 1 = 1150 + 273 = 1423 K

    T 2 = 200 + 273 = 473 K

    Масса газа: m = ρ 1 V 1 = ρ 2 V 2

    Использование этих формул приводит к следующему:

    Видео:Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

    Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

    Алгоритм решения задач на уравнение Менделеева — Клайперона

    Разделы: Физика

    Алгоритм решения задач на применение уравнения Менделеева – Клайперона.

    Многократное (до 7 и более раз) воспроизведение учащимися логически выверенных строго последовательных пошаговых действий дает возможность глубоко и прочно усвоить учебный материал. Представленный алгоритм апробирован. Он позволяет:
    1) научить использовать уравнение Менделеева–Клайперона (его варианты);
    2) продолжить формирование навыков работы в международной системе единиц “СИ” и культуры оформления решения задач;
    3) осуществляет межпредметную связь с алгеброй и химией;
    4) воспитывает точность, аккуратность, пунктуальность.

    Расчеты по уравнению менделеева клапейрона

    № шагаАлгоритмВыполнение
    1Внимательно прочитайте текст задачи.Баллон содержит 50 л кислорода, температура которого 27° С, а давление 2МПа. Найдите массу кислорода.
    2Запишите в “Дано” буквенное обозначение и числовое значение известных по тексту физических величин. Необходимо знать нормальные условия: р=10 5 Па, t°=0° СДано:

    p=2 МПа

    3Запишите химическую формулу и молярную массу газообразного вещества в “ Дано”, используя систему СИ. М Воздух= 0,029 кг/моль.О2

    М=32•10 –3 кг/моль

    4Под горизонтальной чертой запишите буквенное обозначение неизвестной величины, знак = и?m= ?
    5Под словом “ Решение” напишите уравнение Менделеева–Клайперона или его вариант:

    Расчеты по уравнению менделеева клапейрона
    Расчеты по уравнению менделеева клапейрона
    Расчеты по уравнению менделеева клапейрона

    Расчеты по уравнению менделеева клапейронаРасчеты по уравнению менделеева клапейрона

    6Проделайте алгебраические преобразования так, чтобы по одну сторону знака = стояла неизвестная величина, а по другую – все известные.
    7Проверьте, все ли величины выражены в системе СИ, учитывая, что 1л= 10 –3 м 3 , Т=t° +273 , 1 мм рт. ст.= 133 Па50 л = 5• 10 –2 м 3

    Т = 300 К

    8Подставьте числовые значения вместе с единицами измерения, проведите расчет и работу с единицами измерения, учитывая, что 1 Дж=1 Н? м, 1 Па=1Н/м 2 , 1 Н=1кг? м/с 2Расчеты по уравнению менделеева клапейрона
    9Запишите ответ:Ответ: m=1,3 кг

    Задачи для закрепления:

    1) Определите массу водорода, находящегося в баллоне емкостью 20 л при давлении 830 кПа, если температура газа равна 17° С.

    2) Сосуд вместимостью 40 л содержит 1,98 кг углекислого газа и выдерживает давление не выше 3 МПа. При какой температуре возникает опасность взрыва?

    3) Определите плотность азота при нормальных условиях.

    4) Какое количество вещества содержится в газе при давлении 200 кПа и температуре 240 К, если его объем 40 л?

    5) Какой объем занимает воздух массой 2,9 кг при давлении 750 мм рт.ст. и температуре –3° С?

    6) Каково давление азота в сосуде объемом 0,25 м 3 при температуре 32° С? Масса газа 300 г.

    Таблицу алгоритма и примеры решения задач на закрепление учитель, исходя из методических потребностей, может размещать как на одной, так и на разных сторонах листа формата А4, раздать ученикам для использования на уроке и дома.

    1) 0,014 г;
    2) 48° С;
    3) 1,23 кг/м 3 ;
    4) 4 моль;
    5) 2,25 м 3 ;
    6) 108624 Па.

    🎦 Видео

    Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать

    Урок 156. Уравнение состояния идеального газа. Квазистатические процессы

    Задачи по химии. Уравнение Менделеева-Клапейрона. Газовые законы. Простейшие химические расчётыСкачать

    Задачи по химии. Уравнение Менделеева-Клапейрона. Газовые законы. Простейшие химические расчёты

    62. Уравнение Клапейрона-МенделееваСкачать

    62. Уравнение Клапейрона-Менделеева

    Расчеты по уравнениям химических реакций. 2 часть. 8 класс.Скачать

    Расчеты по уравнениям химических реакций. 2 часть. 8 класс.

    Как решать задачи по химии? Расчет по уравнениям химических реакций | TutorOnlineСкачать

    Как решать задачи по химии? Расчет по уравнениям химических реакций | TutorOnline

    ТИПОВЫЕ ЗАДАЧИ ПО ХИМИИ: Химическое Количество Вещества, Моль, Молярная Масса и Молярный ОбъемСкачать

    ТИПОВЫЕ ЗАДАЧИ ПО ХИМИИ: Химическое Количество Вещества, Моль, Молярная Масса и Молярный Объем

    Уравнение Менделеева - Клапейрона за 10 минут | Физика с Никитой АрхиповымСкачать

    Уравнение Менделеева - Клапейрона за 10 минут | Физика с Никитой Архиповым

    Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Химия ПростоСкачать

    Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Химия Просто

    Урок 2.Уравнение Менделеева-Клапейрона. Решение задач. База. ЕГЭСкачать

    Урок 2.Уравнение Менделеева-Клапейрона. Решение задач. База. ЕГЭ

    Газовые Законы и Правила. Уравнение Менделеева-Клапейрона. Пример расчета объема газа при Р атм.Скачать

    Газовые Законы и Правила. Уравнение Менделеева-Клапейрона. Пример расчета объема газа при Р атм.

    Уравнение состояния идеального газа. 10 класс.Скачать

    Уравнение состояния идеального газа. 10 класс.

    Уравнение состояния идеального газа | Физика 10 класс #33 | ИнфоурокСкачать

    Уравнение состояния идеального газа | Физика 10 класс #33 | Инфоурок

    Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

    Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

    Задачи на уравнение Менделеева-Клапейрона. Ч.2. Решение задач.Скачать

    Задачи на уравнение Менделеева-Клапейрона. Ч.2. Решение задач.
    Поделиться или сохранить к себе: