Расчет доверительных интервалов для параметров уравнения регрессии

Расчет доверительных интервалов и прогнозов для линейного уравнения регрессии

Как правило, в линейной регрессии обычно оценивается значимость не только уравнения в целом, но и отдельных его параметров.Показатели корреляционной связи, вычисленные по ограничен­ной совокупности (по выборке), являются лишь оценками той или иной статистической закономерности, поскольку в любом парамет­ре сохраняется элемент не полностью погасившейся случайности, присущей индивидуальным значениям признаков. Поэтому необхо­дима статистическая оценка степени точности и надежности пара­метров корреляции. Под надежностью здесь понимается вероятность того, что значение проверяемого параметра не равно нулю, не вклю­чает в себя величины противоположных знаков.

Вероятностная оценка параметров корреляции производится по общим правилам проверки статистических гипотез, разработанным математической статистикой, в частности путем сравнения оцени­ваемой величины со средней случайной ошибкой оценки. Для ко­эффициента парной регрессии b средняя ошибка оценки вычисля­ется как:

Расчет доверительных интервалов для параметров уравнения регрессии

где Dост – остаточная дисперсия на одну степень свободы.

Для нашего примера величина стандартной ошибки коэффициента регрессии составила:

Расчет доверительных интервалов для параметров уравнения регрессии.

Для оценки того, насколько точные значения показателей могут отличаться от рассчитанных, осуществляется построение доверительных интервалов. Они определяют пределы, в которых лежат точные значения определяемых показателей с заданной степенью точности, соответствующей заданному уровню значимости α (α – вероятность отвергнуть правильную гипотезу при условии, что она верна, обычно принимается равной 0,05 или 0,01).

Для оценки статистической значимости коэффициента линейной регрессии и линейного коэффициента парной корреляции, а также для расчета доверительных интервалов b, применяется t – критерий Стьюдента.

Для оценки существенности коэффициента регрессии его величина сравнивается с его стандартной ошибкой, т.е. определяется фактическое значение t-критерия Стьюдента: Расчет доверительных интервалов для параметров уравнения регрессии, которое затем сравнивается с табличным значением при определенном уровне значимости а и числе степеней свободы (n — 2).

В рассматриваемом примере фактическое значение t-критерия для коэффициента регрессии составило:

Расчет доверительных интервалов для параметров уравнения регрессии.

Этот же результат получим, извлекая квадратный корень из найденного F-критерия, т.е.

Расчет доверительных интервалов для параметров уравнения регрессии.

Действительно, справедливо равенство Расчет доверительных интервалов для параметров уравнения регрессии.

При Расчет доверительных интервалов для параметров уравнения регрессии(для двустороннего критерия) и числе степеней свободы 13 табличное значение tb=2,16. Так как фактическое значение t‑критерия превышает табличное, то, следовательно, гипотезу о несущественности коэффициента регрессии можно отклонить.

Для расчета доверительных интервалов для параметров a и b уравнения линейной регрессии определяем предельную ошибку для каждого показателя:

Формулы для расчета доверительных интервалов имеют вид:

Если границы интервала имеют разные знаки, т.е. в эти границы попадает ноль, то оцениваемый параметр принимается нулевым.

Доверительный интервал для коэффициента регрессии определяется как Расчет доверительных интервалов для параметров уравнения регрессии. Для коэффициента регрессии b в примере 95%-ные границы составят:

0,022 ± 2,16·0,0026 = 0,022 ± 0,0057, т.е.

Поскольку коэффициент регрессии в эконометрических исследованиях имеет четкую экономическую интерпретацию, то доверительные границы интервала для коэффициента регрессии не должны содержать противоречивых результатов, например, -10 ≤ b ≤ 40. Такого рода запись указывает, что истинное значение коэффициента регрессии одновременно содержит положительные и отрицательные величины и даже ноль, чего не может быть.

Стандартная ошибка параметра а определяется по формуле:

Расчет доверительных интервалов для параметров уравнения регрессии

Процедура оценивания существенности данного параметра не отличается от рассмотренной выше для коэффициента регрессии; вычисляется t-критерий: Расчет доверительных интервалов для параметров уравнения регрессии, его величина сравнивается с табличным значением при df = n — 2 степенях свободы. В нашем примере ma составила 0,032.

Значимость линейного коэффициента корреляции проверяется на основе величины ошибки коэффициента корреляции mr:

Расчет доверительных интервалов для параметров уравнения регрессии

Фактическое значение t-критерия Стьюдента определяется как

Расчет доверительных интервалов для параметров уравнения регрессии

Данная формула свидетельствует, что в парной линейной регрессии Расчет доверительных интервалов для параметров уравнения регрессии, ибо, как уже указывалось, Расчет доверительных интервалов для параметров уравнения регрессииКроме того, Расчет доверительных интервалов для параметров уравнения регрессииСледовательно, Расчет доверительных интервалов для параметров уравнения регрессии

Таким образом, проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

В рассматриваемом примере tr совпало с tb. Величина tr =8,37 значительно превышает табличное значение 2,16 при а=0,05. Следовательно, коэффициент корреляции существенно отличен от нуля и зависимость является достоверной.

Прогноз, полученный подстановкой в уравнение регрессии ожи­даемого значения фактора, называют точечным прогнозом. Вероят­ность точной реализации такого прогноза крайне мала. Необходимо сопроводить его значением средней ошибки прогноза или довери­тельным интервалом прогноза с достаточно большой вероятностью.

Точечный прогноз заключается в получении прогнозного значения yp, которое определяется путем подстановки в уравнение регрессии

Расчет доверительных интервалов для параметров уравнения регрессиисоответствующего прогнозного значения xp:

Интервальный прогноз заключается в построении доверительного интервала прогноза, т.е. верхней и нижней границы ypmin, ypmax интервала, содержащего точную величину для прогнозного значения Расчет доверительных интервалов для параметров уравнения регрессии
(ypmin 2
– индекс детерминации;

n – число наблюдений;

m – число параметров при переменных х.

Величина m характеризует число степеней свободы для факторной суммы квадратов, а (n – m — 1) – число степеней свободы для остаточной суммы квадратов.

Для степенной функции Расчет доверительных интервалов для параметров уравнения регрессиии формула F – критерия примет тот же вид, что и при линейной зависимости:

Расчет доверительных интервалов для параметров уравнения регрессии

Для параболы второй степени y=a + b·x + c·x 2 + ε m=2 и Расчет доверительных интервалов для параметров уравнения регрессии.

Для оценки качества построенной модели используется также средняя ошибка аппроксимации. Фактические значения результативного признака отличаются от теоретических, рассчитанных по уравнению регрессии, т.е. у и Расчет доверительных интервалов для параметров уравнения регрессии. Чем меньше это отличие, тем ближе теоретические значения подходят к эмпирическим данным, лучше качество модели. Величина отклонений фактических и расчетных значений результативного признака (уРасчет доверительных интервалов для параметров уравнения регрессии) по каждому наблюдению представляет собой ошибку аппроксимации. Их число соответствует объему совокупности. В отдельных случаях ошибка аппроксимации может оказаться равной нулю. Для сравнения берутся величины отклонений, выраженные в процентах к фактическим значениям. Так, если для первого наблюдения у=20, а для второго у=50, ошибка аппроксимации составит 25% для первого наблюдения и 20% — для второго.

Поскольку (уРасчет доверительных интервалов для параметров уравнения регрессии) может быть как величиной положительной, так и отрицательной, то ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю.

Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, определяют среднюю ошибку аппроксимации как среднюю арифметическую простую:

Расчет доверительных интервалов для параметров уравнения регрессии.

Для нашего примера представим расчет средней ошибки аппроксимации в таблице 4.

Видео:Доверительные интервалы для параметров. Коэффициент апроксимации. MAPE. Коэффициент эластичностиСкачать

Доверительные интервалы для параметров. Коэффициент апроксимации. MAPE. Коэффициент  эластичности

Пример нахождения доверительных интервалов коэффициентов регрессии

1. Постройте поле корреляции и сформулируйте гипотезу о форме связи.

2. Постройте уравнение зависимости экспорта нефти от цены на нефть.

3. Рассчитайте среднюю ошибку аппроксимации и коэффициент детерминации. Оценить статистическую значимость параметров регрессии и уравнения в целом.

4. Оцените полученные результаты, выводы оформите в аналитической записке.

Таблица 5

Цена нефти марки Urals (Россия), долл/барр.

Экспорт нефти и нефтепродуктов, млн.т.

Решение:

Уравнение имеет вид y = ax + b
1. Параметры уравнения регрессии.
Средние значения

Связь между признаком Y фактором X сильная и прямая
Уравнение регрессии

xyx 2y 2x ∙ yy(x)(y- y ) 2(y-y(x)) 2(x-x p ) 2
119298.121416188875.5335476.28219.63232120.86160.5624362.01
203481.0341209231389.8697649.09521.1689328.761610.265196.01
281539.1278961290650.37151492.72801.1557979.4268658.5135.01
305653.5793025427153.74199338.85887.315961.5954628.94895.01
381987.66145161975472.28376298.461160.1143160.4129738.5711218.34
3631252.851317691569633.12454784.551095.5223673.0324760.357729.34
3891276.881513211630422.53496706.321188.83246980.017753.5712977.01
3871396.701497691950770.89540522.91181.65380430.9346248.0412525.34
315952.0399225906361.12299889.45923.1929625.58831.491593.34
217619.9647089384350.4134531.32571.4125583.742356.853373.67
149384.4022201147763.3657275.6327.32156427.53258.2315897.01
192516.5936864266865.2399185.28481.6769336.981219.246902.84
33019358.9110107558869708.452943150.829358.911570608.75247224.62102704.92

По таблице Стьюдента находим Tтабл
Tтабл (n-m-1;a) = (10;0.05) = 1.812
Поскольку Tнабл > Tтабл , то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически — значим.

Анализ точности определения оценок коэффициентов регрессии

S a = 0.4906
Доверительные интервалы для зависимой переменной

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 1
(-587.75;179.86)
Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика

Статистическая значимость коэффициента регрессии a подтверждается (7.32>1.812)

Статистическая значимость коэффициента регрессии b не подтверждается (1.46 Fkp, то коэффициент детерминации статистически значим.

Видео:Доверительный интервал за 15 мин. Биостатистика.Скачать

Доверительный интервал за 15 мин. Биостатистика.

Доверительные интервалы для зависимой переменной

Уравнение тренда имеет вид y = at 2 + bt + c
1. Находим параметры уравнения методом наименьших квадратов.
Система уравнений
Расчет доверительных интервалов для параметров уравнения регрессии
Для наших данных система уравнений имеет вид (см. таблицу).
Расчет доверительных интервалов для параметров уравнения регрессии
Получаем a0 = -11.37, a1 = 88.47, a2 = 2151.09
Уравнение тренда: y = -11.37t 2 +88.47t+2151.09
Оценим качество уравнения тренда с помощью ошибки абсолютной аппроксимации.

Поскольку ошибка больше 15%, то данное уравнение не желательно использовать в качестве тренда
Средние значения

т.е. в 87.35 % случаев влияет на изменение данных. Другими словами — точность подбора уравнения тренда — высокая

tyt 2y 2x ∙ yy(t)(y-y cp ) 2(y-y(t)) 2(t-t p ) 2(y-y(t)) : yt 3t 4t 2 y
12225.314951960.092225.32228.1965.60998.352166431.117112225.3
22254.945084574.014509.82282.55462.25764.5225962347.9858169019.6
32332.395439623.296996.92314.179781.21328.6969442284.599278120990.7
42365.8165597009.649463.22323.0517529.761827.56251101137.956425637852.8
52295.4255268861.16114772309.193844190.1641031653.56612562557385
62303.9365307955.2113823.42272.594970.25980.3161172135.109216129682940.4
72166.7494694588.8915166.92213.254448.892166.90254100859.8853432401106168.3
82080.4644328064.1616643.22131.17234092577.59299105621.9085124096133145.6
92075.9814309360.8118683.12026.3524806.252455.202516102860.8457296561168147.9
4520100.628544981997.2698988.820100.5189317.219911299.31260625332.9644050306661235751.2

2. Анализ точности определения оценок параметров уравнения тренда.

Анализ точности определения оценок параметров уравнения тренда

S a = 4.8518
Доверительные интервалы для зависимой переменной

По таблице Стьюдента находим Tтабл
Tтабл (n-m-1;a) = (7;0.05) = 1.895
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и t = 6
2151.09 + 88.47*6 + -11.37*62 — 1.895*39.911 ; 2151.09 + 88.47*6 + -11.37*62 — 1.895*39.911
(-55.3814;95.8814)
Интервальный прогноз.
Определим среднеквадратическую ошибку прогнозируемого показателя.

где L — период упреждения; уn+L — точечный прогноз по модели на (n + L)-й момент времени; n — количество наблюдений во временном ряду; Sy — стандартная ошибка прогнозируемого показателя; Tтабл — табличное значение критерия Стьюдента для уровня значимости а и для числа степеней свободы, равного n — 2.
Точечный прогноз, t = 10: y(10) = -11.37*10 2 + 88.47* + 2151.09 = 1898.79
K1 = 247.4924
1898.79 — 247.4924 = 1651.2976 ; 1898.79 + 247.4924 = 2146.2824
t = 10: (1651.2976;2146.2824)
Точечный прогноз, t = 11: y(11) = -11.37*11 2 + 88.47* + 2151.09 = 1748.49
K2 = 261.9213
1748.49 — 261.9213 = 1486.5687 ; 1748.49 + 261.9213 = 2010.4113
t = 11: (1486.5687;2010.4113)
Точечный прогноз, t = 12: y(12) = -11.37*12 2 + 88.47* + 2151.09 = 1575.45
K3 = 278.0099
1575.45 — 278.0099 = 1297.4401 ; 1575.45 + 278.0099 = 1853.4599
t = 12: (1297.4401;1853.4599)
Точечный прогноз, t = 13: y(13) = -11.37*13 2 + 88.47* + 2151.09 = 1379.67
K4 = 295.4871
1379.67 — 295.4871 = 1084.1829 ; 1379.67 + 295.4871 = 1675.1571
t = 13: (1084.1829;1675.1571)
Точечный прогноз, t = 14: y(14) = -11.37*14 2 + 88.47* + 2151.09 = 1161.15
K5 = 314.1213
1161.15 — 314.1213 = 847.0287 ; 1161.15 + 314.1213 = 1475.2713
t = 14: (847.0287;1475.2713)
3. Проверка гипотез относительно коэффициентов линейного уравнения тренда.
1) t-статистика. Критерий Стьюдента.

Статистическая значимость коэффициента уравнения подтверждается

Статистическая значимость коэффициента тренда подтверждается
Доверительный интервал для коэффициентов уравнения тренда
Определим доверительные интервалы коэффициентов тренда, которые с надежность 95% будут следующими (tтабл=1.895):
(a — tтабл·Sa; a + tтабл·Sa)
(-20.5642;-2.1758)
(b — t табл·Sb; b + tтаблb)
(36.7313;140.2087)
2) F-статистика. Критерий Фишера.

Fkp = 5.32
Поскольку F > Fkp, то коэффициент детерминации статистически значим
4. Тест Дарбина-Уотсона на наличие автокорреляции остатков для временного ряда.

yy(x)e i = y-y(x)e 2(e i — e i-1 ) 2
2225.32228.19-2.898.35210
2254.92282.55-27.65764.5225613.0576
2332.32314.1718.13328.69692095.8084
2365.82323.0542.751827.5625606.1444
2295.42309.19-13.79190.16413196.7716
2303.92272.5931.31980.31612034.01
2166.72213.25-46.552166.90256062.1796
2080.42131.17-50.772577.592917.8084
2075.92026.3549.552455.202510064.1024
11299.312124689.8824

Критические значения d1 и d2 определяются на основе специальных таблиц для требуемого уровня значимости a, числа наблюдений n и количества объясняющих переменных m.
Не обращаясь к таблицам, можно пользоваться приблизительным правилом и считать, что автокорреляция остатков отсутствует, если 1.5

Видео:Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.

Задача №3. Расчёт параметров регрессии и корреляции с помощью Excel

По территориям региона приводятся данные за 200Х г.

Номер регионаСреднедушевой прожиточный минимум в день одного трудоспособного, руб., хСреднедневная заработная плата, руб., у
178133
282148
387134
479154
589162
6106195
767139
888158
973152
1087162
1176159
12115173

Задание:

1. Постройте поле корреляции и сформулируйте гипотезу о форме связи.

2. Рассчитайте параметры уравнения линейной регрессии

Расчет доверительных интервалов для параметров уравнения регрессии.

3. Оцените тесноту связи с помощью показателей корреляции и детерминации.

4. Дайте с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.

5. Оцените с помощью средней ошибки аппроксимации качество уравнений.

6. Оцените с помощью F-критерия Фишера статистическую надёжность результатов регрессионного моделирования.

7. Рассчитайте прогнозное значение результата, если прогнозное значение фактора увеличится на 10% от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости Расчет доверительных интервалов для параметров уравнения регрессии.

8. Оцените полученные результаты, выводы оформите в аналитической записке.

Решение:

Решим данную задачу с помощью Excel.

1. Сопоставив имеющиеся данные х и у, например, ранжировав их в порядке возрастания фактора х, можно наблюдать наличие прямой зависимости между признаками, когда увеличение среднедушевого прожиточного минимума увеличивает среднедневную заработную плату. Исходя из этого, можно сделать предположение, что связь между признаками прямая и её можно описать уравнением прямой. Этот же вывод подтверждается и на основе графического анализа.

Чтобы построить поле корреляции можно воспользоваться ППП Excel. Введите исходные данные в последовательности: сначала х, затем у.

Выделите область ячеек, содержащую данные.

Затем выберете: Вставка / Точечная диаграмма / Точечная с маркерами как показано на рисунке 1.

Расчет доверительных интервалов для параметров уравнения регрессии

Рисунок 1 Построение поля корреляции

Анализ поля корреляции показывает наличие близкой к прямолинейной зависимости, так как точки расположены практически по прямой линии.

2. Для расчёта параметров уравнения линейной регрессииРасчет доверительных интервалов для параметров уравнения регрессии
воспользуемся встроенной статистической функцией ЛИНЕЙН.

1) Откройте существующий файл, содержащий анализируемые данные;
2) Выделите область пустых ячеек 5×2 (5 строк, 2 столбца) для вывода результатов регрессионной статистики.
3) Активизируйте Мастер функций: в главном меню выберете Формулы / Вставить функцию.
4) В окне Категория выберете Статистические, в окне функция – ЛИНЕЙН. Щёлкните по кнопке ОК как показано на Рисунке 2;

Расчет доверительных интервалов для параметров уравнения регрессии

Рисунок 2 Диалоговое окно «Мастер функций»

5) Заполните аргументы функции:

Известные значения у – диапазон, содержащий данные результативного признака;

Известные значения х – диапазон, содержащий данные факторного признака;

Константа – логическое значение, которое указывает на наличие или на отсутствие свободного члена в уравнении; если Константа = 1, то свободный член рассчитывается обычным образом, если Константа = 0, то свободный член равен 0;

Статистика – логическое значение, которое указывает, выводить дополнительную информацию по регрессионному анализу или нет. Если Статистика = 1, то дополнительная информация выводится, если Статистика = 0, то выводятся только оценки параметров уравнения.

Щёлкните по кнопке ОК;

Расчет доверительных интервалов для параметров уравнения регрессии

Рисунок 3 Диалоговое окно аргументов функции ЛИНЕЙН

6) В левой верхней ячейке выделенной области появится первый элемент итоговой таблицы. Чтобы раскрыть всю таблицу, нажмите на клавишу , а затем на комбинацию клавиш + + .

Дополнительная регрессионная статистика будет выводиться в порядке, указанном в следующей схеме:

Значение коэффициента bЗначение коэффициента a
Стандартная ошибка bСтандартная ошибка a
Коэффициент детерминации R 2Стандартная ошибка y
F-статистикаЧисло степеней свободы df
Регрессионная сумма квадратов

Расчет доверительных интервалов для параметров уравнения регрессии

Остаточная сумма квадратов

Расчет доверительных интервалов для параметров уравнения регрессии

Расчет доверительных интервалов для параметров уравнения регрессии

Рисунок 4 Результат вычисления функции ЛИНЕЙН

Получили уровнение регрессии:

Расчет доверительных интервалов для параметров уравнения регрессии

Делаем вывод: С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,92 руб.

3. Коэффициент детерминации Расчет доверительных интервалов для параметров уравнения регрессииозначает, что 52% вариации заработной платы (у) объясняется вариацией фактора х – среднедушевого прожиточного минимума, а 48% — действием других факторов, не включённых в модель.

По вычисленному коэффициенту детерминации Расчет доверительных интервалов для параметров уравнения регрессииможно рассчитать коэффициент корреляции: Расчет доверительных интервалов для параметров уравнения регрессии.

Связь оценивается как тесная.

4. С помощью среднего (общего) коэффициента эластичности определим силу влияния фактора на результат.

Для уравнения прямой Расчет доверительных интервалов для параметров уравнения регрессиисредний (общий) коэффициент эластичности определим по формуле:

Расчет доверительных интервалов для параметров уравнения регрессии

Средние значения найдём, выделив область ячеек со значениями х, и выберем Формулы / Автосумма / Среднее, и то же самое произведём со значениями у.

Расчет доверительных интервалов для параметров уравнения регрессии

Рисунок 5 Расчёт средних значений функции и аргумент

Расчет доверительных интервалов для параметров уравнения регрессии

Таким образом, при изменении среднедушевого прожиточного минимума на 1% от своего среднего значения среднедневная заработная плата изменится в среднем на 0,51%.

С помощью инструмента анализа данных Регрессия можно получить:
— результаты регрессионной статистики,
— результаты дисперсионного анализа,
— результаты доверительных интервалов,
— остатки и графики подбора линии регрессии,
— остатки и нормальную вероятность.

Порядок действий следующий:

1) проверьте доступ к Пакету анализа. В главном меню последовательно выберите: Файл/Параметры/Надстройки.

2) В раскрывающемся списке Управление выберите пункт Надстройки Excel и нажмите кнопку Перейти.

3) В окне Надстройки установите флажок Пакет анализа, а затем нажмите кнопку ОК.

• Если Пакет анализа отсутствует в списке поля Доступные надстройки, нажмите кнопку Обзор, чтобы выполнить поиск.

• Если выводится сообщение о том, что пакет анализа не установлен на компьютере, нажмите кнопку Да, чтобы установить его.

4) В главном меню последовательно выберите: Данные / Анализ данных / Инструменты анализа / Регрессия, а затем нажмите кнопку ОК.

5) Заполните диалоговое окно ввода данных и параметров вывода:

Входной интервал Y – диапазон, содержащий данные результативного признака;

Входной интервал X – диапазон, содержащий данные факторного признака;

Метки – флажок, который указывает, содержит ли первая строка названия столбцов или нет;

Константа – ноль – флажок, указывающий на наличие или отсутствие свободного члена в уравнении;

Выходной интервал – достаточно указать левую верхнюю ячейку будущего диапазона;

6) Новый рабочий лист – можно задать произвольное имя нового листа.

Затем нажмите кнопку ОК.

Расчет доверительных интервалов для параметров уравнения регрессии

Рисунок 6 Диалоговое окно ввода параметров инструмента Регрессия

Результаты регрессионного анализа для данных задачи представлены на рисунке 7.

Расчет доверительных интервалов для параметров уравнения регрессии

Рисунок 7 Результат применения инструмента регрессия

5. Оценим с помощью средней ошибки аппроксимации качество уравнений. Воспользуемся результатами регрессионного анализа представленного на Рисунке 8.

Расчет доверительных интервалов для параметров уравнения регрессии

Рисунок 8 Результат применения инструмента регрессия «Вывод остатка»

Составим новую таблицу как показано на рисунке 9. В графе С рассчитаем относительную ошибку аппроксимации по формуле:

Расчет доверительных интервалов для параметров уравнения регрессии

Расчет доверительных интервалов для параметров уравнения регрессии

Рисунок 9 Расчёт средней ошибки аппроксимации

Средняя ошибка аппроксимации рассчитывается по формуле:

Расчет доверительных интервалов для параметров уравнения регрессии

Качество построенной модели оценивается как хорошее, так как Расчет доверительных интервалов для параметров уравнения регрессиине превышает 8 – 10%.

6. Из таблицы с регрессионной статистикой (Рисунок 4) выпишем фактическое значение F-критерия Фишера: Расчет доверительных интервалов для параметров уравнения регрессии

Расчет доверительных интервалов для параметров уравнения регрессии

Поскольку Расчет доверительных интервалов для параметров уравнения регрессиипри 5%-ном уровне значимости, то можно сделать вывод о значимости уравнения регрессии (связь доказана).

8. Оценку статистической значимости параметров регрессии проведём с помощью t-статистики Стьюдента и путём расчёта доверительного интервала каждого из показателей.

Выдвигаем гипотезу Н0 о статистически незначимом отличии показателей от нуля:

Расчет доверительных интервалов для параметров уравнения регрессии.

Расчет доверительных интервалов для параметров уравнения регрессиидля числа степеней свободы Расчет доверительных интервалов для параметров уравнения регрессии

На рисунке 7 имеются фактические значения t-статистики:

Расчет доверительных интервалов для параметров уравнения регрессии

t-критерий для коэффициента корреляции можно рассчитать двумя способами:

I способ: Расчет доверительных интервалов для параметров уравнения регрессии

где Расчет доверительных интервалов для параметров уравнения регрессии– случайная ошибка коэффициента корреляции.

Данные для расчёта возьмём из таблицы на Рисунке 7.

Расчет доверительных интервалов для параметров уравнения регрессии

II способ: Расчет доверительных интервалов для параметров уравнения регрессии

Фактические значения t-статистики превосходят табличные значения:

Расчет доверительных интервалов для параметров уравнения регрессии

Расчет доверительных интервалов для параметров уравнения регрессии

Поэтому гипотеза Н0 отклоняется, то есть параметры регрессии и коэффициент корреляции не случайно отличаются от нуля, а статистически значимы.

Доверительный интервал для параметра a определяется как

Расчет доверительных интервалов для параметров уравнения регрессии

Для параметра a 95%-ные границы как показано на рисунке 7 составили:

Расчет доверительных интервалов для параметров уравнения регрессии

Доверительный интервал для коэффициента регрессии определяется как

Расчет доверительных интервалов для параметров уравнения регрессии

Для коэффициента регрессии b 95%-ные границы как показано на рисунке 7 составили:

Расчет доверительных интервалов для параметров уравнения регрессии

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью Расчет доверительных интервалов для параметров уравнения регрессиипараметры a и b, находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.

7. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит:

Расчет доверительных интервалов для параметров уравнения регрессии

Тогда прогнозное значение прожиточного минимума составит:

Расчет доверительных интервалов для параметров уравнения регрессии

Ошибку прогноза рассчитаем по формуле:

Расчет доверительных интервалов для параметров уравнения регрессии

где Расчет доверительных интервалов для параметров уравнения регрессии

Дисперсию посчитаем также с помощью ППП Excel. Для этого:

1) Активизируйте Мастер функций: в главном меню выберете Формулы / Вставить функцию.

2) В окне Категория выберете Статистические, в окне функция – ДИСП.Г. Щёлкните по кнопке ОК.

3) Заполните диапазон, содержащий числовые данные факторного признака. Нажмите ОК.

Расчет доверительных интервалов для параметров уравнения регрессии

Рисунок 10 Расчёт дисперсии

Получили значение дисперсии Расчет доверительных интервалов для параметров уравнения регрессии

Для подсчёта остаточной дисперсии на одну степень свободы воспользуемся результатами дисперсионного анализа как показано на Рисунке 7.

Расчет доверительных интервалов для параметров уравнения регрессии

Расчет доверительных интервалов для параметров уравнения регрессии

Доверительные интервалы прогноза индивидуальных значений у при Расчет доверительных интервалов для параметров уравнения регрессиис вероятностью 0,95 определяются выражением:

Расчет доверительных интервалов для параметров уравнения регрессии

Расчет доверительных интервалов для параметров уравнения регрессии

Расчет доверительных интервалов для параметров уравнения регрессии

Интервал достаточно широк, прежде всего, за счёт малого объёма наблюдений. В целом выполненный прогноз среднемесячной заработной платы оказался надёжным.

Условие задачи взято из: Практикум по эконометрике: Учеб. пособие / И.И. Елисеева, С.В. Курышева, Н.М. Гордеенко и др.; Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2003. – 192 с.: ил.

🌟 Видео

Доверительный интервал для математического ожиданияСкачать

Доверительный интервал для математического ожидания

Расчёт доверительного интервалаСкачать

Расчёт доверительного интервала

Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать

Эконометрика. Оценка значимости уравнения регрессии. Критерий Фишера

08-01 Доверительные интервалыСкачать

08-01 Доверительные интервалы

Эконометрика. Линейная парная регрессияСкачать

Эконометрика. Линейная парная регрессия

Построение доверительных интервалов и проверка гипотезСкачать

Построение доверительных интервалов и проверка гипотез

Парная регрессия: линейная зависимостьСкачать

Парная регрессия: линейная зависимость

Эконометрика Линейная регрессия и корреляцияСкачать

Эконометрика  Линейная регрессия и корреляция

3.3 Доверительный интервал для математического ожидания.Скачать

3.3  Доверительный интервал для математического ожидания.

Эконометрика. Точечный и интервальный прогнозы.Скачать

Эконометрика. Точечный и интервальный прогнозы.

R: как рассчитать доверительные интервалы при мультиколлинеарностиСкачать

R: как рассчитать доверительные интервалы при мультиколлинеарности

Уравнение линейной регрессии. Интерпретация стандартной табличкиСкачать

Уравнение линейной регрессии. Интерпретация стандартной таблички

Пример построения интервалов для прогнозов в регрессионном анализеСкачать

Пример построения интервалов для прогнозов в регрессионном анализе

3.5 Доверительный интервал для дисперсии .Скачать

3.5  Доверительный интервал для дисперсии .

09 Доверительные интервалы —задачиСкачать

09  Доверительные интервалы —задачи

R: Расчет доверительных интервалов при гетероскедастичностиСкачать

R: Расчет доверительных интервалов при гетероскедастичности

08-02 Асимптотические доверительные интервалыСкачать

08-02 Асимптотические доверительные интервалы
Поделиться или сохранить к себе: