Пусть даны два уравнения f x g x и p x если

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Равносильность уравнений на множествах

Пусть даны два уравнения f x g x и p x если

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Равносильность уравнений на множествах

Пусть даны два уравнения f x g x и p x если

Равносильность уравнений на множествах

Видео:Функциональные уравнения ➜ Найдите f(x), если 2f(x+2)+f(4-x)=2x+5Скачать

Функциональные уравнения ➜ Найдите f(x), если 2f(x+2)+f(4-x)=2x+5

Пусть даны два уравнения f(x)=g(x) и p(x)=h(x) и пусть дано некоторое множество чисел

Пусть даны два уравнения f x g x и p x если

Пусть даны два уравнения f(x)=g(x) и p(x)=h(x) и пусть дано некоторое множество чисел М
Если любой корень первого уравнения, принадлежащий множеству М, является корнем второго уравнения, а любой корень второго уравнения, принадлежащий множеству М, является корнем первого уравнения, то такие уравнения называют равносильными на множестве М.
Если каждое из этих уравнений не имеет корней на множестве М , то такие уравнения называются равносильными на множестве М

Видео:11 класс, 26 урок, Равносильность уравненийСкачать

11 класс, 26 урок, Равносильность уравнений

Замену одного уравнения другим уравнением, равносильным ему на множестве

Пусть даны два уравнения f x g x и p x если

Замену одного уравнения другим уравнением, равносильным ему на множестве М , называют равносильным переходом на множестве М от одного уравнения к другому.
Если два уравнения равносильны на множестве всех действительных чисел, то в таких случаях говорят, что уравнения равносильны, опуская слова на множестве действительных чисел.

Видео:Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)Скачать

Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)

Возведение уравнения f(x)=g(x) в четную степень, приводит к уравнению, равносильному исходному на том множестве

Пусть даны два уравнения f x g x и p x если

Возведение уравнения f(x)=g(x) в четную степень, приводит к уравнению, равносильному исходному на том множестве М, на котором обе функции неотрицательны.
Умножение ( деление) обеих частей уравнения на функцию ψ, приводит к уравнению, равносильному исходному на том множестве М, на котором функция ψ определена и отлична от нуля.

Основные преобразования уравнений, приводящие исходное уравнение к уравнению, равносильному ему на некотором множестве чисел

Видео:Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)

Потенцирование логарифмического уравнения а>0, a≠1 приводит к уравнению f(x)=g(x), равносильному исходному на том множестве

Потенцирование логарифмического уравнения
а>0, a≠1
приводит к уравнению f(x)=g(x), равносильному исходному на том множестве М, на котором положительны обе функции f и g .
Приведение подобных членов ( h(x)-h(x)=0) приводит к уравнению, равносильному исходному на том множестве М, на котором определена функция h(x) , т,е. на области существования функции h(x).

Основные преобразования уравнений, приводящие исходное уравнение к уравнению, равносильному ему на некотором множестве чисел

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Применение некоторых формул ( логарифмических, тригонометрических и др

Пусть даны два уравнения f x g x и p x если

Применение некоторых формул
( логарифмических, тригонометрических и др.) приводит к уравнению, равносильному исходному на множестве М, на котором определены обе части применяемых формул.

Основные преобразования уравнений, приводящие исходное уравнение к уравнению, равносильному ему на некотором множестве чисел

Видео:Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать

Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 класс

Равносильность уравнений

Пусть даны два уравнения f x g x и p x если

Презентация к уроку по теме «Равносильность уравнений»

Просмотр содержимого документа
«Равносильность уравнений»

Пусть даны два уравнения f x g x и p x если

Пусть даны два уравнения f x g x и p x если

Определение 1. Два уравнения с одной переменной

Иными словами, два уравнения называют равносильными , если они имеют одинаковые корни или если оба уравнения не имеют корней.

Например , уравнения х 2 — 4 = 0 и (х + 2)(2 x — 4) = 0 равносильны, оба они имеют по два корня: 2 и -2. Равносильны и уравнения х 2 +1=0и √ x =-3, поскольку оба они не имеют корней.

Пусть даны два уравнения f x g x и p x если

Определение 2. Если каждый корень уравнения

является в то же время корнем уравнения

то уравнение (2) называют следствием уравнения (1).

Например , уравнение х — 2 = 3 имеет корень х = 5, а уравнение — 2) 2 = 9 имеет два корня: х 1 = 5, х 2 = -1. Корень уравнения х — 2 = 3 является одним из корней уравнения (х — 2) 2 = 9. Значит, уравнение (х — 2) 2 = 9 — следствие уравнения х — 2 = 3.

Достаточно очевидным является следующее утверждение.

Два уравнения равносильны тогда и только тогда, когда каждое из них является следствием другого .

Пусть даны два уравнения f x g x и p x если

В итоге можно сказать, что решение уравнения, как правило, осуществляется в три этапа.

Первый этаптехнический. На этом этапе осуществляют преобразования по схеме (1) → (2) → (3) → (4) → . и находят корни последнего (самого простого) уравнения указанной цепочки.

Второй этапанализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.

Третий этаппроверка. Если анализ, проведенный на втором этапе, показывает, что некоторые преобразования могли привести к уравнению-следствию, то обязательна проверка всех найденных корней их подстановкой в исходное уравнение.

Пусть даны два уравнения f x g x и p x если0, a ≠1) равносильно уравнению f ( x ) = g (х). » width=»640″

Теоремы о равносильности уравнений

  • «Спокойные теоремы» гарантируют равносильность преобразований без каких-либо дополнительных условий, их использование не причиняет решающему никаких неприятностей.

Теорема 1 . Е сли какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и ту же нечетную степень, то получится уравнение, равносильное данному.

Теорема 3. Показательное уравнение а f ( x ) = а g ( x ) (где а 0, a ≠1) равносильно уравнению f ( x ) = g (х).

Пусть даны два уравнения f x g x и p x если

Прежде чем формулировать теоремы 4—6, напомним еще об одном понятии, связанном с уравнениями.

Определение 3. Областью определения уравнения f (х) = g (х) или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной х, при которых одновременно имеют смысл выражения

Пусть даны два уравнения f x g x и p x если0 и a ≠1, X — решение системы неравенств f (х) О, g (х) 0 Тогда уравнение log a f ( x ) = log a g ( x ) равносильно на множестве X уравнению f ( x ) = g (х) » width=»640″

« Беспокойные теоремы » работают лишь при определенных условиях, а значит, могут доставить некоторые неприятности при решении уравнений.

Теорема 4. Если обе части уравнения f ( x ) = g (х) умножить на одно и то же выражение h (х), которое:

а) имеет смысл всюду в области определения (в области допустимых значений) уравнения f ( x ) = g (х)

б) нигде в этой области не обращается в 0, то получится уравнение

Следствием теоремы 4 является еще одно «спокойное» утверждение: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Теорема 5 . Если обе части уравнения f ( x ) = g (х) неотрицательны в ОДЗ уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение ( f ( x )) n =( g ( x )) n равносильное данному в его ОДЗ.

Теорема 6. Пусть а0 и a ≠1, X — решение системы неравенств

Пусть даны два уравнения f x g x и p x если

Преобразование данного уравнения в уравнение – следствие. Проверка корней.

Если в процессе решения уравнения применяем теоремы 4-6, не проверив выполнения ограничительных условий, то получим уравнение-следствие.

Умножим обе части на (х – 2):

(х – 2)(х – 1) = 3(х – 2); х = 4 и х = 2 – посторонний корень проверка!

Потенцируем 2х – 4 = 3х – 5; х = 1, но при этом значении уравнение не имеет смысла ⇒ искать ОДЗ или проверка.

Пусть даны два уравнения f x g x и p x если(2) (3) — (4) — . и находят корни последнего (самого простого) уравнения указанной цепочки. Последовательно получаем: 100(2х + 5) = 1296 – 216х + 9х ² 9х ² — 416х + 796 = 0 х ₁ = 2; х₂ = 398/9 Второй этап — анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными. Третий этап — проверка. Подставим поочередно каждое из найденных значений переменной в исходное уравнение. х₂ = 398/9 — посторонний корень. Ответ: х = 2 » width=»640″

Решение. Первый этаптехнический. На этом этапе, как мы отмечали выше, осуществляют преобразования заданного уравнения по схеме (1) — (2) (3) — (4) — . и находят корни последнего (самого простого) уравнения указанной цепочки.

100(2х + 5) = 1296 – 216х + 9х ²

9х ² — 416х + 796 = 0

Второй этапанализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.

Третий этаппроверка. Подставим поочередно каждое из найденных значений переменной в исходное уравнение.

х₂ = 398/9 — посторонний корень.

Пусть даны два уравнения f x g x и p x если

Решение. Первый этап . Воспользуемся правилом «сумма логарифмов равна логарифму произведения». Оно позволяет заменить выражение ln (х + 4) + ln (2х + 3) выражением

ln + 4)(2х + 3). Тогда заданное уравнение можно переписать в виде:

Второй этап . В процессе решения произошло расширение ОДЗ уравнения, значит, обязательна проверка.

Третий этап . Поскольку, кроме расширения ОДЗ уравнения, никаких других неравносильных преобразований в процессе решения уравнения не было, проверку можно выполнить по ОДЗ исходного уравнения. Она задается системой неравенств

Значение х = -1 удовлетворяет этой системе неравенств, а значение х = -5,5 не удовлетворяет уже первому неравенству, это посторонний корень.

Пусть даны два уравнения f x g x и p x если

О потере корней

Укажем две причины потери корней при решении уравнений:

1. Деление обеих частей уравнения на одно и то же выражение h (х) (кроме тех случаев, когда точно известно, что всюду в области определения уравнения выполняется условие h (х) ≠ 0);

2. Сужение ОДЗ в процессе решения уравнения.

С первой причиной бороться нетрудно: приучайте себя переходить от уравнения f ) h (х) = g ) h <х) к уравнению h ( x )( f ( x ) – g ( x ))=0 ( а не к уравнению f ( x )= g ( x ) ). Может быть, даже есть смысл вообще запретить себе деление обеих частей уравнения на одно и то же выражение, содержащее переменную.

Пусть даны два уравнения f x g x и p x если

Со второй причиной бороться сложнее. Рассмотрим, например, уравнение lg х 2 = 4 и решим его двумя способами.

Первый способ . Воспользовавшись определением логарифма, находим:

Обратите внимание: при втором способе произошла потеря корня — «потерялся» корень х = -100. Причина в том, что вместо правильной формулы lg х 2 = 2 lg l х l мы воспользовались непра вильной формулой

lg х 2 = 2 lg х, сужающей область определения выражения, из нее «выпал» открытый луч (-∞; 0), где как раз и находится «потерявшийся» при втором способе решения корень уравнения.

Вывод: применяя при решении уравнения какую-либо формулу (особенно тригонометрическую), следите за тем, чтобы области допустимых значений переменной для правой и левой частей

Видео:ДВА БЫСТРЫХ СПОСОБА решения уравнения |x-2|=|x+5| ★ Как решать?Скачать

ДВА БЫСТРЫХ СПОСОБА решения уравнения |x-2|=|x+5| ★ Как решать?

Равносильные уравнения. Следствия уравнений

При решении уравнений выполняются различные тождественные преобразования над выражениями, входящими в уравнение. При этом исходное уравнение изменяется другими, имеющими те же корни. Такие уравнения называются равносильными.

если каждый корень первого уравнения является корнем второго и обратно, каждый корень второго уравнения является корнем первого, т.е. их решения совпадают.

Например, уравнения 3x-6=0; 2х-1=3 равносильны, т.к. каждое из уравнений имеет один корень х=2.

Любые два уравнения, имеющие пустое множество корней, считают равносильными.

Тот факт, что уравнения

равносильны, обозначают так:

В процессе решения уравнений важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.

Теорема 1: Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив его знак, то получим уравнение, равносильное данному.

Доказательство: Докажем, что уравнение

Пусть х=а — корень уравнения. Значит имеет место числовое равенство

Но тогда по свойству действительных чисел будет выполняться и числовое равенство

показывающее, что а — корень уравнения (2). Аналогично доказывается, что каждый корень уравнения (2) является и корнем уравнения (1).

Что и требовалось доказать.

Теорема 2: Если обе части уравнения умножить или разделить на отличное от нуля число, то получим уравнение, равносильное данному.

Доказательство: докажем, что уравнение

так как корни уравнений равны, то уравнения равносильны.

Что и требовалось доказать.

Пусть даны два уравнения f x g x и p x если

ОДЗ этого уравнения

Мы знаем, что дробь равна нулю в том случае, когда ее числитель равен нулю, т.е.

а знаменатель не равен 0. Решая уравнение

находим корни х1=1, х2 = -2 . Но число 1 не входит в ОДЗ данного уравнения и значит, исходное уравнение имеет один корень х=-2.

В этом случае говорят, что уравнение

есть следствие уравнения

Пусть даны два уравнения f x g x и p x если

пусть даны два уравнения:

Если каждый корень уравнения (3) является корнем уравнения (4), то уравнение (4) называют следствием уравнения (3).

Пусть даны два уравнения f x g x и p x если

Этот факт записывают так:

Пусть даны два уравнения f x g x и p x если

В том случае, когда уравнение (3) — есть также следствие уравнения (4), эти уравнения равносильны.

Два уравнения равносильны в том, и только в том случае, когда каждое из них является следствием другого.

В приведенном выше примере уравнение — следствие

имеет два корня x1=1 и х2 =-2, а исходное уравнение имеет один корень х=-2. В этом случае корень х=1 называют посторонним для исходного уравнения

Пусть даны два уравнения f x g x и p x если

В общем случае корни уравнения-следствия, не являющиеся корнями исходного уравнения, называют посторонними.

Итак, если при решении уравнения происходит переход к уравнению — следствию, то могли появиться посторонние корни. В этом случае все корни уравнения-следствия нужно проверить, подставляя их в исходное уравнение. В некоторых случаях выявление посторонних корней облегчается знанием ОДЗ исходного уравнения — корни, не принадлежащие ОДЗ, можно сразу отбросить. Так, в приведенном примере посторонний корень х=1 не входит в ОДЗ уравнения

Пусть даны два уравнения f x g x и p x если

и потому отброшен.

Иногда посторонние корни могут появиться и при тождественных преобразованиях, если они приводят к изменению ОДЗ уравнения. Например, после приведения подобных членов в левой части уравнения

Пусть даны два уравнения f x g x и p x если

Пусть даны два уравнения f x g x и p x если

В тех случаях, когда в результате преобразований произошел переход от исходного уравнения к уравнению, не являющемуся его следствием, возможна потеря корней.

Имеет два корня. Действительно, перенося все члены уравнения в левую часть и вынося х+1 за скобки, получим

Если же обе части уравнения (5) разделить («сократить») на х+1, то получим уравнение

имеющее один корень х=-2. В результате такого преобразования корень х=-1 потерян. Поэтому делить обе части уравнения на выражение, содержащее переменную, можно лишь в том случае, когда это выражение отлично от нуля.

Для того, чтобы в процессе решения уравнения избежать потери корней, необходимо следить за тем, чтобы переход осуществлялся либо к равносильным уравнениям, либо к уравнениям-следствиям.

📽️ Видео

Найдите f(x), если f(x)+2f(-x)=2-x ★ Как решать такие задачи?Скачать

Найдите f(x), если f(x)+2f(-x)=2-x ★ Как решать такие задачи?

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Равносильные уравнения, неравенстваСкачать

Равносильные уравнения, неравенства

ОГЭ по математике. Решаем уравнения | МатематикаСкачать

ОГЭ по математике. Решаем уравнения | Математика

Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

7 класс, 36 урок, Что означает в математике запись y = f(х)Скачать

7 класс, 36 урок, Что означает в математике запись y = f(х)

Уравнение с двумя переменными и его график. Алгебра, 9 классСкачать

Уравнение с двумя переменными и его график. Алгебра, 9 класс

Как решить такое уравнение ➜ c³+c²=2 ➜ Решаем на разных множествахСкачать

Как решить такое уравнение ➜ c³+c²=2 ➜ Решаем на разных множествах

№5 Линейное уравнение 2-3(2х+2)=5-4х Простое уравнение со скобками 6кл 7кл 8кл 9кл 11кл ОГЭ ЕГЭСкачать

№5 Линейное уравнение 2-3(2х+2)=5-4х Простое уравнение со скобками 6кл 7кл 8кл 9кл 11кл ОГЭ ЕГЭ
Поделиться или сохранить к себе: