Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Рабочие листы и материалы для учителей и воспитателей
Более 300 дидактических материалов для школьного и домашнего обучения
Практическая работа №1
Тема: «Выполнение операций над множествами»
Цель: развитие практических навыков задания множеств, выполнения операций над множествами.
Время выполнения : 90 минут.
1. Найдите объединение, пересечение, разность множеств А и В , если:
а) А = ] ; B =[1; + )
2. (Устно) Найдите дополнение в множестве всех треугольников к множеству:
а) всех равносторонних треугольников;
б) всех равнобедренных треугольников;
в) всех прямоугольных треугольников.
а) А ( В С ); е) АВ;
б) ( С В ) А ; ж) А В;
в) А ( В С ); з) В С.
г) А ( В С );
д) А ( В С) ;
4.(Устно)Приведите примеры множеств, составленных из объектов следующих видов:
а) неодушевленных предметов;
г) геометрических фигур;
д) населенных пунктов;
ж) политических деятелей.
Пусть А – множество корней уравнения
. Перечислите элементы множеств:
а) А
2. Перечислите элементы каждого из множеств:
а) А = < x : x N , -2 ≤ x ≤ 5>;
б) В = < х : x Z , | x |
в) С = < х : x N , 2 х 2 + 5 х – 3 = 0>.
3.Даны множества: А= . Найдите А
4.Даны два множества: А – множество стран и В – множество материков. Задайте соответствие между этими множествами с помощью стрелок. А= , В= .
Пусть А – множество корней уравнения
. Перечислите элементы множеств:
а) А
2. Перечислите элементы каждого из множеств:
а) А = < х : x Z , | x | = 4>;
б) В = < х : x N , –2 х ≤ 5>;
в) С = < х : x Q , x 2 + 3 х + 4 = 0>.
3.Даны множества: А= . Найдите А
4.Даны два множества: А – множество месяцев года и В – множество времён года. Задайте соответствие между этими множествами с помощью стрелок.
Пусть А – множество корней уравнения
. Перечислите элементы множеств:
а) А
2. Перечислите элементы каждого из множеств:
а) А = < х: x Z , –2 ≤ x ≤ 3>;
б) В = < х : x N , (5 х + 6)( х – 4) = 0>;
в) С = < х : x N , | x | = 7>.
3.Даны множества: А= . Найдите А
4.Даны два множества: А – множество стран и В – множество материков. Задайте соответствие между этими множествами с помощью стрелок. А= , В= .
Пусть А – множество корней уравнения
. Перечислите элементы множеств:
а) А
2. Перечислите элементы каждого из множеств:
а) А = < х : х N , х ≤ 4>;
б) В = < х : х Z , ( х + 1)(– х – 3) = 0>;
в) С = < х : х N , | х | = 5>.
3.Даны множества: А= . Найдите А
4. Даны два множества: А – множество месяцев года и В – множество времён года. Задайте соответствие между этими множествами с помощью стрелок.
1. Назовите элементы, принадлежащие множеству:
а) студентов вашей группы;
б) предметов, изучаемых в I семестре вашей специальности;
в) всех частей света;
г) субъектов федерации, входящих в Российскую Федерацию.
2. Пусть А – множество многоугольников. Принадлежат ли этому множеству:
3.Запишите перечислением элементов следующие множества:
а) А – множество нечетных чисел на отрезке [1; 15];
б) В – множество натуральных чисел, меньших 8;
в) С – множество натуральных чисел, больших 10, но меньших 12;
г) D – множество двузначных чисел, делящихся на 10;
д) Е – множество натуральных делителей числа 18;
е) F – множество чисел, модуль которых равен .
4.На факультете филологии и журналистики учатся студенты, получающие стипендию, и студенты, не получающие стипендию. Пусть А – множество всех студентов факультета; В – множество студентов факультета, получающих стипендию.
Укажите, что собой представляет объединение , пересечение и разность множеств А и В .
Для отчёта представить:
Решение индивидуального задания.
Письменные ответы на контрольные вопросы.
«5» — выполнено 90-100% всех заданий;
«4» — выполнено 70-90% всех заданий;
«3» — выполнено 50-70% всех заданий;
«2» — выполнено менее 50% всех заданий.
Краткое описание документа:
Практическая работа №1
Тема: «Выполнение операций над множествами»
Цель: развитие практических навыков задания множеств, выполнения операций над множествами.
Время выполнения : 90 минут.
1. Найдите объединение, пересечение, разность множеств А и В , если:
а) А = ] ; B =[1; + )
2. (Устно) Найдите дополнение в множестве всех треугольников к множеству:
а) всех равносторонних треугольников;
б) всех равнобедренных треугольников;
в) всех прямоугольных треугольников.
а) А ( В С ); е) АВ;
б) ( С В ) А ; ж) А В;
в) А ( В С ); з) В С.
г) А ( В С );
д) А ( В С) ;
4.(Устно)Приведите примеры множеств, составленных из объектов следующих видов:
а) неодушевленных предметов;
г) геометрических фигур;
д) населенных пунктов;
ж) политических деятелей.
Пусть А – множество корней уравнения
. Перечислите элементы множеств:
а) А
2. Перечислите элементы каждого из множеств:
а) А = < x : x N , -2 ≤ x ≤ 5>;
б) В = < х : x Z , | x |
в) С = < х : x N , 2 х 2 + 5 х – 3 = 0>.
3.Даны множества: А= . Найдите А
4.Даны два множества: А – множество стран и В – множество материков. Задайте соответствие между этими множествами с помощью стрелок. А= , В= .
Пусть А – множество корней уравнения
. Перечислите элементы множеств:
а) А
2. Перечислите элементы каждого из множеств:
а) А = < х : x Z , | x | = 4>;
б) В = < х : x N , –2 х ≤ 5>;
в) С = < х : x Q , x 2 + 3 х + 4 = 0>.
3.Даны множества: А= . Найдите А
4.Даны два множества: А – множество месяцев года и В – множество времён года. Задайте соответствие между этими множествами с помощью стрелок.
Пусть А – множество корней уравнения
. Перечислите элементы множеств:
а) А
2. Перечислите элементы каждого из множеств:
а) А = < х: x Z , –2 ≤ x ≤ 3>;
б) В = < х : x N , (5 х + 6)( х – 4) = 0>;
в) С = < х : x N , | x | = 7>.
3.Даны множества: А= . Найдите А
4.Даны два множества: А – множество стран и В – множество материков. Задайте соответствие между этими множествами с помощью стрелок. А= , В= .
Пусть А – множество корней уравнения
. Перечислите элементы множеств:
а) А
2. Перечислите элементы каждого из множеств:
а) А = < х : х N , х ≤ 4>;
б) В = < х : х Z , ( х + 1)(– х – 3) = 0>;
в) С = < х : х N , | х | = 5>.
3.Даны множества: А= . Найдите А
4. Даны два множества: А – множество месяцев года и В – множество времён года. Задайте соответствие между этими множествами с помощью стрелок.
1. Назовите элементы, принадлежащие множеству:
а) студентов вашей группы;
б) предметов, изучаемых в I семестре вашей специальности;
в) всех частей света;
г) субъектов федерации, входящих в Российскую Федерацию.
2. Пусть А – множество многоугольников. Принадлежат ли этому множеству:
3.Запишите перечислением элементов следующие множества:
а) А – множество нечетных чисел на отрезке [1; 15];
б) В – множество натуральных чисел, меньших 8;
в) С – множество натуральных чисел, больших 10, но меньших 12;
г) D – множество двузначных чисел, делящихся на 10;
д) Е – множество натуральных делителей числа 18;
е) F – множество чисел, модуль которых равен .
4.На факультете филологии и журналистики учатся студенты, получающие стипендию, и студенты, не получающие стипендию. Пусть А – множество всех студентов факультета; В – множество студентов факультета, получающих стипендию.
Укажите, что собой представляет объединение , пересечение и разность множеств А и В .
Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Калькулятор онлайн.
Решение показательных уравнений.
Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите показательное уравнение
Решить уравнение
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Немного теории.
Видео:СЛОЖИТЕ ДВА КОРНЯСкачать
Показательная функция, её свойства и график
Напомним основные свойства степени. Пусть а > 0, b > 0, n, m — любые действительные числа. Тогда
1) a n a m = a n+m
4) (ab) n = a n b n
7) a n > 1, если a > 1, n > 0
8) a n m , если a > 1, n n > a m , если 0 x , где a — заданное положительное число, x — переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.
Определение. Показательной функцией называется функция вида y = a x , где а — заданное число, a > 0, ( a neq 1)
Показательная функция обладает следующими свойствами
1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.
2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, ( a neq 1), не имеет корней, если ( b leqslant 0), и имеет корень при любом b > 0.
3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 x при a > 0 и при 0 x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х x при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.
График функции у = a x при 0 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х
Видео:Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать
Показательные уравнения
Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, ( a neq 1), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, ( a neq 1) равны тогда и только тогда, когда равны их показатели.
Решить уравнение 2 3x • 3 x = 576
Так как 2 3x = (2 3 ) x = 8 x , 576 = 24 2 , то уравнение можно записать в виде 8 x • 3 x = 24 2 , или в виде 24 x = 24 2 , откуда х = 2.
Ответ х = 2
Решить уравнение 3 х + 1 — 2 • 3 x — 2 = 25
Вынося в левой части за скобки общий множитель 3 х — 2 , получаем 3 х — 2 (3 3 — 2) = 25, 3 х — 2 • 25 = 25,
откуда 3 х — 2 = 1, x — 2 = 0, x = 2
Ответ х = 2
Решить уравнение 3 х = 7 х
Так как ( 7^x neq 0 ) , то уравнение можно записать в виде ( frac = 1 ), откуда ( left( frac right) ^x = 1 ), х = 0
Ответ х = 0
Решить уравнение 9 х — 4 • 3 х — 45 = 0
Заменой 3 х = t данное уравнение сводится к квадратному уравнению t 2 — 4t — 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3 х = 9, 3 х = -5.
Уравнение 3 х = 9 имеет корень х = 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
Ответ х = 2
Решить уравнение 3 • 2 х + 1 + 2 • 5 x — 2 = 5 х + 2 х — 2
Запишем уравнение в виде
3 • 2 х + 1 — 2 x — 2 = 5 х — 2 • 5 х — 2 , откуда
2 х — 2 (3 • 2 3 — 1) = 5 х — 2 ( 5 2 — 2 )
2 х — 2 • 23 = 5 х — 2 • 23
( left( frac right) ^ = 1 )
x — 2 = 0
Ответ х = 2
Решить уравнение 3 |х — 1| = 3 |х + 3|
Так как 3 > 0, ( 3 neq 1), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х — 1) 2 = (х + 3) 2 , откуда
х 2 — 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1
Видео:Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать
Теорема о корне при решении уравнений. Урок алгебры. 9-й класс
Разделы: Математика
Класс: 9
Цели урока:
- Использование особенностей монотонности функций для активизации творческого мышления учащихся.
- Формирование у школьников навыков применения теоремы о корне для решения уравнений.
- Умение обобщать, конкретизировать и анализировать изучаемый материал.
- Обучение учащихся нестандартным способам решения задач.
- Развитие логики и навыков самостоятельной работы.
- Воспитание ответственного отношения к учебному труду.
Тип урока: урок изучения нового материала.
Оборудование: учебник “Алгебра 9” (автор: Мордкович А. Г.), задачник “Алгебра 9” (авторы: Мордкович А. Г., Тульчинская Е.Е. и др.), книга для преподавателей “Алгебра 9” (авторы: Афанасьева Т.Л., Тапилина Л.А.), карточки с памяткой для самостоятельной работы по данной теме, компьютер, мультимедийный проектор, экран.
Предложенный урок расширяет программу по теме “Функции”. Учащиеся уже знакомы с основными свойствами функций, владеют навыками грамотного чтения графиков и умеют применять алгоритм исследования функций. На уроке основной упор делается на использование свойств монотонности функций для решения уравнений. Рассматривается теорема о корне. В ходе урока каждый учащийся должен достигнуть определенного уровня понимания материала, поэтому этап усвоения знаний разработан дифференцированно.
Ожидаемый результат по окончании изучения материала:
1-й уровень: каждый ученик должен знать геометрическую модель теоремы о корне и уметь установить связь монотонности функций, входящих в уравнение, с количеством корней соответствующего уравнения.
2-й уровень: каждый ученик должен знать алгоритм решения уравнений с использованием теоремы о корне и уметь применять ее для решения нестандартных задач.
На уроке рассматриваются различные виды уравнений, решаемых с помощью теоремы о корне. В дальнейшем учащимся предлагается использовать предложенный алгоритм в домашней контрольной работе (§16, задачник “Алгебра 9” авторы: Мордкович А. Г., Тульчинская Е.Е. и др.). Для организации проверочной работы используются задания из практикума (составитель автор).
Ход урока
I этап. Организационный момент (1 мин.).
II этап. Актуализация опорных знаний и умений (7 мин.).
Учитель: Необходимо повторить пройденное для того, чтобы успешно перейти к усвоению нового материала. На протяжении изучения темы “Функции” вы постепенно учились читать графики функций, используя алгоритм для их исследования. Остановимся на особенностях возрастающей и убывающей функций. Подборка материала подготовлена учащимися.
Выступление учащихся сопровождается показом презентации.
III этап. Объяснение нового материала (10 мин).
Учитель: Сегодня изучение нового материала мы начнем с доказательства теоремы о корне.
Теорема о корне.
Пусть функция y=f(x) возрастает (или убывает) на множестве (f), число a — любое из значений, принимаемых f(x) на множестве X, тогда уравнение f(x)=a имеет единственный корень на множестве X.
Доказательство:
Рассмотрим возрастающую функцию f(x) (в случае убывающей функции рассуждения аналогичны). По условию на множестве X существует такое число b, что f(b)=a. Покажем, что b — единственный корень уравнения f(x)=a.
Допустим, что на множестве X есть еще число , такое, что f(c)=a. Тогда или c b. Но функция f(x) возрастает на множестве X, поэтому соответственно либо f(c) f(b). Это противоречит равенству f(c)=f(b)=a. Следовательно, сделанное предположение неверно и на множестве X, кроме числа b, других корней уравнения f(x)=a нет.
Геометрическая модель теоремы о корне может быть представлена как на экране, так и на плакате.
Учитель: Давайте вместе рассмотрим следующие примеры:
Сколько корней имеет уравнение?
(1);
— x 5 = (2).
Учащиеся отмечают, что на своих областях определения функция возрастает, а функция y = — x 5 – убывает соответственно. По теореме о корне как уравнение (1), так и уравнение (2) имеют по одному корню.
Учитель: Откроем учебник на 98 стр. и обратим внимание на то, что при решении уравнения x 5 =3-2x (пример 1, рис. 79) геометрическая модель наглядно иллюстрирует следствие, которое следует из теоремы о корне:
Следствие.
“Если функция y=f(x) возрастает, а функция y=g(x) убывает и если уравнение f(x)=g(x) имеет корень, то только один”.
По учебнику разбирается пример 1.
Опираясь на это утверждение, можем изящно решить уравнение
x 5 = 3 — 2x без чертежа, следуя следующему алгоритму:
- заметим, что при x=1 выполняется равенство 1 5 =3-2·1,
значит, x=1 – корень уравнения (этот корень мы угадали); - функция у = 3 — 2x убывает, а функция у = x 5 возрастает,
значит, корень у заданного уравнения только один и
этим корнем является значение x=1.
Учитель: Определим сколько решений имеет уравнение x 5 = — 3x +5 с комментированием на месте.
Решение:
- рассмотрим функции у = x 5 и у = — 3x + 5; заметим, что область определения этих функций одинакова: D(у)=(-; +);
- на D(у) функция у = — 3x + 5 убывает, а функция у = x 5 возрастает. Значит, по следствию из теоремы о корне, у заданного уравнения только один корень, т.е. уравнение, имеет одно решение.
Учитель: Цель нашего урока состоит в том, чтобы научиться решать задачи, используя теорему о корне (следствие).
На экране высвечивается обобщенный алгоритм решения уравнения f(x)=g(x) с использованием следствия из теоремы о корне:
- Определить при каких значениях x уравнение превращается в верное числовое равенство, (т.е. угадать корень уравнения – x=b).
- Ввести две функции y=f(x) и y=g(x).
- Исследовать y=f(x) и y=g(x) на монотонность. Если y=f(x)возрастает (убывает), а y=g(x) убывает (возрастает), то уравнение f(x)=g(x) имеет единственный корень – x=b (ссылка на следствие).
IV этап. Усвоение новых знаний (23 мин.)
Учитель: Карточки и памятка для самостоятельной работы лежат у вас на столах. Приступим к выполнению заданий.
Так как нетрадиционные методы решения задач вызывают трудность у большинства учащихся, то следующее уравнение предлагается решить вместе. Для оформления решения учащийся по желанию выходит к доске (дается уравнение 2 уровня).
Решить уравнение: (3).
Решение: в начале запишем уравнение (3) в виде
,
затем воспользуемся теоремой о корне.
- при x=5 уравнение превращается в верное числовое равенство: ; 5=5 (т.е. угадали корень уравнения – x=5).
- заметим, что в левой части уравнения функция возрастает на D(у)=[3; +); значит, у заданного уравнения корень только один и этим корнем является значение x=5.
После того как данное задание выполнено, класс приступает к решению уравнений в зависимости от восприятия материала:
1) те, кто попытается справиться самостоятельно с не очень сложными уравнениями;
2) те, у кого решение уравнений не вызывает затруднений.
В соответствии с этим учащиеся получают дифференцированные задания.
1 уровень.
1. (Ответ: 0);
2. (Ответ: 2);
3. (Ответ: 3);
4. (Ответ: 4);
5. (Ответ: -2);
6. (Ответ: 1).
2 уровень.
1. (Ответ: 1);
2. (Ответ: -1);
3. (Ответ: -2);
4. (Ответ: 2);
5. (Ответ: -3);
6. (Ответ: -2);
7. (Ответ: 2).
Необходимо проверить правильность выполнения заданий, поэтому от каждой группы выступает ученик, демонстрируя решение одного из уравнений на доске.
V этап. Итог урока (2 мин.).
Подводя итог урока, учитель и ученики выясняют трудности при решении уравнений и обсуждают, на что они должны обратить внимание при выполнении домашнего задания.
VI этап. Домашнее задание (1мин.).
Учитель: задание на дом следующее: доделать задания на карточках; если на уроке выполнено все, то воспользоваться дополнительной карточкой из материалов для самостоятельной работы; домашняя контрольная работа (§16, задачника “Алгебра 9”).
Заключительное слово учителя (1мин). Любовь к предмету не возникает просто так. Двигаясь постепенно от простого к сложному, анализируя и обобщая учебный материал, интересуясь “изящными” способами решения, можно понять красоту алгебры. Сегодня знание теории и практические навыки, что равнозначно, показали многие из вас. Особую благодарность заслуживают ребята, создавшие прекрасную презентацию. Постижение мира бесконечно: дерзайте, творите, ошибайтесь, ищите ответы на вопросы, только не “проспите” лучшие годы. “Жажда к жизни” – залог успеха.
Материалы к уроку для самостоятельной работы учащихся
1. Памятка по решению уравнений.
Теорема о корне.
Пусть функция y=f(x) возрастает (или убывает) на множестве (f), число a — любое из значений, принимаемых f(x) на множестве X, тогда уравнение f(x)=a имеет единственный корень на множестве X.
Следствие.
“Если функция y=f(x) возрастает, а функция y=g(x) убывает и если уравнение f(x)=g(x) имеет корень, то только один”.
Алгоритм решения уравнения f(x)=a с использованием теоремы о корне:
- определить при каких значениях x уравнение превращается в верное числовое равенство, (т.е. угадать корень уравнения – x=b);
- исследовать функцию y=f(x), стоящую в левой части уравнения, на монотонность. Если y=f(x) возрастает (убывает), то уравнение f(x)=a имеет единственный корень – x=b (ссылка на теорему).
Алгоритм решения уравнения f(x)=g(x) с использованием следствия из теоремы о корне:
Рекомендации:
Сначала, если это необходимо, уравнение привести к такому виду, чтобы было удобно исследовать на монотонность функции, стоящие в левой и правой частях уравнения, а затем следовать согласно следующему алгоритму:
- определить при каких значениях x уравнение превращается в верное числовое равенство, (т.е. угадать корень уравнения – x=b);
- ввести две функции y=f(x) и y=g(x);
- исследовать y=f(x) и y=g(x) на монотонность. Если y=f(x) возрастает (убывает), а y=g(x) убывает (возрастает), то уравнение f(x)=g(x) имеет единственный корень – x=b (ссылка на следствие).
2. Практические задания.
Рекомендации: рассмотрим готовое решение уравнения (возможен такой вариант оформления).
Решить уравнение: .
Решение:
Функция f(x) = определена и монотонно возрастает на D(у)=[0; +);
На основании теоремы о корне уравнение имеет не более одного корня.
Т.к. f (1) = 4, то x = 1 – корень уравнения.
Дополнительная карточка (подбор заданий [1]).
;
;
;
;
;
.
Литература.
- Ткачук В.В. Математика абитуриенту. – М.: МЦНМО, 2005.
📹 Видео
Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
УРАВНЕНИЕ х²=а корни уравненияСкачать
Комплексные корни квадратного уравненияСкачать
Комплексные корни квадратных уравнений. 11 класс.Скачать
Математика без Ху!ни. Комплексные числа, часть 4. Извлечение корня n-й степени.Скачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать
Свойства квадратного корня. Уравнение х2=а, 8 классСкачать
Математика| Разложение квадратного трехчлена на множители.Скачать
Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать
ОГЭ по математике. Решаем уравнения | МатематикаСкачать
Как решать дробно-рациональные уравнения? | МатематикаСкачать