Угловой коэффициент— коэффициент k в уравнении прямой на плоскости y = kx + b. Он численно равняется тангенсу угла между выбранной прямой и осью 0х. Этот угол отсчитывается от положительного направления оси 0х до прямой против хода часовой стрелки и располагается и пределах от 0 до 180 градусов.
Для обозначения углового коэффициента употребляют латинский символ k. И, основываясь на определении получаем:
Когда прямая параллельна оси 0х или совпадает с ней, то угол ее наклона расценивают, как равный нулю.
Когда прямая параллельна оси 0у, то угловой коэффициент отсутствует и принято указывать, что угловой коэффициент обращается в бесконечность.
Положительный угловой коэффициент прямой свидетельствует о росте графика функции, отрицательный угловой коэффициент – об убывании.
При этом большим значениям углового коэффициента k будет соответствовать более крутая прямая, а меньшим — более пологая.
Угловой коэффициент прямой так же есть возможность вычислить, когда установлены координаты двух произвольных точек прямой:
Тогда, в образовавшемся прямоугольном треугольнике M1РM2 вычисляем тангенс:
Видео:Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать
Угловой коэффициент прямой
Что такое угловой коэффициент прямой? Если представить прямую, проходящую через две точки в прямоугольной системе координат (ОX, OY), то тангенс угла, образованного осью ОX и прямой – угловой коэффициент заданной прямой.
Например, угловой коэффициент прямой (а), проходящей через точки А (X1, Y1) и В (X2, Y2) будет равняться тангенсу (tg) треугольника, гипотенузой которого будет прямая (а) или отрезок АВ.
Таким образом можно узнать угол наклона прямой (а) к оси абсцисс ОХ. Угол определяется между осью ОХ и прямой (а) в направлении против часовой стрелки. То есть, если коэффициент наклона больше нуля (k›0), то угол наклона тупой. Если коэффициент наклона меньше нуля (k‹0), то угол наклона острый. Если коэффициент (k) равен нулю, то прямая (а) расположена параллельно оси ОХ. Если коэффициент (k) не существует – определяется в бесконечность – значит, прямая (а) расположена в системе координат параллельно оси OY.
Рассчитать угловой коэффициент можно с помощью онлайн калькулятора. Стоит всего лишь подставить данные точек в системе координат, через которые проходит заданная прямая, и калькулятор рассчитает угловой коэффициент. Подставив значения в уравнение прямой с угловым коэффициентом, можно определить – принадлежит ли некая произвольно заданная точка в системе координат данной прямой.
Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Прямая задана уравнением 3х 4у 1 0 укажите угловой коэффициент этой прямой
Общее уравнение прямой 4x — 3y + 12 = 0 представить в виде: 1) с угловым коэффициентом; 2) в отрезках на осях и 3) в нормальном виде. Построить эту прямую.
1) Уравнение прямой с угловым коэффициентом имеет вид y = kx + b. Чтобы заданное уравнение преобразовать к этому виду, разрешим его относительно y: 3y = 4x + 12, .
Сравнивая с уравнением y = kx + b, видим, что здесь угловой коэффициент прямой , а величина отрезка, отсекаемого прямой на оси ординат, b = 4 (если уравнение прямой дано в общем виде Ax + By + C = 0, то ее угловой коэффициент легко получить, если разделить коэффициент при x на коэффициент при y и взять полученное частное с обратным знаком ).
2) В отрезках на осях уравнение прямой имеет вид
(1)
Чтобы определить величины отрезков, отсекаемых заданной прямой 4x — 3y + 12 = 0, поступим так: в уравнении прямой положим y = 0. Получаем 4x + 12 = 0, а x = -3. Значит, наша прямая пересекает ось Ox в точке с координатами (-3, 0) и в уравнении (1) величина отрезка a = -3.
Полагая в нашем уравнении x = 0, определим ординату точки пересечения прямой с осью ординат. Будем иметь
Точка пересечения прямой с осью ординат имеет координаты (0, 4), и в уравнении (1) величина отрезка b = 4.
Таким образом, наше уравнение в отрезках на осях будет иметь вид
🌟 Видео
Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
Как построить график линейной функции.Скачать
Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать
Математика без Ху!ни. Уравнение касательной.Скачать
ОГЭ 2022. Задание 11. Подробный разбор. Функция прямая. Как отличать.Скачать
Линейная функция и её график. Алгебра, 7 классСкачать
Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Линейная функция и ее график. 7 класс.Скачать
10 класс, 43 урок, Уравнение касательной к графику функцииСкачать
Построить график ЛИНЕЙНОЙ функции и найти:Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Урок ГРАФИК ЛИНЕЙНОЙ ФУНКЦИИ 7 КЛАСССкачать
Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать
Функция прямой пропорциональности. 7 класс.Скачать
ОГЭ ДЛЯ НОЛИКОВ. ЗАДАНИЕ-11Скачать
Алгебра 7 класс. 3 октября. Строим график линейной функцииСкачать
Видеоурок "Канонические уравнения прямой"Скачать