Проверка адекватности уравнения по критерию фишера

Проверка адекватности линейного уравнения регрессии

Расчет коэффициентов ПФЭ при равном числе параллельных опытов в каждой точке факторного пространства

Коэффициенты находятся по формуле:

Проверка адекватности уравнения по критерию фишера,

где Проверка адекватности уравнения по критерию фишера— среднее значение параметра оптимизации, вычисленное по параллельным опытам Проверка адекватности уравнения по критерию фишера– ой строки матрицы планирования Проверка адекватности уравнения по критерию фишера.

Проверка значимости коэффициентов ПФЭ

Очевидно, что один фактор больше влияет на параметр оптимизации, другой – меньше. Поэтому можно проверить полученные коэффициенты регрессии на значимость, т.е. оценить величину влияния каждого фактора на значение параметра оптимизации. Если эта величина соизмерима с ошибкой эксперимента, то соответствующий коэффициент не несет дополнительной информации об объекте, и его можно приравнять к нулю, что упрощает математическую модель.

Значимость коэффициентов проверяется с помощью Проверка адекватности уравнения по критерию фишера– критерия Стьюдента.

Значения Проверка адекватности уравнения по критерию фишера– критерия вычисляются для каждого для каждого фактора по формуле:

Проверка адекватности уравнения по критерию фишера, Проверка адекватности уравнения по критерию фишера

Полученные значения сравнивают с табличным значением критерия Стъюдента Проверка адекватности уравнения по критерию фишера, которое находится по числу степеней свободы Проверка адекватности уравнения по критерию фишера, и уровню значимости α — величина, характеризующая вероятность того, что решение будет неправильным. Обычно принимают, что Проверка адекватности уравнения по критерию фишераα =0.05.

Проверка адекватности уравнения по критерию фишера> Проверка адекватности уравнения по критерию фишера,

то коэффициент значимо отличается от нуля, если же Проверка адекватности уравнения по критерию фишера Проверка адекватности уравнения по критерию фишера, (1)

то линейное уравнение регрессии признается адекватным. Если это условие не выполняется, т.е. Проверка адекватности уравнения по критерию фишера

При расчете F предполагается что Проверка адекватности уравнения по критерию фишера. Если наблюдается обратное, то вывод об адекватности может быть сделан и без проверки условия (1).

Если модель адекватна, то ее можно использовать для поиска области оптимума объекта исследования или для предсказания отклика.

При неадекватной линейной модели наиболее часто принимают решение об уменьшении интервалов варьирования факторов и повторении эксперимента.

Итак, алгоритм расчета линейной модели с использованием ПФЭ следующий:

Задают матрицу планирования в кодированной форме для заданного числа факторов

Для каждого фактора задают базовую точку и интервал варьирования

Рассчитывают матрицу планирования в натуральной (размерной) форме

Проводят эксперименты, по матрице планирования, используя случайные числа.

Проводят серию опытов в центре плана, для определения ошибки опыта.

Видео:Проверка адекватности регрессии. Критерий ФишераСкачать

Проверка адекватности регрессии. Критерий Фишера

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера

x
y
y = f (x)

Под регрессионным анализом понимают исследование закономерностей связи между явлениями (процессами), которые зависят от многих, иногда неизвестных, факторов. Часто между переменными и существует связь, но не вполне определенная, при которой одному значению x соответствует несколько значений (совокупность) у. В таких случаях связь называют регрессионной. Таким образом,

функция является регрессионной (корреляционной), если каждому

значению аргумента соответствует статистический ряд распределения у.

x
y

Суть регрессионного анализа сводится к установлению уравнения регрессии, т.е. вида кривой между случайными величинами (аргументами и функцией ), оценке

x
y

тесноты связей между ними, достоверности и адекватности результатов измерений.

Чтобы предварительно определить наличие такой связи между и , наносят

x
y

точки на график и строят так называемое корреляционное поле (рис. 1). По виду корреляционного поля можно судить о наличии корреляционной связи. Так, из рис. 1-a видно, что экспериментальные данные имеют определенную связь между и , а

измерения на рис. 1-б такой связи не показывают.

Проверка адекватности уравнения по критерию фишераРис. 1. Корреляционное поле

Различают однофакторные (парные) и многофакторные регрессионные зависимости. Парная регрессия при парной зависимости может быть аппроксимирована прямой линией, параболой, гиперболой, логарифмической, степенной или показательной функцией, полиномом и др. Двухфакторное поле можно аппроксимировать плоскостью, параболоидом второго порядка, гиперболоидом.

Проверка адекватности уравнения по критерию фишераПри построении теоретической регрессионной зависимости используется метод наименьших квадратов (МНК). Суть МНК заключается в следующем: из всего множества линий, которые можно провести через экспериментальные точки на корреляционном поле, линия регрессии y = b + b0x выбирается так, чтобы сумма квадратов расстояний по вертикали между экспериментальными точками и этой линией была наименьшей. Расстояния между экспериментальными точками и линией регрессии есть отклонения ei. Следовательно, при использовании МНК минимизируется следующая функция:

Проверка адекватности уравнения по критерию фишера

Проверка адекватности уравнения по критерию фишера

b

где yi– фактические ординаты поля, yi– среднее значение ординаты. Необходимым условием существованием минимума двух переменных является

равенство её частных производных по неизвестным параметрам b0и 1.

Проверка адекватности уравнения по критерию фишера

Разрешая аналитически данную систему уравнений, получаем:

Проверка адекватности уравнения по критерию фишера

где n– число измерений.

Коэффициент корреляции интерпретируется как мера линейной зависимости

случайных величин. При r > 0 между x и y существует положительная линейная

Проверка адекватности уравнения по критерию фишера(3.27)

где Проверка адекватности уравнения по критерию фишера— число значимых коэффициентов в уравнении регрессии.

Эта разность Проверка адекватности уравнения по критерию фишераявляется числом степеней свободы, т.к. из N уравнений мы определили лишь Проверка адекватности уравнения по критерию фишеракоэффициентов (а могли бы определить N коэффициентов).

1.Рассчитывают критерий Фишера по формуле:

Проверка адекватности уравнения по критерию фишера(3.28)

2.Сравнивают полученное значение критерия Фишера с его табличным значением FT (Приложение Б).

В таблицах критерий Фишера дан в зависимости от числа степеней свободы Проверка адекватности уравнения по критерию фишерапри определении дисперсии адекватности и Проверка адекватности уравнения по критерию фишерапри определении средней дисперсии воспроизводимости единичного измерения, S2(yk), равного числу степеней свободы при определении средней дисперсии воспроизводимости среднего Проверка адекватности уравнения по критерию фишера.

Критерий Фишера всегда больше единицы. Поэтому, в зависимости (3.28) в числитель поставлена дисперсия адекватности чисто условно. Если средняя дисперсия воспроизводимости Проверка адекватности уравнения по критерию фишерабольше Проверка адекватности уравнения по критерию фишера, то в числителе должна стоять Проверка адекватности уравнения по критерию фишера.

Промежуточные расчеты удобно представить в виде табл.3.7. Проверка адекватности уравнения по критерию фишераПроверка адекватности уравнения по критерию фишера

Проверка адекватности уравнения по критерию фишера, т.к. N = 8, а Проверка адекватности уравнения по критерию фишера=7.

Так как Проверка адекватности уравнения по критерию фишера, то критерий Фишера имеете величину

Проверка адекватности уравнения по критерию фишера

Таблица 3.7.Промежуточные расчёты по проверке адекватности

u Проверка адекватности уравнения по критерию фишера Проверка адекватности уравнения по критерию фишера Проверка адекватности уравнения по критерию фишера Проверка адекватности уравнения по критерию фишера
69,50,50,25
59,50,50,25
55,70,70,49
90,90,90,81
104,50,50,25
94,50,50,25
80,70,70,49
100,70,70,49

при f1 = 16 и f2 = 1 табличное значение критерия Фишера по Приложению Б равно FT » 8,65.

Сравнение табличного значения критерия Фишера FT с рассчитанным F удовлетворяет неравенству F

Видео:Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать

Эконометрика. Оценка значимости уравнения регрессии. Критерий Фишера

$ AlexLat $

Оценка значимости уравнения регрессии в целом производится на основе F-критерия Фишера, которому предшествует дисперсионный анализ. В математической статистике дисперсионный анализ рассматривается как самостоятельный инструмент статистического анализа. В эконометрике он применяется как вспомогательное средство для изучения качества регрессионной модели. Согласно основной идее дисперсионного анализа, общая сумма квадратов отклонений переменной (y) от среднего значения (y ср. ) раскладывается на две части – «объясненную» и «необъясненную»:

Схема дисперсионного анализа имеет следующий вид (n –число наблюдений, m–число параметров при переменной x):

Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину F-критерия Фишера. Фактическое значение F -критерия Фишера сравнивается стабличным значением F табл. (α, k 1 , k 2 ) при заданном уровне значимости α и степенях свободы k 1 = m и k 2 =n-m-1. При этом, если фактическое значение F-критерия больше табличного F факт > F теор , то признается статистическая значимость уравнения в целом. Для парной линейной регрессии m=1 , поэтому:

Эта формула в общем виде может выглядеть так:

Проверка адекватности уравнения по критерию фишера

Отношение объясненной части дисперсии переменной (у) к общей дисперсии называют коэффициентом детерминации и используют для характеристики качества уравнения регрессии или соответствующей модели связи. Соотношение между объясненной и необъясненной частями общей дисперсии можно представить в альтернативном варианте:

Коэффициент детерминации R 2 принимает значения в диапазоне от нуля до единицы 0≤ R 2 ≤1. Коэффициент детерминации R 2 показывает, какая часть дисперсии результативного признака (y) объяснена уравнением регрессии.Чем больше R 2 , тем большая часть дисперсии результативного признака (y) объясняется уравнением регрессии и тем лучше уравнение регрессии описывает исходные данные. При отсутствии зависимости между (у) и (x) коэффициент детерминации R 2 будет близок к нулю. Таким образом, коэффициент детерминации R 2 может применяться для оценки качества (точности) уравнения регрессии. Возникает вопрос, при каких значениях R 2 уравнение регрессии следует считать статистически незначимым, что делает необоснованным его использование в анализе? Ответ на этот вопрос дает F — критерий Фишера F факт > F теор — делаем вывод о статистической значимости уравнения регрессии. Величина F — критерия связана с коэффициентом детерминации R 2 xy ( r 2 xy ), и ее можно рассчитать по следующей формуле:

Либо при оценке значимости индекса (аналог коэффициента) детерминации:

Проверка адекватности уравнения по критерию фишерагде: i 2 — индекс (коэффициент) детерминации, который рассчитывается:

Проверка адекватности уравнения по критерию фишера

Использование коэффициента множественной детерминации R 2 для оценки качества модели, обладает тем недостатком, что включение в модель нового фактора (даже несущественного) автоматически увеличивает величину R 2 . Поэтому, при большом количестве факторов, предпочтительнее использовать, так называемый, улучшенный, скорректированный коэффициент множественной детерминации R 2 , определяемый соотношением:

где p – число факторов в уравнении регрессии, n – число наблюдений. Чем больше величина p, тем сильнее различия между множественным коэффициентом детерминации R 2 и скорректированным R 2 . При использовании скорректированного R 2 , для оценки целесообразности включения фактора в уравнение регрессии, следует учитывать, что увеличение его величины (значения), при включении нового фактора, не обязательно свидетельствует о его значимости, так как значение увеличивается всегда, когда t-статистика больше единицы (|t|>1). При заданном объеме наблюдений и при прочих равных условиях, с увеличением числа независимых переменных (параметров), скорректированный коэффициент множественной детерминации убывает. При небольшом числе наблюдений, скорректированная величина коэффициента множественной детерминации R 2 имеет тенденцию переоценивать долю вариации результативного признака, связанную с влиянием факторов, включенных в регрессионную модель. Низкое значение коэффициента множественной корреляции и коэффициента множественной детерминации R 2 может быть обусловлено следующими причинами: в регрессионную модель не включены существенные факторы; неверно выбрана форма аналитической зависимости, не реально отражающая соотношения между переменными, включенными в модель.

Для оценки значимости парного коэффициента корреляции (корень квадратный из коэффициента детерминации), при условии линейной формы связи между факторами, можно использовать t-критерий Стьюдента:

Проверка адекватности уравнения по критерию фишера

При численности объектов анализа до 30 единиц возникает необходимость проверки значимости (существенности) каждого коэффициента регрессии. При этом выясняют насколько вычисленные параметры характерны для отображения комплекса условий: не являются ли полученные значения параметров результатами действия случайных причин. Значимость коэффициентов простой линейной регрессии (применительно к совокупностям, у которых n t-критерия Стьюдента. При этом вычисляют расчетные (фактические) значения t-критерия для параметров a 0 а 1 :

Проверка адекватности уравнения по критерию фишера

n-число наблюдений, m-число параметров уравнения регрессии, σ ε -(остаточное) среднее квадратическое отклонение результативного признака от выровненных значений ŷ; σ х -среднее квадратическое отклонение факторного признака от общей средней.

Вычисленные, по вышеприведенным формулам, значения сравнивают с критическими t, которые определяют по таблице значений Стьюдента с учетом принятого уровня значимости α и числа степеней свободы вариации k (ν)=n-2. В социально-экономических исследованиях уровень значимости α обычно принимают равным 0,05. Параметр признаётся значимым (существенным) при условии, если t расч. > t табл. В этом случае, практически невероятно, что найденные значения параметров обусловлены только случайными совпадениями.

🎥 Видео

Критерий Фишера для проверки адекватности построенной регрессииСкачать

Критерий Фишера для проверки адекватности построенной регрессии

Однофакторная регрессионная модель. Коэффициенты детерминации, корреляции. Критерий ФишераСкачать

Однофакторная регрессионная модель. Коэффициенты детерминации, корреляции. Критерий Фишера

Экономика доступным языком: Макроэкономика. Уравнение Фишера.Скачать

Экономика доступным языком: Макроэкономика. Уравнение Фишера.

Критерий Стьюдента и Фишера в Excel, проверка уравнения множественной регрессии в ExcelСкачать

Критерий Стьюдента и Фишера в Excel, проверка уравнения множественной регрессии в Excel

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.

12-05 Информация Фишера и свойства ММП оценокСкачать

12-05 Информация Фишера и свойства ММП оценок

A.4.14 Точный тест Фишера (введение в статистику)Скачать

A.4.14 Точный тест Фишера (введение в статистику)

Проверка адекватности производственной функции Кобба-ДугласаСкачать

Проверка адекватности производственной функции Кобба-Дугласа

Простые показатели качества модели регрессии (R2, критерии Акаике и Шварца)Скачать

Простые показатели качества модели регрессии (R2, критерии Акаике и Шварца)

Пример проверки гипотезы о незначимости регрессииСкачать

Пример проверки гипотезы о незначимости регрессии

Статистический метод (критерий): как выбрать для анализа?Скачать

Статистический метод (критерий): как выбрать для анализа?

10 Тест ФишераСкачать

10 Тест Фишера

Построение регрессионных моделей в R. Оценка точности и адекватности моделейСкачать

Построение регрессионных моделей в R. Оценка точности и адекватности моделей

Проверка адекватности моделиСкачать

Проверка адекватности модели

2.7. Распределение Хи квадрат, Стьюдента, Фишера .Скачать

2.7. Распределение Хи квадрат, Стьюдента, Фишера .

Расчет точного теста Фишера в excelСкачать

Расчет точного теста Фишера в excel

Т-критерий Стьюдента за 12 минут. Биостатистика.Скачать

Т-критерий Стьюдента за 12 минут. Биостатистика.

Слайды PPT Дисперсионный анализ. Как определить критерий Фишера, коэффициент детерминации, СпирменаСкачать

Слайды PPT Дисперсионный анализ. Как определить критерий Фишера, коэффициент детерминации, Спирмена
Поделиться или сохранить к себе: