Простейшие уравнения с косинусом примеры

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Простейшие уравнения с косинусом примеры

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Простейшие уравнения с косинусом примеры

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Простейшие уравнения с косинусом примеры

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Простейшие уравнения с косинусом примеры

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Простейшие уравнения с косинусом примеры

Примеры решения задач

Простейшие уравнения с косинусом примеры

Замечание. Ответ к задаче 1 часто записывают в виде:

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

19.3. Уравнения tg x = a и ctg x = a

Простейшие уравнения с косинусом примеры

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке Простейшие уравнения с косинусом примерыфункция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

Простейшие уравнения с косинусом примеры

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

таким образом, уравнение ctg x = 0 имеет корни

Простейшие уравнения с косинусом примеры

Примеры решения задач

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Найдите корни уравнения на заданном промежутке (12-13)

Видео:Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.

Простейшие тригонометрические уравнения. Часть 1

Простейшими называются тригонометрические уравнения следующих четырёх видов:

Любое тригонометрическое уравнение в конечном счёте сводится к решению одного или нескольких простейших. К сожалению, на этом заключительном стандартном шаге школьники часто допускают ошибки, что ведет к потере баллов на ЕГЭ. Именно поэтому так важна данная тема.

Существуют два подхода к решению простейших тригонометрических уравнений.
Первый подход — бессмысленный и тяжёлый. Следуя ему, надо выучить по шпаргалке общие формулы, а также все частные случаи. Польза от этого столь же невелика, как от зубрежки шестнадцати строк заклинаний на непонятном языке. Мы отказываемся от такого подхода раз и навсегда.

Второй подход — логический и наглядный. Для решения простейших тригонометрических уравнений мы пользуемся тригонометрическим кругом и определениями тригонометрических функций.

Видео:СЕКРЕТНЫЙ ЛАЙФХАК С ТРИГОНОМЕТРИЕЙ НА ЕГЭ #shorts #математика #егэ #огэ #тригонометрияСкачать

СЕКРЕТНЫЙ ЛАЙФХАК С ТРИГОНОМЕТРИЕЙ НА ЕГЭ #shorts #математика #егэ #огэ #тригонометрия

Уравнения и

Напомним, что — абсцисса точки на единичной окружности, соответствующей углу , а — её ордината.

Простейшие уравнения с косинусом примеры

Из определения синуса и косинуса следует, что уравнения и имеют решения только при условии .

Абитуриент, будь внимателен! Уравнения или решений не имеют!

Начнём с самых простых уравнений.

. .
Мы видим, что на единичной окружности имеется лишь одна точка с абсциссой 1:

Простейшие уравнения с косинусом примеры
Эта точка соответствует бесконечному множеству углов: . Все они получаются из нулевого угла прибавлением целого числа полных углов (т. е. нескольких полных оборотов как в одну, так и в другую сторону).

Следовательно, все эти углы могут быть записаны одной формулой:

Это и есть множество решений данного уравнения. Напоминаем, что — это множество целых чисел.

Снова видим, что на единичной окружности есть лишь одна точка с абсциссой :

Простейшие уравнения с косинусом примеры

Эта точка соответствует углу и всем углам, отличающихся от на несколько полных оборотов в обе стороны, т. е. на целое число полных углов. Следовательно, все решения данного уравнения записываются формулой:

. .
Отмечаем на тригонометрическом круге единственную точку с ординатой :

Простейшие уравнения с косинусом примеры

И записываем ответ:

Обсуждать тут уже нечего, не так ли? 🙂

Простейшие уравнения с косинусом примеры

Можете, кстати, записать ответ и в другом виде:

Это — дело исключительно вашего вкуса.
Заодно сделаем первое полезное наблюдение. Чтобы описать множество углов, отвечающих одной-единственной точке тригонометрического круга, нужно взять какой-либо один угол из этого множества и прибавить .

На тригонометрическом круге имеются две точки с ординатой 0:

Простейшие уравнения с косинусом примеры

Эти точки соответствуют углам Все эти углы получаются из нулевого угла прибавлением целого числа углов (т. е. с помощью нескольких полуоборотов в обе стороны). Таким образом,

Точки, лежащие на концах диаметра тригонометрического круга, мы будем называть диаметральной парой.

Точки с абсциссой 0 также образуют диаметральную пару, на сей раз вертикальную:

Простейшие уравнения с косинусом примеры

Все углы, отвечающие этим точкам, получаются из — прибавлением целого числа углов (полуоборотов):

Теперь мы можем сделать и второе полезное наблюдение.

Чтобы описать множество углов, отвечающих диаметральной паре точек тригонометрического круга, нужно взять какой-либо один угол из этого множества и прибавить .

Переходим к следующему этапу. Теперь в правой части будет стоять табличное значение синуса или косинуса (отличное от 0 или ). Начинаем с косинуса.

Имеем вертикальную пару точек с абсциссой :

Простейшие уравнения с косинусом примеры

Все углы, соответствующие верхней точке, описываются формулой (вспомните первое полезное наблюдение!):

Аналогично, все углы, соответствующие нижней точке, описываются формулой:

Обе серии решений можно описать одной формулой:

Остальные уравнения с косинусом решаются совершенно аналогично. Мы приводим лишь рисунок и ответ.

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Теперь рассмотрим уравнения с синусом. Тут ситуация немного сложнее.

Имеем горизонтальную пару точек с ординатой :

Простейшие уравнения с косинусом примеры

Углы, отвечающие правой точке:

Углы, отвечающие левой точке:

Описывать эти две серии одной формулой никто не заставляет. Можно записать ответ в таком виде:

Тем не менее, объединяющая формула существует, и её надо знать. Выглядит она так:

На первый взгляд совершенно не ясно, каким образом она дает обе серии решений. Но давайте посмотрим, что получается при чётных . Если , то

Мы получили первую серию решений . А если — нечетно, , то

Это вторая серия .

Обратим внимание, что в качестве множителя при обычно ставится правая точка, в данном случае .

Остальные уравнения с синусом решаются точно так же. Мы приводим рисунок, запись ответа в виде совокупности двух серий и объединяющую формулу.

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

На этом с синусом и косинусом пока всё. Переходим к тангенсу.

Видео:Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

Линия тангенсов.

Начнём с геометрической интерпретации тангенса — так называемой линии тангенсов. Это касательная к единичной окружности, параллельная оси ординат (см. рисунок).

Простейшие уравнения с косинусом примеры

Из подобия треугольников и имеем:

Мы рассмотрели случай, когда находится в первой четверти. Аналогично рассматриваются случаи, когда находится в остальных четвертях. В результате мы приходим к следующей геометрической интерпретации тангенса.

Тангенс угла равен ординате точки , которая является точкой пересечения линии тангенсов и прямой , соединяющей точку с началом координат.

Вот рисунок в случае, когда находится во второй четверти. Тангенс угла отрицателен.

Простейшие уравнения с косинусом примеры

Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Уравнение

Заметим, что тангенс может принимать любые действительные значения. Иными словами, уравнение имеет решения при любом .

.
Имеем диаметральную горизонтальную пару точек:

Простейшие уравнения с косинусом примеры
Эта пара, как мы уже знаем, описывается формулой:

Имеем диаметральную пару:

Простейшие уравнения с косинусом примеры

Вспоминаем второе полезное наблюдение и пишем ответ:

Остальные уравнения с тангенсом решаются аналогично. Мы приводим лишь рисунки и ответы.

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

На этом заканчиваем пока и с тангенсом.

Уравнение нет смысла рассматривать особо. Дело в том, что:
уравнение равносильно уравнению ;

при уравнение равносильно уравнению .

Впрочем, существует также и линия котангенсов, но. . . Об этом мы вам расскажем на занятиях 🙂

Итак, мы разобрали простейшие тригонометрические уравнения, содержащие в правой части табличные значения тригонометрических функций. Именно такие задачи встречаются в части В вариантов ЕГЭ.

А что делать, например, с уравнением ? Для этого надо сначала познакомиться с обратными тригонометрическими функциями. О них мы расскажем вам в следующей статье.

Видео:12 часов Тригонометрии с 0.Скачать

12 часов Тригонометрии с 0.

Простейшие тригонометрические уравнения с косинусом и синусом. Часть 1

Ключ к решению простейших тригонометрических уравнений – в отличном знании тригонометрического круга. Если вы знаете значения стандартных точек и их синусы и косинусы, то проблем с уравнениями не будет. А если пробелы все-таки есть, то восполнить их можно в статье «Как запомнить тригонометрический круг?» .

Видео:10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенства

Алгоритм решения простейших уравнений с косинусом

Любой алгоритм проще всего понять на конкретных примерах, поэтому сразу с них и начнем.

Пример №1. Решить уравнение (cos⁡x=frac).

Шаг 1. Построить окружность и оси синусов и косинусов.

Простейшие уравнения с косинусом примеры

Шаг 2. Отметить на оси косинусов значение, которому косинус должен быть равен.

Простейшие уравнения с косинусом примеры

Шаг 3. Провести перпендикуляр и отметить точки пересечения перпендикуляра и круга. Если пересечений нет, то уравнение не имеет решений.

Простейшие уравнения с косинусом примеры

Шаг 4. Найти по одному значению для каждой из полученных точек на круге. Для уравнений с косинусом значения в верхней и нижней точках всегда будут отличаться только знаком.

Простейшие уравнения с косинусом примеры

Шаг 5. Записать все значения каждой точки используя формулу (x=t_0+2πn,n∈Z) (подробнее о формуле в этом видео ), где (t_0) – как раз те значения точек, которые вы нашли в шаге 4.

Простейшие уравнения с косинусом примеры

Возможно, у вас возник вопрос, почему мы в ответ добавляем (+2πn), (n∈Z). Дело в том, что у каждой точки на тригонометрическом круге есть множество значений, и каждое значение будет решением уравнения, а значит все они обязательно должны быть в ответе.

Но проблема в том, что значений этих бесконечно много, и просто в строчку их не запишешь. Поэтому и придумали такую формулу записи, в которой содержатся все значения одной точки на тригонометрическом круге (подробнее смотрите в этом и этом видео).

Простейшие уравнения с косинусом примерыПростейшие уравнения с косинусом примерыПростейшие уравнения с косинусом примеры

С 1-3 шагом всё понятно, а вот над 4 шагом надо подумать. Как найти значения полученных точек? Можно заметить, что дуга между точкой со значением (π) и найденной точкой равняется π/6 (см. картинку ниже). И чтоб из точки π прийти к верхней найденной точке надо пройти в отрицательную сторону расстояние (frac), то есть значение верхней точки равно (π-frac=frac). Значит значение нижней (-frac).

Простейшие уравнения с косинусом примерыПростейшие уравнения с косинусом примеры

Пример №3. Решить уравнение (cos⁡x=1).

Простейшие уравнения с косинусом примеры

Видно, что в этом случае у косинуса только одна точка на круге будет решением, и эта точка совпадает с нулём на окружности. Т.е. по формуле получим (x=0+2πn), (n∈Z). Однако добавление нуля ничего не меняет, поэтому ответ можно записать проще: (x=2πn), (n∈Z).

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Значения косинуса (как и синуса) для любого аргумента всегда лежат между (-1) и (1) включительно, поэтому равняться (-frac) косинус никак не может. Значит такое уравнение не имеет решений.

Вот так решаются простейшие тригонометрические уравнения вида (cos⁡x=a). Для наглядности мы все рассказанное выше объединили на одной инфографике — взглянув на нее вы сразу вспомните суть. Пользуйтесь на здоровье.

Простейшие уравнения с косинусом примеры

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

Алгоритм решения простейших уравнений с синусом

Шаг 1. Построить окружность и оси синусов и косинусов.

Простейшие уравнения с косинусом примеры

Шаг 2. Отметить на оси синусов, значение, которому синус должен быть равен.

Простейшие уравнения с косинусом примеры

Шаг 3. Провести перпендикуляр и отметить точки пересечения перпендикуляра и круга. Если пересечений нет, то уравнение не имеет решений.

Простейшие уравнения с косинусом примеры

Шаг 4. Найти по одному значению каждой из полученных точек на круге. Для уравнений с синусом значение второй точки можно найти, если вычесть из π значение первой точки.

Простейшие уравнения с косинусом примерыПростейшие уравнения с косинусом примерыПростейшие уравнения с косинусом примеры

Шаг 5. Записать все значения каждой точки используя формулу (x=t_0+2πn), (n∈Z), где (t_0) – как раз те значения точек, которые вы нашли в шаге 4.

Простейшие уравнения с косинусом примеры

Так как суть, думаю, вам уже ясна, дальнейшие объяснения мы опускаем.

Простейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примерыПростейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Пример №7. Решить уравнение (sin⁡x=0).

Простейшие уравнения с косинусом примеры

В уравнениях с (0), главное не перепутать к какой оси надо проводить перпендикуляр. Ось синусов – вертикальная, соответственно перпендикуляр будет горизонтален.

Простейшие уравнения с косинусом примеры Простейшие уравнения с косинусом примерыПростейшие уравнения с косинусом примеры

Простейшие уравнения с косинусом примеры

Вот в принципе и всё. Как обычно, в конце – инфографика для наглядности.

🎦 Видео

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=A

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Простейшие тригонометрические уравнения. y=cosx. 2 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=cosx. 2 часть. 10 класс.

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэ

10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Как решать тригонометрические неравенства?Скачать

Как решать тригонометрические неравенства?

Простейшие тригонометрические уравнения: теория и примерыСкачать

Простейшие тригонометрические уравнения: теория и примеры

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Тригонометрия в ЕГЭ может быть простойСкачать

Тригонометрия в ЕГЭ может быть простой

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

Решение тригонометрических уравнений и их систем. 10 класс.Скачать

Решение тригонометрических уравнений и их систем. 10 класс.

Простейшие тригонометрические уравнения. Пример 1Скачать

Простейшие тригонометрические уравнения. Пример 1
Поделиться или сохранить к себе: