РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
Простейшими тригонометрическими уравнениями называют уравнения
Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.
19.1. Уравнение cos x = a
Объяснение и обоснование
- Корни уравненияcosx=a.
При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n ∈ Z (3)
2.Частые случаи решения уравнения sin x = a.
Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).
Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда
Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,
Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,
Примеры решения задач
Замечание. Ответ к задаче 1 часто записывают в виде:
19.3. Уравнения tg x = a и ctg x = a
Объяснение и обоснование
1.Корни уравнений tg x = a и ctg x = a
Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.
Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения tg x = a:
При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n ∈ Z).
Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.
Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения ctg x = a:
таким образом, уравнение ctg x = 0 имеет корни
Примеры решения задач
Вопросы для контроля
- Какие уравнения называют простейшими тригонометрическими?
- Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
- Выведите формулы решения простейших тригонометрических уравнений.
- Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.
Упражнения
Решите уравнение (1-11)
Найдите корни уравнения на заданном промежутке (12-13)
Видео:Решение уравнений вида tg x = a и ctg x = aСкачать
Простейшие тригонометрические уравнения — Часть 1
Простейшими называются тригонометрические уравнения следующих четырёх видов:
Любое тригонометрическое уравнение в конечном счёте сводится к решению одного или нескольких простейших. К сожалению, на этом заключительном стандартном шаге школьники допускают множество элементарных ошибок. Цель данной статьи — уберечь вас от нелепых и досадных потерь баллов в подобной ситуации на едином госэкзамене.
Существуют два подхода к решению простейших тригонометрических уравнений.
Первый подход — бессмысленный и тяжёлый. Надо выучить по шпаргалке общие формулы, а также все частные случаи. Польза от этого столь же невелика, как от зубрёжки шестнадцати строк заклинаний на непонятном языке. Мы забраковываем этот подход раз и навсегда.
Второй подход — логический и наглядный. Для решения простейших тригонометрических уравнений мы пользуемся тригонометрическим кругом и определениями тригонометрических функций.
Данный подход требует понимания, осмысленных действий и ясного видения тригонометрического круга. Не беспокойтесь, эти трудности преодолеваются быстро. Усилия, потраченные на этом пути, будут щедро вознаграждены: вы начнёте безошибочно решать тригонометрические уравнения.
Видео:Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать
Уравнения cosx = a и sinx = a
Напомним, что cos x — абсцисса точки на единичной окружности, соответствующей углу x, а sin x — её ордината
Из определения синуса и косинуса следует, что уравнения cosx = a и sinx = a имеют решения только при условии . Абитуриент, будь внимателен! Уравнения или cosx = −7 решений не имеют!
Начнём с самых простых уравнений.
Мы видим, что на единичной окружности имеется лишь одна точка с абсциссой 1:
Эта точка соответствует бесконечному множеству углов: 0, 2π, −2π, 4π, −4π, 6π, −6π, . . . Все они получаются из нулевого угла прибавлением целого числа полных углов 2π (т. е. нескольких полных оборотов как в одну, так и в другую сторону).
Следовательно, все эти углы могут быть записаны одной формулой:
Это и есть множество решений данного уравнения. Напоминаем, что Z — это множество целых чисел.
Снова видим, что на единичной окружности есть лишь одна точка с абсциссой −1:
Эта точка соответствует углу π и всем углам, отличающихся от π на несколько полных оборотов в обе стороны, т. е. на целое число полных углов. Следовательно, все решения данного уравнения записываются формулой:
Отмечаем на тригонометрическом круге единственную точку с ординатой 1:
И записываем ответ:
Обсуждать тут уже нечего, не так ли? 🙂
Можете, кстати, записать ответ и в другом виде:
Это — дело исключительно вашего вкуса.
Заодно сделаем первое полезное наблюдение.
Чтобы описать множество углов, отвечающих одной-единственной точке тригонометрического круга, нужно взять какой-либо один угол из этого множества и прибавить 2πn.
На тригонометрическом круге имеются две точки с ординатой 0:
Эти точки соответствуют углам 0, ±π, ±2π, ±3π, . . . Все эти углы получаются из нулевого угла прибавлением целого числа углов π (т. е. с помощью нескольких полуоборотов в обе стороны). Таким образом,
Точки, лежащие на концах диаметра тригонометрического круга, мы будем называть диаметральной парой.
Точки с абсциссой 0 также образуют диаметральную пару, на сей раз вертикальную:
Все углы, отвечающие этим точкам, получаются из прибавлением целого числа углов π (полуоборотов):
Теперь мы можем сделать и второе полезное наблюдение.
Чтобы описать множество углов, отвечающих диаметральной паре точек тригонометрического круга, нужно взять какой-либо один угол из этого множества и прибавить πn.
Переходим к следующему этапу. Теперь в правой части будет стоять табличное значение синуса или косинуса (отличное от 0 или ±1). Начинаем с косинуса.
7.
Имеем вертикальную пару точек с абсциссой
Все углы, соответствующие верхней точке, описываются формулой (вспомните первое полезное наблюдение!):
Аналогично, все углы, соответствующие нижней точке, описываются формулой:
Обе серии решений можно описать одной формулой:
Остальные уравнения с косинусом решаются совершенно аналогично. Мы приводим лишь рисунок и ответ.
8.
9.
10.
11.
12.
Теперь рассмотрим уравнения с синусом. Тут ситуация немного сложнее.
13.
Имеем горизонтальную пару точек с ординатой :
Углы, отвечающие правой точке:
Углы, отвечающие левой точке:
Описывать эти две серии одной формулой никто не заставляет. Можно записать ответ в таком виде:
Тем не менее, объединяющая формула существует, и её надо знать. Выглядит она так:
На первый взгляд совершенно не ясно, каким образом она даёт обе серии решений. Но давайте посмотрим, что получается при чётных k. Если k = 2n, то
Мы получили первую серию решений x1. А если k нечётно, k = 2n + 1, то
Это вторая серия x2.
Обратим внимание, что в качестве множителя при (−1) k обычно ставится правая точка, в данном случае .
Остальные уравнения с синусом решаются точно так же. Мы приводим рисунок, запись ответа в виде совокупности двух серий и объединяющую формулу.
14.
15.
16.
17.
18.
На этом с синусом и косинусом пока всё. Переходим к тангенсу.
Видео:Решение простейших тригонометрических уравнений tgx=a и ctgx=aСкачать
Линия тангенсов
Начнём с геометрической интерпретации тангенса — так называемой линии тангенсов. Это касательная AB к единичной окружности, параллельная оси ординат (см. рисунок).
Из подобия треугольников OAB и ONM имеем:
Но поэтому
Мы рассмотрели случай, когда x находится в первой четверти. Аналогично рассматриваются случаи, когда x находится в остальных четвертях. В результате мы приходим к следующей геометрической интерпретации тангенса.
Тангенс угла x равен ординате точки B, которая является точкой пересечения линии тангенсов и прямой OM, соединяющей точку x с началом координат.
Вот рисунок в случае, когда x находится во второй четверти. Тангенс угла x отрицателен.
Видео:Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать
Уравнение tg x = a
Заметим, что тангенс может принимать любые действительные значения. Иными словами, уравнение tg x = a имеет решения при любом a.
19.
Имеем диаметральную горизонтальную пару точек:
Эта пара, как мы уже знаем, описывается формулой:
20.
Имеем диаметральную пару:
Вспоминаем второе полезное наблюдение и пишем ответ:
Остальные уравнения с тангенсом решаются аналогично. Мы приводим лишь рисунки и ответы.
21.
22.
23.
24.
25.
На этом заканчиваем пока и с тангенсом.
Уравнение ctg x = a нет смысла рассматривать особо. Дело в том, что:
• уравнение ctg x = 0 равносильно уравнению cos x = 0;
• при уравнение равносильно уравнению
Впрочем, существует также и линия котангенсов, но. . . Об этом мы вам расскажем на занятиях 🙂
Итак, мы разобрали простейшие тригонометрические уравнения, содержащие в правой части табличные значения тригонометрических функций. Именно такие задачи встречаются в части В вариантов ЕГЭ.
А что делать, например, с уравнением ? Для этого надо сначала познакомиться с обратными тригонометрическими функциями. О них мы расскажем вам в следующей статье.
Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
Простейшие тригонометрические уравнения с тангенсом и котангенсом
Чтобы уверенно решать простейшие уравнения с тангенсом или котангенсом нужно знать значения стандартных точек на круге и стандартные значения на осях тангенсов и котангенсов (если в этом материале есть пробелы, читайте « Как запомнить тригонометрический круг »).
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Алгоритм решения простейших уравнений с тангенсом
Давайте с вами рассмотрим типичное уравнение, например, (tgx=sqrt).
Пример. Решить уравнение (tgx=sqrt).
Чего от нас здесь хотят? Чтобы мы написали все такие значения угла в Пи, для которых тангенс равен корню из трех. Причем написать надо именно все такие углы. Давайте нарисуем тригонометрический круг и ось тангенсов…
…и обозначим то место на оси, куда мы должны попасть в итоге.
Теперь найдем через какие точки на окружности мы должны идти, чтобы попасть в этот самый корень из трех –проведем прямую через начало координат и найденную точку на оси тангенсов.
Точки найдены. Давайте подпишем значение одной из них…
…и запишем окончательный ответ – все возможные варианты значений в Пи, находящиеся в отмеченных точках: (x=frac+πn), (n∈Z).
Замечание. Вы, наверно, обратили внимание, что в отличие от уравнений с синусом и косинусом , здесь записывается только одна серия корней, причем в формуле добавляется (πn), а не (2πn). Дело в том, что в любом уравнении с тангенсом решением получаются две точки на окружности, которые находятся друг от друга на расстоянии (π). Благодаря этому значение обеих точек можно записать одной формулой в виде (x=t_0+πn), (n∈Z).
Пример. Решить уравнение (tgx=-1).
Итак, окончательный алгоритм решения подобных задач выглядит следующим образом:
Шаг 1. Построить окружность, оси синусов и косинусов, а также ось тангенсов.
Шаг 2. Отметить на оси тангенсов значение, которому тангенс должен быть равен.
Шаг 3. Соединить прямой линией центр окружности и отмеченную точку на оси тангенсов.
Шаг 4. Найти значение одной из точек на круге.
Шаг 5. Записать ответ используя формулу (x=t_0+πn), (n∈Z) (подробнее о формуле в видео), где (t_0) – как раз то значение, которые вы нашли в шаге 4.
Специально для вас мы сделали удобную табличку со всеми шагами алгоритма и разными примерами к нему. Пользуйтесь на здоровье! Можете даже распечатать и повесить на стенку, чтоб больше никогда не ошибаться в этих уравнениях.
Видео:Простейшие уравнения с tgx и ctgx. tgx=√3 ; tgx=-1/√3; ctgx=1 ctgx=–√3Скачать
Алгоритм решения простейших уравнений с котангенсом
Сразу скажу, что алгоритм решения уравнений с котангенсом почти такой же, как и с тангенсом.
Шаг 1. Вопрос у нас практически тот же – из каких точек круга можно попасть в (frac<sqrt>) на оси котангенсов?
Строим круг, проводим нужные оси.
Теперь отмечаем на оси котангенсов значение, которому котангенс должен быть равен…
…и соединяем центр окружности и точку на оси котангенсов прямой линией.
По сути точки найдены. Осталось записать их все. Вновь определяем значение в одной из них…
…и записываем окончательный ответ по формуле (x=t_0+πn), (n∈Z), потому что у котангенса период такой же как у тангенса: (πn).
Кстати, вы обратили внимание, что ответы в задачах совпали? Здесь нет ошибки, ведь для любой точки круга, тангенс которой равен (sqrt), котангенс будет (frac<sqrt>).
Разберем еще пример, а потом подведем итог.
Пример. Решить уравнение (ctgx=-1). Здесь подробно расписывать не буду, так как логика полностью аналогична вышеизложенной.
Итак, алгоритм решения простейших тригонометрических уравнений с котангенсом:
Шаг 1. Построить окружность и оси синусов и косинусов, а также ось котангенсов.
Шаг 2. Отметить на оси котангенсов значение, которому котангенс должен быть равен.
Шаг 3. Соединить центр окружности и точку на оси котангенсов прямой линией.
Шаг 4. Найти значение одной из точек на круге.
Шаг 5. Записать ответ используя формулу (x=t_0+πn), (n∈Z), где (t_0) – как раз то значение, которые вы нашли в шаге 4. И табличка в награду всем дочитавшим до этого места.
Примечание. Возможно, вы обратили внимание, что при решении примеров 2 и 3 в обеих табличках мы использовали функции (arctg) и (arcctg). Если вы не знаете, что это – читайте эту статью.
📺 Видео
Тригонометрические функции, y=tgx и y=ctgx, их свойства и графики. 10 класс.Скачать
10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать
10 класс. Решение уравнений tg x =aСкачать
Решить неравенство tg xСкачать
Простейшие тригонометрические уравнения: теория и примерыСкачать
Простейшее тригонометрическое уравнение tgx=aСкачать
Занятие 10. Простейшие тригонометрические уравненияСкачать
ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать
Простейшие тригонометрические уравнения. Пример 1Скачать
10 класс / 11 класс. Простейшие тригонометрические уравнения. 1 часть.Скачать
10 класс. Алгебра. Простейшие тригонометрические уравненияСкачать
Простейшее тригонометрическое уравнение tg x = a.Скачать
Подготовка к ЕГЭ #83. Решение простейших тригонометрических уравнений вида tgx=a и ctgx=aСкачать