Иногда в задаче 6 из ЕГЭ по математике вместо всеми любимых графиков функции или производной дается просто уравнение расстояния от точки до начала координат. Что делать в этом случае? Как по расстоянию найти скорость или ускорение.
На самом деле все просто. Скорость — это производная от расстояния, а ускорение — это производная скорости (или, что то же самое, вторая производная от расстояния). В этом коротком видео вы убедитесь, что такие задачи решаются ничуть не сложнее «классических» заданий 6.
Сегодня мы разберем две задачи на физический смысл производных из ЕГЭ по математике. Эти задания встречаются в части Bи существенно отличаются от тех, что большинство учеников привыкло видеть на пробниках и экзаменах. Все дело в том, что они требуют понимать физический смысл производной функции. В данных задачах речь пойдет о функциях, выражающих расстояния.
Если $S=xleft( t right)$, то $v$ мы можем посчитать следующим образом:
Точно так же мы можем посчитать и ускорение:
Эти три формулы – все, что вам потребуется для решения таких примеров на физический смысл производной. Просто запомните, что $v$ — это производная от расстояния, а ускорение — это производная от скорости.
Давайте посмотрим, как это работает при решении реальных задач.
- Пример № 1
- Пример № 2
- Ключевые моменты
- Применение производной в физике и технике
- п.1. Скорость и ускорение
- п.2. Физические величины как производные от других величин
- п.3. Примеры
- Физический смысл производной
- Прямолинейное движение
- Равномерное движение
- Неравномерное движение
- Движение в пространстве
- Ускорение
- 📽️ Видео
Видео:Что такое производная за 2 минуты. P.S. Это скорость изменения функции!Скачать
Пример № 1
Материальная точка движется по закону:
где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, прошедшее с начала движения. Найдите скорость точки (в м/с) в момент времени $t=2c$.
Это означает, что у нас есть функция, задающая расстояние, а нужно посчитать скорость в момент времени $t=2c$. Другими словами, нам нужно найти $v$, т.е.
Вот и все, что нам нужно было выяснить из условия: во-первых, как выглядит функция, а во-вторых, что от нас требуется найти.
Давайте решать. В первую очередь, посчитаем производную:
Нам требуется найти производную в точке 2. Давайте подставим:
Вот и все, мы нашли окончательный ответ. Итого, скорость нашей материальной точки в момент времени $t=2c$ составит 9 м/с.
Видео:Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать
Пример № 2
Материальная точка движется по закону:
где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, измеренное с начала движения. В какой момент времени ее скорость была равна 3 м/с?
Взгляните, в прошлый раз от нас требовалось найти $v$ в момент времени 2 с, а в этот раз от нас требуется найти тот самый момент, когда эта скорость будет равна 3 м/с. Можно сказать, что нам известно конечное значение, а по этому конечному значению нам требуется найти исходное.
В первую очередь, вновь ищем производную:
От нас просят найти, в какой момент времени скорость будет равна 3 м/с. Составляем и решаем уравнение, чтобы найти физический смысл производной:
Полученное число означает, что в момент времени 4 с $v$ материальной точки, движущейся по выше описанному закону, как раз и будет равна 3 м/с.
Видео:5.4. Скорость и ускорение как производныеСкачать
Ключевые моменты
В заключении давайте еще раз пробежимся по самому главному моменту сегодняшней задачи, а именно, по правилу преобразования расстояние в скорость и ускорение. Итак, если нам в задаче прямо описан закон, прямо указывающий расстояние от материальной точки до точки отсчета, то через эту формулу мы можем найти любую мгновенную скорость (это просто производная). И более того, мы можем найти еще и ускорение. Ускорение, в свою очередь, равно производной от скорости, т.е. второй производной от расстояния. Такие задачи встречаются довольно редко, поэтому сегодня мы их не разбирали. Но если вы увидите в условии слово «ускорение», пусть оно вас не пугает, достаточно просто найти еще одну производную.
Надеюсь, этот урок поможет вам подготовиться к ЕГЭ по математике.
Видео:АЛГЕБРА С НУЛЯ — Что такое Производная?Скачать
Применение производной в физике и технике
п.1. Скорость и ускорение
Рассматривая физический смысл производной (см. §42 данного справочника), мы выяснили, что:
Например:
Рассмотрим прямолинейное равноускоренное движение.
Уравнение этого движения имеет вид: $$ x(t)=x_0+v_0t+frac $$ где (x(t)) — ккордината тела в произвольный момент времени (t, x_0) — начальная координата, (v_0) — начальная скорость, (a=const) — ускорение, действующее на тело.
Чтобы найти скорость тела из этого уравнения, нужно найти производную от координаты по времени: $$ v(t)=x'(t)=left(x_0+v_0t+fracright)’=0+v_0cdot 1+frac a2cdot 2t=v_0+at $$ Чтобы найти ускорение, нужно найти производную от скорости: $$ a(t)=v'(t)=x»(t)=(v_0+at)’=0+acdot 1=a=const $$
п.2. Физические величины как производные от других величин
Если рассматривать уравнение процесса (s=f(t)), его производной будет величина $$ f'(t)=lim_frac $$ Такие величины часто встречаются в различных разделах физики и техники.
Угол поворота (varphi(t))
Угловая скорость (omega(t)=omega'(t))
Угловое ускорение (beta(t)=omega'(t)=varphi»(t))
Масса горючего ракеты (m(t))
Скорость расходования горючего (u(t)=m'(t))
Температура тела (T(t))
Скорость нагрева (v_T(t)=T'(t))
Магнитный поток (Ф(t))
ЭДС индукции (varepsilon(t)=-Ф'(t))
Число атомов радиоактивного вещества (N(t))
Скорость радиоактивного распада (I(t)=-N'(t))
Конечно же, в физике далеко не обязательно берут производную только по времени.
Например, для теплоты Q(T) теплоемкость равна C(T)=Q'(T), где T — температура.
А для процесса теплопереноса температура u(x,t) в точке с координатой x в момент времени t определяется уравнением теплопроводности: $$ frac-a^2frac=f(x,t) $$ и производные берутся по времени (left(fracright)) и по координате (left(fracright)), причем по координате берется производная второго порядка (left(fracright)).
Поэтому в физике для производных чаще используются обозначения Лейбница, в которых хорошо видна как функция, так и аргумент.
Например, для производных функции от одной переменной: (frac, frac, frac. )
Для производных функций от многих переменных: (frac, frac, frac, frac. )
п.3. Примеры
Пример 1. Тело массой 6 кг движется прямолинейно по закону (x(t)=t^2+t+1) (м). Найдите: 1) кинетическую энергию тела через 3 с после начала движения; 2) силу, действующую на тело в это время.
1) Кинетическая энергия равна (E=frac)
Скорость тела: (v(t)=x'(t)=(t^2+t+1)’=2t+1)
Через 3 с: (v(3)=2cdot 3+1=7) (м/с)
Подставляем: (E=frac=147) (Дж)
2) Сила по второму закону Ньютона: (F=ma)
Ускорение тела: (a(t)=v'(t)=(2t+1)’=2) (м/с^2)
Ускорение постоянно.
На тело действует постоянная сила: (F=6cdot 2=12) (Н)
Ответ: 147 Дж; 12 Н
Пример 2. Маховик вращается по закону (varphi (t)=4t-0,5t^2) (рад)
Найдите момент времени, в который маховик остановится.
Угловая скорость: (omega(t)=varphi ‘(t)=(4t-0,5t^2 )’=4-0,5cdot 2t=4-t)
В момент остановки угловая скорость равна 0. Решаем уравнение: $$ 4-t=0Rightarrow t=4 (c) $$ Ответ: 4 c
Пример 3. Ракету запустили вертикально вверх с начальной скоростью 40 м/с. В какой момент времени и на какой высоте ракета достигнет наивысшей точки (g≈10м/с 2 )?
Выберем начало отсчета на земле ((y_0=0)), направим ось y вверх.
Начальная скорость направлена вверх, её проекция на ось положительна.
Ускорение свободного падения направлено вниз, его проекция отрицательна.
Уравнение движения: $$ y(t)=y_0+v_t+frac=0+40t-frac=40t-5t^2 $$ В верхней точке траектории ракета останавливается, её скорость равна 0.
Найдем скорость: $$ v(t)=y'(t)=40-5cdot 2t=40-10t $$ Найдем момент остановки в верхней точке: $$ 40-10t_0=0Rightarrow t_0=frac=4 (c) $$ Найдем высоту подъема в верхней точке: $$ H_=y(t_0)=40cdot 4-5cdot 4^2=80 (м) $$ Ответ: 4 с, 80 м
Пример 4. Через поперечное сечение проводника проходит заряд (q(t)=ln(t+1)) (Кл). В какой момент времени сила тока в проводнике равна 0,1 А?
Сила тока: $$ I(t)=q'(t)=(ln(t+1))’=frac $$ По условию: $$ frac=0,1Rightarrow t_0+1=frac=10Rightarrow t_0=9 (c) $$ Ответ: 9 c
Пример 5. Колесо вращается так, что угол его поворота пропорционален квадрату времени. Первый оборот оно сделало за 8 с. Найдите угловую скорость через 48 с после начала вращения.
По условию угол поворота (varphi (t)=At^2)
Один оборот (2pi) радиан был сделан за 8 с. Получаем уравнение: (Acdot 8^2=2pi)
Находим коэффициент (A=frac=frac)
Уравнение движения (varphi(t)=fract^2) (рад)
Угловая скорость (omega(t)=varphi ‘(t)=left(fract^2right)’=fraccdot 2t=fract) (рад/с)
Через 48 секунд (omega(48)=fraccdot 48=3pi) рад/с — полтора оборота в секунду.
Ответ: (3pi) рад/с
Пример 6. Для нагревания 1 кг жидкости от 0°С до t°C необходимо (Q(t)=1,7t+at^2+bt^3) Дж теплоты.
Известно, что теплоемкость жидкости при температуре 100°С равна 1,71 Дж/К, а для нагревания 1 кг этой жидкости 0°С до 50°C требуется 85,025 Дж теплоты. Найдите коэффициенты a и b.
Теплоемкость: (C(t)=Q'(t)=1,7cdot 1+acdot 2t+bcdot 3t^2=1,7+2at+3bt^2)
По условию: begin C(100)=1,7+2acdot 100+3bcdot 100^2-1,71\ 200a+30000b=0,01 end Кроме того: begin Q(50)=1,7cdot 50+acdot 50^2+bcdot 50^3=85,025\ 2500a+125000b=0,025 end Получаем линейную систему: begin begin 200a+30000b=0,01 |:2\ 2500a+125000b=0,025 |:25 end Rightarrow begin 100a+15000b=0,005\ 100a+5000b=0,001 end \ 15000b-5000b=0,005-0,001\ 10000b=0,004\ b=4cdot 10^cdot 10^=4cdot 10^ left(fracright)\ a=frac=frac<10^-5cdot 10^3cdot 4cdot 10^>=frac<10^-2cdot 10^>=-frac<10^>\ a=-10^ left(fracright) end Ответ: (a=-10^frac; b=4cdot 10^frac)
Пример 7*. Лестница длиной 5 м стояла вертикально. Потом её нижний конец стали перемещать по полу с постоянной скоростью (v=2) м/с. С какой по абсолютной величине скоростью в зависимости от времени опускается верхний конец лестницы? Постройте график полученной функции.
Лестница со стенами образует прямоугольный треугольник, для которого справедлива теорема Пифагора: $$ x^2(t)+y^2(t)=5^2 $$ Нижний конец движется с постоянной скоростью, его уравнение движения по полу: $$ x(t)=vt=2t $$ Отсюда получаем уравнение движения верхнего конца по стенке: begin y^2(t)=25-x^2(t)=25-(2t)^2=25-4t^2\ y(t)=sqrt end |
Время (tgeq 0) имеет ограничение сверху (25-4t^2geq 0Rightarrow t^2leq fracRightarrow 0leq tleq 2,5 (с))
Скорость скольжения верхнего конца по стенке: begin u_y(t)=y'(t)=left(sqrtright)’=frac<2sqrt>cdot (25-4t^2)’=frac<2sqrt>\ u_y(t)=-frac<sqrt> end Знак «-» указывает на направление скорости вниз и связан с уменьшением координаты (y(t)) со временем. Абсолютная величина найденной скорости: begin u(t)=|u_y(t)|=frac<sqrt> end 1) ОДЗ: (0leq tleq 2,5)
2) Четность – нет, т.к. функция определена только на положительных t.
Периодичность – нет.
3) Асимптоты:
1. Вертикальная
Рассмотрим односторонние пределы begin lim_left(frac<sqrt>right)=frac05=0\ lim_left(frac<sqrt>right)=frac=+infty end При подходе к правой границе (t=2,5) слева функция стремится к (+infty).
В точке (t=2,5) – вертикальная асимптота.
2. Горизонтальных асимптот нет, т.к. ОДЗ ограничено интервалом.
3. Наклонных асимптот нет.
6) Пересечение с осями
В начале координат: (t=0, u=0)
7) График
Пример 8. Под действием нагрузки деталь с поперечным сечением в виде прямоугольника площадью 17 см 2 начинает деформироваться. Одна из сторон прямоугольника растет с постоянной скоростью 1 см/ч, а вторая – уменьшается со скоростью 0,5 см/ч. Найдите скорость изменения площади поперечного сечения через 45 мин после начала деформации, если известно, что в этот момент его площадь равна 20 см 2 .
Длина первой стороны в зависимости от времени: (a(t)=a_0+1cdot t) (см),
время – в часах.
Длина второй стороны: (b(t)=b_0-0,5cdot t).
Площадь в начальный момент: (S_0=a_0 b_0=17 (см^2))
Площадь в произвольный момент t: begin S(t)=a(t)cdot b(t)=(a_0+t)(b_0-0,5t)=a_0 b_0+(-0,5a_0+b_0)t-0,5t^2=\ =17+(-0,5a_0+b_0)t-0,5t^2 end По условию при (t=45 мин=frac34 ч): begin Sleft(frac34right)=17+(-0,5a_0+b_0)cdotfrac34-0,5cdotleft(frac34right)^2=20\ (-0,5a_0+b_0)cdotfrac34=20-17+frac=3+frac\ (-0,5a_0+b_0)=frac43left(3+fracright)=4+frac38=4frac38 end Получаем: begin S(t)=17+4frac38t-0,5t^2 end Скорость изменения площади: begin S'(t)=0+4frac38cdot 1-0,5cdot 2t=4frac38-t end Через 45 мин: begin S’left(frac34right)=4frac38-frac34=3+frac-frac34=3+frac=3frac58=3,625 (см^2/ч) end Ответ: 3,625 см 2 /ч
Видео:Уравнение движенияСкачать
Физический смысл производной
Физический смысл производной заключается в том, что мгновенная скорость изменения любой физической величины равна производной этой величины по времени.
Так, в механике, наиболее распространенными физическими величинами являются координаты точки . При прямолинейном движении, мгновенная скорость движения точки равна производной ее координаты по времени. При движении в пространстве, проекции мгновенной скорости на оси координат равны производным координат по времени: .
Видео:Производная функции. 10 класс.Скачать
Прямолинейное движение
По мере развития механики, стал проясняться следующий факт. Если тела не взаимодействуют друг с другом, то они движутся прямолинейно и равномерно. Но если между ними происходит взаимодействие, то они движутся с переменной скоростью. Поэтому встал вопрос об определении мгновенного значения скорости при неравномерном движении.
Для начала рассмотрим прямолинейное движение. Пренебрежем размерами тела и будем рассматривать его как материальную точку, которую обозначим буквой M . Направим ось OX системы координат вдоль линии движения точки M . Пусть нам известна зависимость координаты x от времени t : . Нашей задачей является определение мгновенной скорости точки M в произвольный момент времени.
Равномерное движение
Если точка движется равномерно, то ее скорость постоянна. Для ее определения, нужно разделить перемещение на отрезок времени , в течении которого произошло это перемещение. Пусть в момент времени , точка M находилась в точке A с координатой , а в момент времени – в точке B с координатой . Тогда перемещение точки M составило . Промежуток времени, в течении которого произошло это перемещение: . Скорость движения:
(1) .
При равномерном движении скорость постоянна: . Поэтому результат вычисления не зависит от того, какие точки A и B мы выбираем. Например, если бы мы вместо точки B взяли другую точку C, то получили бы, то же самое значение скорости:
.
Неравномерное движение
При неравномерном движении скорость не является постоянной. Поэтому, если проделать вычисления по формуле (1), то мы получим только среднее значение скорости на отрезке AB:
(2) .
Однако мы можем предположить, что если приближать точку B к A, то среднее значение не будет хаотично колебаться, а будет стремиться к некоторой величине, которую можно принять за мгновенную скорость движения точки M при .
Если использовать только алгебру, то можно дать только определение средней скорости движения тела на некотором отрезке AB. Чтобы дать четкое математическое определение мгновенной скорости, потребовалось создать новый раздел математики – математический анализ, или анализ бесконечно малых величин. Основой математического анализа является теория пределов. В настоящее время эта теория хорошо разработана, и мы можем использовать уже готовый математический аппарат. Тогда разумно определить мгновенную скорость в точке A как предел, к которому стремится средняя скорость тела M на отрезке AB, при стремлении B к A.
Мгновенная скорость точки Пусть точка M движется вдоль оси координат Ox . И пусть движение описывается законом . Мгновенной скоростью точки M в момент времени называется предел, к которому стремится средняя скорость движения на отрезке при :
.
То есть мгновенная скорость движения точки в момент времени равна производной ее координаты по времени, взятой в момент времени :
.
Заметим, что в механике и физике производная по времени обозначается не штрихом, а точкой над символом переменной. Тогда в физике, предыдущая формула имеет следующий вид:
.
Видео:ЕГЭ по математике. Профильный уровень. Задание 7. Закон движения. ПроизводнаяСкачать
Движение в пространстве
Теперь рассмотрим движение точки M в трехмерном пространстве. В этом случае, ее положение определяется тремя координатами – проекциями точки на оси координат. Тогда мы можем применить результаты, полученные для одномерного движения, к трехмерному. Пусть в момент времени , точка M находилась в точке A с координатами , а в момент времени – в точке B с координатами . Проекция средней скорости точки на ось Ox равна
.
При стремлении B к A, мы получаем проекцию мгновенной скорости на ось Ox :
;
.
Аналогичным образом, рассматривая изменения других координат, мы найдем проекции мгновенной скорости точки M на оси Oy и Oz :
.
Таким образом, при движении в пространстве, проекции мгновенной скорости движения точки M на оси координат в момент времени равны производным ее координат по времени, взятых в момент времени :
(3) .
Если ввести радиус-вектор точки M с координатами , и заменить обозначение момента времени , то формулы (3) можно записать в векторном виде:
.
где – вектор мгновенной скорости точки M в момент времени ; – производная радиус-вектора точки M по времени.
Таким образом, при движении в пространстве, вектор мгновенной скорости движения точки M в момент времени t равен производной по времени ее радиус-вектора в этот момент времени:
(4) ;
(5) .
Видео:Урок 323. Применение производной в задачах физики - 1Скачать
Ускорение
Еще одной важной физической величиной в механике, является ускорение. Оно определяется как скорость изменения скорости. Совершенно аналогичным способом получаем, что проекции ускорения на оси координат равны производным проекций скорости на эти оси:
(6) .
Подставляя (5) получаем, что проекции ускорения равны вторым производным координат по времени:
.
Эти уравнения можно записать в векторном виде:
;
.
Автор: Олег Одинцов . Опубликовано: 02-01-2021
📽️ Видео
Кинематика. Из координаты получаем скорость и ускорениеСкачать
Задача B9: физический смысл производнойСкачать
Дифференциал в физике😱😱😱? Легко🔥Скачать
Физика - уравнения равноускоренного движенияСкачать
Производная с нуля. 4 урок. Как найти ускорение и скорость с помощью производной. Физический смыслСкачать
Производная и интеграл в задачах на движениеСкачать
Физика - перемещение, скорость и ускорение. Графики движения.Скачать
Мгновенная скорость (видео 6)| Векторы. Прямолинейное движение | ФизикаСкачать
Теоретическая механика 2020 - Практика 1. Кинематика точки.Скачать
Траектория и уравнения движения точки. Задача 1Скачать
Уравнение движения тела дано в виде x=2−3t. ВычислиСкачать
Математика это не ИсламСкачать