Производная числа с уравнением в степени

Производная степенной функции (степени и корни)

Производная числа с уравнением в степени

Видео:АЛГЕБРА С НУЛЯ — Что такое Производная?Скачать

АЛГЕБРА С НУЛЯ — Что такое Производная?

Основные формулы

Производная от x в степени a равна a , умноженному на x в степени a минус один:
(1) .

Производная от корня степени n из x в степени m равна:
(2) .

Видео:Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать

Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnline

Вывод формулы производной степенной функции

Случай x > 0

Рассмотрим степенную функцию от переменной x с показателем степени a :
(3) .
Здесь a является произвольным действительным числом. Сначала рассмотрим случай .

Чтобы найти производную функции (3), воспользуемся свойствами степенной функции и преобразуем ее к следующему виду:
.

Вывод формулы производной от корня степени n из x в степени m

Теперь рассмотрим функцию, являющуюся корнем следующего вида:
(4) .

Чтобы найти производную, преобразуем корень к степенной функции:
.
Сравнивая с формулой (3) мы видим, что
.
Тогда
.

На практике нет необходимости запоминать формулу (2). Гораздо удобнее сначала преобразовать корни к степенным функциям, а затем находить их производные, применяя формулу (1) (см. примеры в конце страницы).

Случай x = 0

Если , то степенная функция определена и при значении переменной x = 0 . Найдем производную функции (3) при x = 0 . Для этого воспользуемся определением производной:
.

Подставим x = 0 :
.
При этом под производной мы понимаем правосторонний предел, для которого .

Итак, мы нашли:
.
Отсюда видно, что при , .
При , .
При , .
Этот результат получается и по формуле (1):
(1) .
Поэтому формула (1) справедлива и при x = 0 .

Случай x .
При некоторых значениях постоянной a , она определена и при отрицательных значениях переменной x . А именно, пусть a будет рациональным числом. Тогда его можно представить в виде несократимой дроби:
,
где m и n – целые числа, не имеющие общего делителя.

Если n нечетное, то степенная функция определена и при отрицательных значениях переменной x . Например, при n = 3 и m = 1 мы имеем кубический корень из x :
.
Он определен и при отрицательных значениях переменной x .

Найдем производную степенной функции (3) при и при рациональных значениях постоянной a , для которых она определена. Для этого представим x в следующем виде:
.
Тогда ,
.
Находим производную, вынося постоянную за знак производной и применяя правило дифференцирования сложной функции:

.
Здесь . Но
.
Поскольку , то
.
Тогда
.
То есть формула (1) справедлива и при :
(1) .

Видео:12. Производная степенно-показательной функцииСкачать

12. Производная степенно-показательной функции

Производные высших порядков

Теперь найдем производные высших порядков от степенной функции
(3) .
Производную первого порядка мы уже нашли:
.

Вынося постоянную a за знак производной, находим производную второго порядка:
.
Аналогичным образом находим производные третьего и четвертого порядков:
;

.

Отсюда видно, что производная произвольного n-го порядка имеет следующий вид:
.

Заметим, что если a является натуральным числом, , то n -я производная является постоянной:
.
Тогда все последующие производные равны нулю:
,
при .

Видео:Производная показательной функции. 11 класс.Скачать

Производная показательной функции. 11 класс.

Примеры вычисления производных

Пример

Найдите производную функции:
.

Преобразуем корни к степеням:
;
.
Тогда исходная функция приобретает вид:
.

Находим производные степеней:
;
.
Производная постоянной равна нулю:
.

Еще примеры

Найти производные следующих функций, зависящих от переменной x :
Решение > > > Решение > > > Решение > > > Решение > > > Решение > > >

Найти производную шестого порядка следующей функции:
.
Решение > > >

Автор: Олег Одинцов . Опубликовано: 09-04-2017

Видео:Найдите производную функции x^x ★ Как находить производные показательно-степенных функцийСкачать

Найдите производную функции x^x ★ Как находить производные показательно-степенных функций

Нахождение производной степенной функции

В данной публикации мы рассмотрим, чему равна производная степенной функций (в т.ч. сложной), а также разберем примеры решения задач для закрепления изложенного материала.

Видео:4.2 Производная Примеры для тренировкиСкачать

4.2 Производная Примеры для тренировки

Формула производной степенной функции

Для функции f(x) = x n , где n – действительное число, справедливо следующее выражение:

Т.е. производная степенной функции равняется произведению показателя степени на основание в степени, уменьшенной на единицу.

n – может быть как положительным, так и отрицательным числом (в т.ч. дробным):

Производная числа с уравнением в степени

Производная сложной степенной функции

В сложной функции вместо x представлено более сложное выражение. Производная такой функции определяется по формуле:

Видео:Производная логарифмической функции. 11 класс.Скачать

Производная логарифмической функции. 11 класс.

Примеры задач

Задание 1:
Вычислите производную функцию f(x) = x 3 /5 .

Решение:
Согласно правилам дифференцирования константу в виде дроби можно вынести за знак производной:
Производная числа с уравнением в степени

Применив формулу производной, рассмотренную выше, получаем:
Производная числа с уравнением в степени

Задание 2:
Найдите производную функции f(x) = x 2 + √ x – 6 .

Решение:
Первоначальный вид производной функции:
f(x) = (x 2 + √ x – 6) ‘.

С учетом правила дифференцирования суммы получаем:
f(x) = (x 2 )+ (√ x )– (6) ‘.

Остается только вычислить производные по отдельности:

(x 2 )= 2x 2-1 = 2x
Производная числа с уравнением в степени

(-6)= 0 (производная константы равна нулю)

Видео:Математика Без Ху!ни. Производная сложной функции.Скачать

Математика Без Ху!ни. Производная сложной функции.

Производная показательной функции

Видео:4. Вычисление производных примеры. Самое начало.Скачать

4. Вычисление производных примеры. Самое начало.

Формула

Производная показательной функции равна произведению этой функции на натуральный логарифм основания степени.

Заметим, что если аргумент у показательной функции есть сложная функция (то есть там стоит более сложное выражение, чем просто $x$), то производную нужно находить по следующей формуле:

Видео:Вычисление производных. 10 класс.Скачать

Вычисление производных. 10 класс.

Примеры вычисления производной показательной функции

Задание. Найти производную функции $y(x)=2_$

Решение. Согласно формуле имеем:

Ответ. $y^(x)=2^ ln 2$

🔍 Видео

ПРОИЗВОДНАЯ СТЕПЕННОЙ ФУНКЦИИ решение производных функцийСкачать

ПРОИЗВОДНАЯ СТЕПЕННОЙ ФУНКЦИИ решение производных функций

Степень числа с рациональным показателем. 11 класс.Скачать

Степень числа с рациональным показателем. 11 класс.

ПРОИЗВОДНАЯ показательной ФУНКЦИИ число eСкачать

ПРОИЗВОДНАЯ показательной ФУНКЦИИ число e

ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

ПРОСТЕЙШИЙ способ решения Показательных Уравнений

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

Матан за час. Шпаргалка для первокурсника. Высшая математикаСкачать

Матан за час. Шпаргалка для первокурсника. Высшая математика

✓ Про степень с действительным показателем | В интернете опять кто-то неправ #005 | Борис ТрушинСкачать

✓ Про степень с действительным показателем | В интернете опять кто-то неправ #005 | Борис Трушин

4.3 Найти производную функцииСкачать

4.3 Найти производную функции

Показательная функция. 11 класс.Скачать

Показательная функция. 11 класс.

Найти точку минимума функции (использование производной и знаков производной) из ЕГЭ по математикеСкачать

Найти точку минимума функции (использование производной и знаков производной) из ЕГЭ по математике
Поделиться или сохранить к себе: