Программы для решения дифференциальных уравнений

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Содержание
  1. Дифференциальные уравнения по-шагам
  2. Результат
  3. Примеры дифференциальных уравнений
  4. Правила ввода
  5. Численное решение математических моделей объектов заданных системами дифференциальных уравнений
  6. Введение:
  7. Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ
  8. Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения с использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга
  9. Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга
  10. Решение краевой задачи с поточно разделёнными краевыми условиями
  11. Вывод
  12. 💥 Видео

Видео:Решение систем Д/У: 1. Знакомство с функциями odeXYСкачать

Решение систем Д/У: 1. Знакомство с функциями odeXY

Дифференциальные уравнения по-шагам

Видео:Python - численное решение дифференциального уравнения 1го порядка и вывод графикаСкачать

Python - численное решение дифференциального уравнения 1го порядка и вывод графика

Результат

Примеры дифференциальных уравнений

  • Простейшие дифференциальные ур-ния 1-порядка
  • Дифференциальные ур-ния с разделяющимися переменными
  • Линейные неоднородные дифференциальные ур-ния 1-го порядка
  • Линейные однородные дифференциальные ур-ния 2-го порядка
  • Уравнения в полных дифференциалах
  • Решение дифференциального уравнения заменой
  • Смена y(x) на x в уравнении
  • Другие

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

Численное решение математических моделей объектов заданных системами дифференциальных уравнений

Введение:

При математическом моделировании ряда технических устройств используются системы дифференциальных нелинейных уравнений. Такие модели используются не только в технике, они находят применение в экономике, химии, биологии, медицине, управлении.

Исследование функционирования таких устройств требуют решения указанных систем уравнений. Поскольку основная часть таких уравнений являются нелинейными и нестационарными, часто невозможно получить их аналитическое решение.

Возникает необходимость использовать численные методы, наиболее известным из которых является метод Рунге — Кутты [1]. Что касается Python, то в публикациях по численным методам, например [2,3], данных по применение Рунге — Кутты крайне мало, а по его модификации — методу Рунге-Кутта-Фельберга вообще нет.

В настоящее время, благодаря простому интерфейсу, наибольшее распространение в Python имеет функцию odeint из модуля scipy.integrate. Вторая функция ode из этого модуля реализует несколько методов, в том числе и упомянутый пятиранговый метод Рунге-Кутта-Фельберга, но, вследствие универсальности, имеет ограниченное быстродействие.

Целью настоящей публикации является сравнительный анализ перечисленных средств численного решения систем дифференциальных уравнений с модифицированным автором под Python методом Рунге-Кутта-Фельберга. В публикации так же приведены решения по краевым задачам для систем дифференциальных уравнений (СДУ).

Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ

Для одного дифференциального уравнения n – го порядка, задача Коши состоит в нахождении функции, удовлетворяющей равенству:

Программы для решения дифференциальных уравнений

и начальным условиям

Программы для решения дифференциальных уравнений

Перед решением эта задача должна быть переписана в виде следующей СДУ

Программы для решения дифференциальных уравнений(1)

с начальными условиями

Программы для решения дифференциальных уравнений

Модуль имеет две функции ode() и odeint(), предназначенные для решения систем обыкновенных дифференциальных уравнений (ОДУ) первого порядка с начальными условиями в одной точке (задача Коши). Функция ode() более универсальная, а функция odeint() (ODE integrator) имеет более простой интерфейс и хорошо решает большинство задач.

Функция odeint() имеет три обязательных аргумента и много опций. Она имеет следующий формат odeint(func, y0, t[,args=(), . ]) Аргумент func – это имя Python функции двух переменных, первой из которых является список y=[y1,y2. yn], а второй – имя независимой переменной.

Функция func должна возвращать список из n значений функций Программы для решения дифференциальных уравненийпри заданном значении независимого аргумента t. Фактически функция func(y,t) реализует вычисление правых частей системы (1).

Второй аргумент y0 функции odeint() является массивом (или списком) начальных значений Программы для решения дифференциальных уравненийпри t=t0.

Третий аргумент является массивом моментов времени, в которые вы хотите получить решение задачи. При этом первый элемент этого массива рассматривается как t0.

Функция odeint() возвращает массив размера len(t) x len(y0). Функция odeint() имеет много опций, управляющих ее работой. Опции rtol (относительная погрешность) и atol (абсолютная погрешность) определяют погрешность вычислений ei для каждого значения yi по формуле

Программы для решения дифференциальных уравнений

Они могут быть векторами или скалярами. По умолчанию

Программы для решения дифференциальных уравнений

Вторая функция модуля scipy.integrate, которая предназначена для решения дифференциальных уравнений и систем, называется ode(). Она создает объект ОДУ (тип scipy.integrate._ode.ode). Имея ссылку на такой объект, для решения дифференциальных уравнений следует использовать его методы. Аналогично функции odeint(), функция ode(func) предполагает приведение задачи к системе дифференциальных уравнений вида (1) и использовании ее функции правых частей.

Отличие только в том, что функция правых частей func(t,y) первым аргументом принимает независимую переменную, а вторым – список значений искомых функций. Например, следующая последовательность инструкций создает объект ODE, представляющий задачу Коши.

При построении численных алгоритмов будем считать, что решение этой дифференциальной задачи существует, оно единственно и обладает необходимыми свойствами гладкости.

При численном решении задачи Коши

Программы для решения дифференциальных уравнений(2)

Программы для решения дифференциальных уравнений(3)

по известному решению в точке t =0 необходимо найти из уравнения (3) решение при других t. При численном решении задачи (2),(3) будем использовать равномерную, для простоты, сетку по переменной t с шагом т > 0.

Приближенное решение задачи (2), (3) в точке Программы для решения дифференциальных уравненийобозначим Программы для решения дифференциальных уравнений. Метод сходится в точке Программы для решения дифференциальных уравненийесли Программы для решения дифференциальных уравненийпри Программы для решения дифференциальных уравнений. Метод имеет р-й порядок точности, если Программы для решения дифференциальных уравнений, р > 0 при Программы для решения дифференциальных уравнений. Простейшая разностная схема для приближенного решения задачи (2),(3) есть

Программы для решения дифференциальных уравнений(4)

При Программы для решения дифференциальных уравненийимеем явный метод и в этом случае разностная схема аппроксимирует уравнение (2) с первым порядком. Симметричная схема Программы для решения дифференциальных уравненийв (4) имеет второй порядок аппроксимации. Эта схема относится к классу неявных — для определения приближенного решения на новом слое необходимо решать нелинейную задачу.

Явные схемы второго и более высокого порядка аппроксимации удобно строить, ориентируясь на метод предиктор-корректор. На этапе предиктора (предсказания) используется явная схема

Программы для решения дифференциальных уравнений(5)

а на этапе корректора (уточнения) — схема

Программы для решения дифференциальных уравнений

В одношаговых методах Рунге—Кутта идеи предиктора-корректора реализуются наиболее полно. Этот метод записывается в общем виде:

Программы для решения дифференциальных уравнений(6),

Программы для решения дифференциальных уравнений

Формула (6) основана на s вычислениях функции f и называется s-стадийной. Если Программы для решения дифференциальных уравненийпри Программы для решения дифференциальных уравненийимеем явный метод Рунге—Кутта. Если Программы для решения дифференциальных уравненийпри j>1 и Программы для решения дифференциальных уравненийто Программы для решения дифференциальных уравненийопределяется неявно из уравнения:

Программы для решения дифференциальных уравнений(7)

О таком методе Рунге—Кутта говорят как о диагонально-неявном. Параметры Программы для решения дифференциальных уравненийопределяют вариант метода Рунге—Кутта. Используется следующее представление метода (таблица Бутчера)

Программы для решения дифференциальных уравнений

Одним из наиболее распространенных является явный метод Рунге—Кутта четвертого порядка

Программы для решения дифференциальных уравнений(8)

Метод Рунге—Кутта— Фельберга

Привожу значение расчётных коэффициентов Программы для решения дифференциальных уравненийметода

Программы для решения дифференциальных уравнений(9)

С учётом(9) общее решение имеет вид:

Программы для решения дифференциальных уравнений(10)

Это решение обеспечивает пятый порядок точности, остаётся его адаптировать к Python.

Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения Программы для решения дифференциальных уравненийс использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга

Программы для решения дифференциальных уравнений

Программы для решения дифференциальных уравнений

Программы для решения дифференциальных уравнений

Программы для решения дифференциальных уравнений

Адаптированные к Python методы Рунге—Кутта и Рунге—Кутта— Фельберга имеют меньшую абсолютную, чем решение с применением функции odeint, но большую, чем с использованием функции edu. Необходимо провести исследование быстродействия.

Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга

Сравнительный анализ проведём на примере модельной задачи, приведенной в [2]. Чтобы не повторять источник, приведу постановку и решение модельной задачи из [2].

Решим задачу Коши, описывающую движение тела, брошенного с начальной скоростью v0 под углом α к горизонту в предположении, что сопротивление воздуха пропорционально квадрату скорости. В векторной форме уравнение движения имеет вид

Программы для решения дифференциальных уравнений

где Программы для решения дифференциальных уравнений– радиус вектор движущегося тела, Программы для решения дифференциальных уравнений– вектор скорости тела, Программы для решения дифференциальных уравнений– коэффициент сопротивления, вектор Программы для решения дифференциальных уравненийсилы веса тела массы m, g – ускорение свободного падения.

Программы для решения дифференциальных уравнений

Особенность этой задачи состоит в том, что движение заканчивается в заранее неизвестный момент времени, когда тело падает на землю. Если обозначить Программы для решения дифференциальных уравнений, то в координатной форме мы имеем систему уравнений:

Программы для решения дифференциальных уравнений

К системе следует добавить начальные условия: Программы для решения дифференциальных уравнений(h начальная высота), Программы для решения дифференциальных уравнений. Положим Программы для решения дифференциальных уравнений. Тогда соответствующая система ОДУ 1 – го порядка примет вид:

Программы для решения дифференциальных уравнений

Для модельной задачи положим Программы для решения дифференциальных уравнений. Опуская довольно обширное описание программы, приведу только листинг из комментариев к которому, думаю, будет ясен принцип её работы. В программу добавлен отсчёт времени работы для сравнительного анализа.

Flight time = 1.2316 Distance = 5.9829 Height =1.8542
Flight time = 1.1016 Distance = 4.3830 Height =1.5088
Flight time = 1.0197 Distance = 3.5265 Height =1.2912
Flight time = 0.9068 Distance = 2.5842 Height =1.0240
Время на модельную задачу: 0.454787

Программы для решения дифференциальных уравнений

Для реализации средствами Python численного решения СДУ без использования специальных модулей, мною была предложена и исследована следующая функция:

def increment(f, t, y, tau
k1=tau*f(t,y)
k2=tau*f(t+(1/4)*tau,y+(1/4)*k1)
k3 =tau *f(t+(3/8)*tau,y+(3/32)*k1+(9/32)*k2)
k4=tau*f(t+(12/13)*tau,y+(1932/2197)*k1-(7200/2197)*k2+(7296/2197)*k3)
k5=tau*f(t+tau,y+(439/216)*k1-8*k2+(3680/513)*k3 -(845/4104)*k4)
k6=tau*f(t+(1/2)*tau,y-(8/27)*k1+2*k2-(3544/2565)*k3 +(1859/4104)*k4-(11/40)*k5)
return (16/135)*k1+(6656/12825)*k3+(28561/56430)*k4-(9/50)*k5+(2/55)*k6

Функция increment(f, t, y, tau) обеспечивает пятый порядок численного метода решения. Остальные особенности программы можно посмотреть в следующем листинге:

Время на модельную задачу: 0.259927

Программы для решения дифференциальных уравнений

Предложенная программная реализация модельной задачи без использования специальных модулей имеет почти в двое большее быстродействие, чем с функцией ode, однако нельзя забывать, что ode имеет более высокую точность численного решения и возможности выбора метода решения.

Решение краевой задачи с поточно разделёнными краевыми условиями

Приведем пример некоторой конкретной краевой задачи с поточно разделенными краевыми условиями:

Программы для решения дифференциальных уравнений(11)

Для решения задачи (11) используем следующий алгоритм:

1. Решаем первые три неоднородные уравнения системы (11) с начальными условиями
Программы для решения дифференциальных уравнений
Введем обозначение для решения задачи Коши:
Программы для решения дифференциальных уравнений

2. Решаем первые три однородные уравнения системы (11) с начальными условиями
Программы для решения дифференциальных уравнений
Введем обозначение для решения задачи Коши:
Программы для решения дифференциальных уравнений

3. Решаем первые три однородные уравнения системы (11) с начальными условиями

Программы для решения дифференциальных уравнений

Введем обозначение для решения задачи Коши:

Программы для решения дифференциальных уравнений

4. Общее решение краевой задачи (11) при помощи решений задач Коши записывается в виде линейной комбинации решений:
Программы для решения дифференциальных уравнений
где p2, p3 — некоторые неизвестные параметры.

5. Для определения параметров p2, p3, используем краевые условия последних двух уравнений (11), то есть условия при x = b. Подставляя, получим систему линейных уравнений относительно неизвестных p2, p3:
Программы для решения дифференциальных уравнений(12)
Решая (12), получим соотношения для p2, p3.

По приведенному алгоритму с применением метода Рунге—Кутта—Фельберга получим следующую программу:

y0[0]= 0.0
y1[0]= 1.0
y2[0]= 0.7156448588231397
y3[0]= 1.324566562303714
y0[N-1]= 0.9900000000000007
y1[N-1]= 0.1747719838716767
y2[N-1]= 0.8
y3[N-1]= 0.5000000000000001
Время на модельную задачу: 0.070878

Программы для решения дифференциальных уравнений

Вывод

Разработанная мною программа отличается от приведенной в [3] меньшей погрешностью, что подтверждает приведенный в начале статьи сравнительный анализ функции odeint с реализованным на Python метода Рунге—Кутта—Фельберга.

3. Н.М. Полякова, Е.В. Ширяева Python 3. Создание графического интерфейса пользователя (на примере решения методом пристрелки краевой задачи для линейных обыкновенных дифференциальных уравнений). Ростов-на-Дону 2017.

💥 Видео

Как в MATLAB Simulink моделировать уравнения (Структурная схема САУ)Скачать

Как в MATLAB Simulink моделировать уравнения (Структурная схема САУ)

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Численное решение системы дифференциальных уравнений(задачи Коши)Скачать

Численное решение системы дифференциальных уравнений(задачи Коши)

Метод ЭйлераСкачать

Метод Эйлера

Дифференциальные уравнения, 1 урок, Дифференциальные уравнения. Основные понятияСкачать

Дифференциальные уравнения, 1 урок, Дифференциальные уравнения. Основные понятия

Решение системы дифференциальных уравнений методом ЭйлераСкачать

Решение системы дифференциальных уравнений методом Эйлера

Частное решение дифференциального уравнения. 11 класс.Скачать

Частное решение дифференциального уравнения. 11 класс.

Дифференциальные уравнения. 11 класс.Скачать

Дифференциальные уравнения. 11 класс.

Решение физических задач с помощью дифференциальных уравненийСкачать

Решение  физических задач с помощью дифференциальных уравнений

Лабораторная работа 1. Решение систем обыкновенных дифференциальных уравненийСкачать

Лабораторная работа 1. Решение систем обыкновенных дифференциальных уравнений

Работа с MathCad Prime. Решение дифференциальных уравнений.Скачать

Работа с MathCad Prime. Решение дифференциальных уравнений.

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Видеоурок "Системы дифференциальных уравнений"Скачать

Видеоурок "Системы дифференциальных уравнений"
Поделиться или сохранить к себе: