Наиболее известным и популярным точным способом решения систем линейных алгебраических уравнений (СЛАУ) является метод Гаусса. Этот метод заключается в последовательном исключении неизвестных. Пусть в системе уравнений
первый элемент a11 (0) не равен 0. Назовем его ведущим элементом первой строки. Поделим все элементы этой строки на a11 (0) и исключим x1 из всех последующих строк, начиная со второй, путем вычитания первой (преобразованной), умноженной на коэффициент при x1 в соответствующей строке. Получим
Если a22 (1) , то, продолжая аналогичное исключение, приходим к системе уравнений с верхней треугольной матрицей
Из нее в обратном порядке находим все значения xi:
Процесс приведения к системе с треугольной матрицей называется прямым ходом, а нахождения неизвестных — обратным. Если один из ведущих элементов равен нулю, изложенный алгоритм метода Гаусса неприменим. Тем не менее, для нормальной матрицы с ненулевым определителем всегда возможна такая перестановка уравнений, что на главной диагонали не будет нулей. В приведенном коде для простоты перестановок не делается, зато делается проверка решения, а прямой и обратный ход для наглядности вынесены в отдельные подпрограммы.
Аналогичная программа на C++ выглядит следующим образом:
Здесь матрица и вектор правой части генерируются случайным образом из чисел в диапазоне от 1 до 5:
- Программирование решения уравнений
- Скачать:
- Подписи к слайдам:
- Предварительный просмотр:
- Предварительный просмотр:
- Паспорт проекта
- Индивидуальный план работы над проектом
- Отзыв
- Общие сведения о языке программирования Паскаль
- Решение системы алгебраических уравнений методом Гаусса
- Решение нелинейных уравнений
- Заключение
- Список литературы
- Текст публичного выступления
- Программа решения уравнений по методу гаусса в паскале
- 1. Описание математических методов решения систем линейных уравнений
- 1.1 Метод Гаусса
- 1.2 Матричный метод
- 1.3 Вычисление определителей второго и третьего порядка
- 1.4 Решение системы линейных уравнений с тремя неизвестными методом Крамера
- 2. Описание программы
- 2.1 Работа программы
Видео:Решение системы уравнений методом ГауссаСкачать
Программирование решения уравнений
Программирование решения уравнений. Презентация, проект и программный продукт (программа в Pascal)
Видео:Решение системы линейных уравнений методом ГауссаСкачать
Скачать:
Вложение | Размер |
---|---|
programmirovanie_lineynyh_uravneniy.pptx | 1.54 МБ |
metod_nyutona.docx | 69.43 КБ |
programmirovanie_resheniya_uravneniy.docx | 911.13 КБ |
Предварительный просмотр:
Видео:Язык Turbo Pascal и математика. Решение системы m линейных уравнений с n неизвестными методом ГауссаСкачать
Подписи к слайдам:
Программирование линейных уравнений Работа ученика 9б класса Ф.И.О. обучающегося: Смолькова Андрея Владимировича Руководитель проекта Ф.И.О. Борисова О.А.
Языки программирования — это формальные языки, предназначенные для записи алгоритмов, исполнителем которых будет компьютер. Записи алгоритмов на языках программирования называются программами . Язык Паскаль – универсальный язык программирования. Никлаус Вирт ( 1934 года рождения) — швейцарский учёный, специалист в области информатики, один из известнейших теоретиков в области разработки языков программирования, профессор информатики (компьютерных наук). Разработчик языка Паскаль и ряда других языков программирования.
Метод Гаусса — классический метод решения системы линейных алгебраических уравнений. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних (по номеру), находятся все переменные системы. Метод Гаусса
Метод Ньютона , алгоритм Ньютона (также известный как метод касательных ) — это итерационный численный метод нахождения корня заданной функции. Дана непрерывная функция f ( x ), которая содержит единственный корень на отрезке [ a,b ], где b > a при чем определены непрерывны и сохраняют знак f `( x ) f «( x ). Точность е. Выбираем грубое приближение корня х 0 . Найдем значение функции точке х 0 и проведем касательную до пересечения с осью абсцисс, получим значение х 1 . Определим значение функции в точке х 1 , через эту точку проводим касательную и получаем точку х 2 . Повторим этот процесс n раз. Метод Ньютона
Практически перед каждым программистом рано или поздно встает задача определения корней уравнения. На сегодняшний день существует достаточно много алгоритмов решения данной задачи. Все они могут быть разделены на два этапа: отделения и уточнения корней. Первую часть легко выполнить графическим методом. Для выполнения второго этапа решения уравнения можно воспользоваться одним из многих методов уточнения корней уравнения. Заключение
Видео:Математика без Ху!ни. Метод Гаусса.Скачать
Предварительный просмотр:
Видео:VB.net Vs С++. СЛАУ Метод ГауссаСкачать
Предварительный просмотр:
Муниципальное бюджетное общеобразовательное учреждение
«Гимназия №7» г. Торжка
Программирование решения уравнений
Работа ученика 9Б класса
Смольков Андрей Владимирович
Ф.И.О. Борисова Ольга Александровна
Работа допущена к защите «_____» _______________ 2018г.
Подпись руководителя проекта _________________(__________________)
Видео:Решение системы уравнений методом Гаусса 4x4Скачать
Паспорт проекта
Название проекта
Программирование решения уравнений
Руководитель проекта
Борисова Ольга Александровна
Автор проекта
Смольков Андрей Владимирович
Учебная дисциплина
Информатика
Тип проекта
Исследовательский
Цель работы
Изучить программную среду PascalABC для решения уравнений
- Написать программу решения:
- Системы линейных алгебраических уравнений методом Гаусса
- Нелинейных алгебраических уравнений методом Ньютона
Результат проекта (продукт)
Программа в среде программирования PascalABC
Видео:метод Гаусса СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ решение СЛАУСкачать
Индивидуальный план работы над проектом
Выбор руководителя и темы проекта.
Выбор типа проекта. Составление плана работы над проектом.
Работа над проектом
Анализ теоретической части.
Составление плана защиты проекта.
Отзыв руководителя. Формирование папки индивидуального проекта.
Защита индивидуального итогового проекта
Видео:МЕТОД ГАУССА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Отзыв
на исследовательскую работу
учащегося 9 б класса МБОУ «Гимназия №7» г. Торжка
Смольков Андрей Владимирович
по теме: «Программирование решения уравнений»
Работа Смолькова Андрея представляет собой исследование программирование решения уравнений. Актуальность работы заключается в том, что на данный момент учащиеся 9-х классов изучают язык программирования Паскаль, и возникла необходимость объединить математику и информатику в единый программный продукт. В работе важно разобраться с различными методами решения уравнений и написать программу. Содержание работы соответствует заявленной теме. Работа включает в себя основную часть, заключение, список литературы. Работу Андрей выполнял самостоятельно, используя материалы Интернета и литературы. При выполнения работы Андрей проявил: самостоятельность, способность решать соответствующие проблемы. Не выполнял все рекомендации научного руководителя и не вовремя устранял замечания. Замечания по данной работе значительные, необходимо продумать и доработать заключение по данной теме. Не достаточно теоретического материала по языку программирования и их разновидности.
Вывод: проектная работа Смолькова А.В. по теме: «Программирование решения уравнений» достигла поставленных целей, отвечает требованиям, предъявляемым к индивидуальному итоговому проекту и рекомендуется к защите.
Учитель информатики . Борисова О.А.
(предмет) (подпись) (расшифровка подписи)
«__»_____________ 2018 г.
Видео:Решение систем линейных уравнений, урок 4/5. Метод ГауссаСкачать
Общие сведения о языке программирования Паскаль
Языки программирования — это формальные языки, предназначенные для записи алгоритмов, исполнителем которых будет компьютер. Записи алгоритмов на языках программирования называются программами. Существует несколько тысяч языков программирования. Для данного проекта выбран язык программирования Паскаль, который был разработан в 70-х годах прошлого века Никлаусом Виртом (Швейцария). свое название этот язык получил в честь французского ученого Блеза Паскаля, известного не только своими достижениями в математике, физике и философии, но и созданием первой в мире механической машины, выполнявшей сложение двух чисел.
Язык Паскаль считается универсальным языком программирования, так как он может применяться для записи алгоритмов решения самых разных задач ( вычислительных, обработки текстов, построения графических изображений, поиска информации и т.д.). Он поддерживает процедурный стиль программирования, в соответствии с которым программа представляет собой последовательность операторов, задающих те или иные действия.
Основой языка программирования Паскаль, как и любого другого языка, является алфавит — набор допустимых символов, которые можно использовать для записи программы. Это:
- латинские прописные буквы;
- латинские строчные буквы;
- арабские цифры;
- специальные символы (знак подчеркивания, знаки препинания, круглые, квадратные и фигурные скобки, знаки арифметических операций и д.р.)
В языке существует также некоторое количество различных цепочек символов, рассматриваемых как единые смысловые элементы с фиксированным значением. Такие цепочки символов называются служебными словами.
В программе, записанной на языке Паскаль, можно выделить:
- заголовок программы;
- блок описания используемых данных;
- блок описания действий по преобразованию данных (программный блок).
Заголовок программы состоит из служебного слова program и имени программы. После имени программы ставятся точка с запятой. Блок описания данных состоит из раздела описания констант (const), раздела описания переменных (var) и некоторых других разделов. В разделе описания переменных указываются имена используемых в программе переменных и их типы. Имена переменных одного типа перечисляются через запятую, затем после двоеточия указывается их тип; описание каждого типа заканчивается точкой с запятой.
Общий вид программы:
Видео:Метод Гаусса решения систем линейных уравненийСкачать
Решение системы алгебраических уравнений методом Гаусса
Метод Гаусса — классический метод решения системы линейных алгебраических уравнений. Назван в честь немецкого математика Карла Фридриха Гаусса. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних (по номеру), находятся все переменные системы.
В переменную n вводится порядок матрицы системы. С помощью вспомогательной процедуры Input вводятся двумерный массив A и одномерный массив b, после чего оба массива и переменная n передаются функции Gauss. В функции Gauss для каждого k-го шага вычислений выполняется поиск максимального элемента в k-м столбце матрицы начиная с k-й строки. Номер строки, содержащей максимальный элемент сохраняется в переменной l. В том случае если максимальный элемент находится не в k-й строке, строки с номерами k и l меняются местами. Если же все эти элементы равны нулю, то происходит прекращение выполнения функции Gauss c результатом false. После выбора строки выполняется преобразование матрицы по методу Гаусса.
Видео:решение системы уравнений методом ГауссаСкачать
Решение нелинейных уравнений
Метод Ньютона , алгоритм Ньютона (также известный как метод касательных ) — это итерационный численный метод нахождения корня заданной функции.
Дана непрерывная функция f(x), которая содержит единственный корень на отрезке [a,b], где b>a при чем определены непрерывны и сохраняют знак f`(x) f«(x). Точность е. Выбираем грубое приближение корня х 0 . Найдем значение функции точке х 0 и проведем касательную до пересечения с осью абсцисс, получим значение х 1 . Определим значение функции в точке х 1 , через эту точку проводим касательную и получаем точку х 2 . Повторим этот процесс n раз.
К сожалению, при всех своих достоинствах метод Ньютона не гарантирует сходимости. Отсутствия решения может возникнуть по нескольким причинам. Например, это может произойти из-за того, что касательная будет параллельна оси абсцисс. В этом случаи необходимо предусмотреть выход из цикла при достижении большого количества итераций.
Существуют также и другие методы, например, золотого сечения. Какой из них использовать решать вам, однако следует отметить, что наиболее быстродейственным считается метод Ньютона, затем метод хорд и последним по быстродействию является метод половинного деления. Хотя количество итераций напрямую зависит от введенных начальных данных. При удачном стечении обстоятельств решение каждым из методов может быть найдено даже при единственной итерации.
Видео:12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать
Заключение
Практически перед каждым программистом рано или поздно встает задача определения корней уравнения. На сегодняшний день существует достаточно много алгоритмов решения данной задачи. Все они могут быть разделены на два этапа: отделения и уточнения корней. Первую часть легко выполнить графическим методом. Для выполнения второго этапа решения уравнения можно воспользоваться одним из многих методов уточнения корней уравнения.
Язык программирования Паскаль является универсальным языком программирования. В нем можно выполнить самые различные решения уравнений. Язык достаточно прост и понятен для начинающих программистов.
Видео:Линейная алгебра, 9 урок, Метод ГауссаСкачать
Список литературы
- Босова Л.Л. Информатика: учебник для 8 класса/ Л.Л. босова, А.Ю. Босова.-3-е изд.-М.: БИНОМ. Лаборатория знаний, 2015. — 160с.:ил.
- http://www.cyberforum.ru
- http://tpdn.ru/library/articles/52/13520
- http://pcfu.ru/metod-gaussa-dlya-resheniya-slau
Видео:Метод Гаусса и метод Жордана-ГауссаСкачать
Текст публичного выступления
Здравствуйте уважаемые члены комиссии. Я Смольков Андрей, ученик 9Б класса МБОУ «Гимназии №7» города Торжка. Разрешите представить свой исследовательский проект по теме «Программирование решения уравнений». Языки программирования — это формальные языки, предназначенные для записи алгоритмов, исполнителем которых будет компьютер. Записи алгоритмов на языках программирования называются программами. Существует несколько тысяч языков программирования. Для данного проекта выбран язык программирования Паскаль, который был разработан в 70-х годах прошлого века Никлаусом Виртом (Швейцария). Свое название этот язык получил в честь французского ученого Блеза Паскаля, известного не только своими достижениями в математике, физике и философии, но и созданием первой в мире механической машины, выполнявшей сложение двух чисел. Язык Паскаль считается универсальным языком программирования, так как он может применяться для записи алгоритмов решения самых разных задач ( вычислительных, обработки текстов, построения графических изображений, поиска информации и т.д.). Он поддерживает процедурный стиль программирования, в соответствии с которым программа представляет собой последовательность операторов, задающих те или иные действия. Основой языка программирования Паскаль, как и любого другого языка, является алфавит — набор допустимых символов, которые можно использовать для записи программы. Это: латинские прописные буквы; латинские строчные буквы; арабские цифры; специальные символы (знак подчеркивания, знаки препинания, круглые, квадратные и фигурные скобки, знаки арифметических операций и д.р.). В языке существует также некоторое количество различных цепочек символов, рассматриваемых как единые смысловые элементы с фиксированным значением. Такие цепочки символов называются служебными словами. В программе, записанной на языке Паскаль, можно выделить: заголовок программы; блок описания используемых данных; блок описания действий по преобразованию данных (программный блок). Заголовок программы состоит из служебного слова program и имени программы. После имени программы ставятся точка с запятой. Блок описания данных состоит из раздела описания констант (const), раздела описания переменных (var) и некоторых других разделов. В разделе описания переменных указываются имена используемых в программе переменных и их типы. Имена переменных одного типа перечисляются через запятую, затем после двоеточия указывается их тип; описание каждого типа заканчивается точкой с запятой. Общий вид программы:
Метод Гаусса — классический метод решения системы линейных алгебраических уравнений. Назван в честь немецкого математика Карла Фридриха Гаусса. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних (по номеру), находятся все переменные системы. На данных слайдах представлен программный продукт реализации решения уравнения методом Гаусса в Паскале. Метод Ньютона , алгоритм Ньютона (также известный как метод касательных ) — это итерационный численный метод нахождения корня заданной функции. Дана непрерывная функция f(x), которая содержит единственный корень на отрезке [a,b], где b>a при чем определены непрерывны и сохраняют знак f`(x) f«(x). Точность е. Выбираем грубое приближение корня х 0 . Найдем значение функции точке х 0 и проведем касательную до пересечения с осью абсцисс, получим значение х 1 . Определим значение функции в точке х 1 , через эту точку проводим касательную и получаем точку х 2 . Повторим этот процесс n раз. Программа на слайде. К сожалению, при всех своих достоинствах метод Ньютона не гарантирует сходимости. Отсутствия решения может возникнуть по нескольким причинам. Например, это может произойти из-за того, что касательная будет параллельна оси абсцисс. В этом случаи необходимо предусмотреть выход из цикла при достижении большого количества итераций. Практически перед каждым программистом рано или поздно встает задача определения корней уравнения. На сегодняшний день существует достаточно много алгоритмов решения данной задачи. Все они могут быть разделены на два этапа: отделения и уточнения корней. Первую часть легко выполнить графическим методом. Для выполнения второго этапа решения уравнения можно воспользоваться одним из многих методов уточнения корней уравнения.
Видео:Метод Гаусса онлайн с решением. Самый легкий способ.Скачать
Программа решения уравнений по методу гаусса в паскале
Матвеева Антонина Гавриловна №241-922-342
Учитель информатики МОУ СОШ №17 с углубленным изученим математики г. Тверь
Разработка программы на языке программирования Паскаль «Решения системы линейных уравнений» разными методами.
С одержание
1.1 Метод Гаусса 4
1.2 Матричный метод 5
1.3 Вычисление определителей второго и третьего порядка 6
1.4 Решение системы линейных уравнений с тремя неизвестными методом Крамера 8
2. Описание программы 9
2.1 Работа программы 9
2.2 Блок-схема программы 10
Видео:Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать
1. Описание математических методов решения систем линейных уравнений
Видео:12. Решение систем линейных уравнений методом ГауссаСкачать
1.1 Метод Гаусса
Пример 1.
Выбирается ведущее уравнение с коэффициентом при х1, равным 1. В нашем примере ведущим уравнением будет второе. Систему лучше переписать, поставив это уравнение на первое место:
Умножаем первое уравнение на 6 и вычитаем из полученного второе, чтобы исключить из второго неизвестное х1. Первое уравнение записываем, а на место второго — результат вычитания.
Затем первое уравнение умножим на 3 и складываем с третьим уравнением. Тогда получаем систему
Или
первое уравнение переписываем без изменения, а второе умножаем на 7 и вычитаем из него третье уравнение, умноженное на 15, чтобы избавиться от х2 в третьем уравнении. При этом второе записываем без изменения, на месте третьего — результат вычитания. Тогда
Из третьего следует х3 =-3, подставим его во второе, получим х2 = — 2. Далее подставим найденные х2 и х3 в первое уравнение, получим х1 = 1.
Примечание: если система уравнений не содержит уравнения с коэффициентом 1 при х1, тогда исключение х1 из второго и третьего достигается умножением сначала первого на коэффициент второго, а второго на коэффициент первого. Затем умножаем первое на коэффициент третьего, а третье на коэффициент первого. Таким образом при вычитании исключаем х1.
Видео:Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минутСкачать
1.2 Матричный метод
Запишем систему линейных 3 уравнений с 3 неизвестными
Составим матрицу из коэффициентов при неизвестных
А =
Введем в рассмотрение матрицы — столбцы для неизвестных и свободных членов:
Х = ; В = .
Тогда систему (2) можно переписать в матричной форме
Умножив это уравнение на слева, получим , откуда =или
Следовательно, матрица — решение Х находится как произведение на В.
Пример 2. Решить систему уравнений матричным методом
Решение: определитель матрицы
А=
∆=-1, значит, существует обратная матрица .
Матрица — столбец при неизвестных:
Х =
Матрица — столбец из свободных членов:
В =
Тогда решение запишется в виде
==
Откуда следует, х1 = 1; х2 = 0; х3 = 2.
Видео:Метод Гаусса решения систем линейных уравненийСкачать
1.3 Вычисление определителей второго и третьего порядка
Число (а11 а22 — а12 а21) называется определителем второго порядка и обозначается символом
Определитель второго порядка содержит две строки и два столбца. Числа а11, а12, а21, а22 называются элементами определителя. Диагональ определителя, на которой расположены числа а11, а22 — главная, а элементы а12, а21 составляют побочную диагональ.
Определитель 3-го порядка содержит три строки и три столбца:
Для вычисления определителя третьего порядка существует несколько способов.
Рассмотрим метод вычисления определителя разложением по элементам первой строки.
Введем понятие минора и алгебраического дополнения.
Минором некоторого элемента определителя называется определитель, полученный из данного вычеркиванием той строки и того столбца в которых этот элемент расположен. Обозначается Мij (i — номер строки, j — номер столбца).
Например, минором элемента а12 является определитель
Алгебраическим дополнением данного элемента определителя называется его минор, умноженный на (-1) i + j . Алгебраические дополнения обозначаются буквами Аij, и тогда Аy= (-1) i + j My.
Определитель вычисляется так:
=.
Так же можно разложить определитель по любой строке или столбцу.
Изложенный метод применим к вычислению определителей 4-го и т.д. порядков.
Пример3. Вычислить определитель разложением по элементам первой строки
Решение: Элементы первой строки
А11 = (-1) 1+1 . М11==4+1=5.
М11 получили, вычеркнув первую строку и первый столбец.
А12 = (-1) 1+2 . М12= — = — (8+3) = — 11.
М12 получили, вычеркнув первую строку и второй столбец.
А13 = (-1) 1+3 . М13 = = 2-3 = — 1.
М13 получили, вычеркнув первую строку и третий столбец.
= 1.5+2. (-11) — 2. (-1) = — 15
Видео:Линейная алгебра, Матрицы: Метод Гаусса. Высшая математикаСкачать
1.4 Решение системы линейных уравнений с тремя неизвестными методом Крамера
2. Описание программы
2.1 Работа программы
Для решения систем линейных уравнений методом Гаусса и матричным методом создана программа на языке Паскаль. Программа запрашивает исходные данные (рис.1):
матрицу коэффициентов при неизвестных х;
столбец свободных членов
способ решения системы линейных уравнений — вариант 1 или 2.
Рисунок 3.1 Ввод исходных данных
В зависимости от выбранного вариант в программе происходит решение системы уравнений методом Гаусса (рис.2) или матричным методом (рис.3) с выдачей на экран результатов:
Рисунок 3.2 Результаты расчетов системы линейных уравнений методом Гаусса.
Рисунок 3.3 Результаты расчетов системы линейных уравнений матричным методом.
Программа состоит из 7 подпрограмм — 6 процедур и одной функции:
процедура Gauss обеспечивает решение системы линейных уравнений по методу Гаусса;
процедура matrica обеспечивает решение системы линейных уравнений матричным методом;
процедура PrintMatr2 предназначена для выдачи на экран исходной и обратной матрицы;
процедура MultString предназначена для умножения строк матрицы на число r;
процедура AddStrings прибавляет к i1-ой строке матрицы i2-ю, умноженную на число r;
процедура MultMatr предназначена для умножения матриц.
Функция Sign используется для изменения знака на противоположный при вычислении обратной матрицы.
Программа настроена на решение системы 3-х линейных уравнений с тремя неизвестными. Чтобы решить систему из 2-х уравнений с 2-мя неизвестными необходимо в программе изменить значение константы N с N=3 на N =2 (рис.4).
Рисунок 3.4. Фрагмент программы с описанием констант и переменных.