Программа нахождения корня линейного уравнения

Решение линейного уравнения в python

Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Решение линейного уравнения в Python

В данной статье мы разберем программу на python для решения линейного уравнения Программа решает уравнение вида ax = b. Коэффициенты a и b задаются пользователем с клавиатуры. Программа находит решение и выводит его на экран. Если решений бесконечное количество или их нет, то программа оповещает об этом.
Все возможные решения линейного уравнения можно описать так
Если a = 0 и b = 0, то решений бесконечное количество.
Если a = 0 и b ≠ 0, то решений нет.
Если a ≠ 0, то единственное решение будет равно b / a.
Для задания коэффициентов с клавиатуры в Python используется функция ввода вещественного числа float(input()). Подробно о вводе информации с клавиатуры в python
a = float(input(«Введите коэффициент a «))
b = float(input(«Введите коэффициент b «))
В Python, чтобы проверить равенство двух объектов, используется ==, для проверки неравенства объектов используется !=. Для проверки двух условий одновременно используется оператор and. Подробно об условиях в python

Программа на Python для решения линейного уравнения
a = float(input(«Введите коэффициент a «))
b = float(input(«Введите коэффициент b «))
if (a == 0 and b == 0):
print(«Бесконечное количество решений.»)
if (a == 0 and b != 0):
print(«Решений нет.»)
if (a != 0):
print(b/a))

Полезно почитать по теме условия в Python примеры
Пример анкеты, опроса на Python

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Программа для поиска корня уравнения с использованием секущего метода

Секущий метод используется для нахождения корня уравнения f (x) = 0. Он начинается с двух различных оценок x1 и x2 для корня. Это итерационная процедура, включающая линейную интерполяцию к корню. Итерация останавливается, если разница между двумя промежуточными значениями меньше, чем коэффициент сходимости.

Примеры :

Алгоритм

// C ++ Программа для поиска корня
// уравнения, использующие секущий метод
#include

using namespace std;

// функция принимает значение x и возвращает f (x)

float f( float x)

// мы берем уравнение как х ^ 3 + х-1

float f = pow (x, 3) + x — 1;

void secant( float x1, float x2, float E)

float n = 0, xm, x0, c;

// вычисляем промежуточное значение

x0 = (x1 * f(x2) — x2 * f(x1)) / (f(x2) — f(x1));

// проверяем, является ли x0 корнем уравнения или нет

// обновляем значение интервала

// обновляем номер итерации

// если x0 является корнем уравнения, то разрывать цикл

xm = (x1 * f(x2) — x2 * f(x1)) / (f(x2) — f(x1));

> while ( fabs (xm — x0) >= E); // повторить цикл

cout «Root of the given equation=»

cout «No. of iterations = «

cout «Can not find a root in the given inteval» ;

float x1 = 0, x2 = 1, E = 0.0001;

// Java программа для поиска корня
// уравнения, использующие секущий метод

// функция принимает значение x и

static float f( float x) <

// мы берем уравнение

float f = ( float )Math.pow(x, 3 )

static void secant( float x1, float x2,

float n = 0 , xm, x0, c;

x0 = (x1 * f(x2) — x2 * f(x1))

// проверяем, является ли x0 корнем

// уравнение или нет

// обновляем значение интервала

// обновляем номер итерации

// если x0 является корнем уравнения

// затем разрываем цикл

xm = (x1 * f(x2) — x2 * f(x1))

// повторяем цикл до

> while (Math.abs(xm — x0) >= E);

System.out.println( «Root of the» +

» given equation=» + x0);

System.out.println( «No. of «

System.out.print( «Can not find a»

+ » root in the given inteval» );

public static void main(String[] args) <

float x1 = 0 , x2 = 1 , E = 0 .0001f;

// Этот код предоставлен Anant Agarwal.

# Python3 Программа для поиска корня
# уравнения, использующие секущий метод

# функция принимает значение х
# и возвращает f (x)

# мы берем уравнение

f = pow (x, 3 ) + x — 1 ;

def secant(x1, x2, E):

n = 0 ; xm = 0 ; x0 = 0 ; c = 0 ;

# рассчитать промежуточное значение

x0 = ((x1 * f(x2) — x2 * f(x1)) /

# проверить, является ли x0 корнем

# уравнение или нет

# обновить значение интервала

# обновить номер итерации

# если x0 является корнем уравнения

# затем разорвать петлю

xm = ((x1 * f(x2) — x2 * f(x1)) /

print ( «Root of the given equation =» ,

print ( «No. of iterations = » , n);

print ( «Can not find a root in » ,

«the given inteval» );

# Этот код предоставлен mits

// C # Программа для поиска корня
// уравнения, использующие секущий метод

// функция принимает значение

// x и возвращает f (x)

static float f( float x)

// мы берем уравнение

float f = ( float )Math.Pow(x, 3)

static void secant( float x1, float x2,

float n = 0, xm, x0, c;

x0 = (x1 * f(x2) — x2 * f(x1))

// проверяем, является ли x0 корнем

// уравнение или нет

// обновляем значение интервала

// обновляем номер итерации

// если x0 является корнем уравнения

// затем разрываем цикл

xm = (x1 * f(x2) — x2 * f(x1))

// повторяем цикл до

> while (Math.Abs(xm — x0) >= E);

Console.WriteLine( «Root of the» +

» given equation=» + x0);

Console.WriteLine( «No. of » +

Console.WriteLine( «Can not find a» +

» root in the given inteval» );

public static void Main(String []args)

float x1 = 0, x2 = 1, E = 0.0001f;

// Этот код предоставлен vt_m.

// PHP программа для поиска корня
// уравнения, использующие секущий метод

// функция принимает значение х
// и возвращает f (x)

// мы берем уравнение

$f = pow( $x , 3) + $x — 1;

function secant( $x1 , $x2 , $E )

// вычисляем промежуточное значение

$x0 = ( $x1 * f( $x2 ) — $x2 *

f( $x1 )) / (f( $x2 ) — f( $x1 ));

// проверяем, является ли x0 корнем

// уравнения или нет

// обновляем значение интервала

// обновляем номер итерации

// если x0 является корнем уравнения

// затем разрываем цикл

$xm = ( $x1 * f( $x2 ) — $x2 * f( $x1 )) /

> while ( abs ( $xm — $x0 ) >= $E );

echo «Root of the given equation=» . $x0 . «n» ;

echo «No. of iterations = » . $n ;

echo «Can not find a root in the given inteval» ;

secant( $x1 , $x2 , $E );

// Этот код предоставлен нитин митталь.
?>

Выход :

Сложность времени = O (1)

Эта статья предоставлена Нитешем Кумаром . Если вы как GeeksforGeeks и хотели бы внести свой вклад, вы также можете написать статью с помощью contribute.geeksforgeeks.org или по почте статьи contribute@geeksforgeeks.org. Смотрите свою статью, появляющуюся на главной странице GeeksforGeeks, и помогите другим вундеркиндам.

Пожалуйста, пишите комментарии, если вы обнаружите что-то неправильное, или вы хотите поделиться дополнительной информацией по обсуждаемой выше теме.

Видео:Как найти корни уравнения в Excel с помощью Подбора параметраСкачать

Как найти корни уравнения в Excel с помощью Подбора параметра

Программа для решения квадратных уравнений на C++

Программа нахождения корня линейного уравненияДовольно часто в пособиях по программированию встречаются задания по нахождению решений каких-нибудь математических уравнений. Задача нахождения корней квадратного уравнения — это довольно тривиальная задача, как и многие другие задачи. Решается она очень просто при помощи листа бумаги и ручки, но решение можно автоматизировать посредством написания прикладной программы и её использования. В этой статье мы напишем такую программу.

Алгоритм решения квадратного уравнения

Многие знают, что уравнение вида ax 2 + bx + c = 0 , где a не равно 0, называют квадратным уравнением.

Существуют различные способы решения квадратных уравнений, но мы рассмотрим решение через дискриминант.

Обозначается дискриминант буквой D . Из школьного курса знаем, что D = b 2 — 4ac .

Существует несколько условий:

  • Если D > 0, то решение имеет 2 различных вещественных корня.
  • Если D = 0, то оба вещественных корня равны.
  • Если D для вводавывода в консоли, #include для работы с математическими функциями и область using namespace std;

Просим пользователя ввести значения переменных и сохраняем каждое значение

Проверяем условие, если дискриминант больше или равен 0, то находим корни и выводим

в противном случае выводим сообщение

На этом всё, осталось скомпилировать, запустить и проверить. Запускаем и вводим данные, чтобы D был меньше 0

В этом случае D = 3*3 — 4*2*3 = -15, а это меньше 0, значит ответ программа дала верный.

Ответы тоже верны. Программа работает правильно.

Ниже представлен весь листинг программы для нахождения корней квадратного уравнения на C++

Для вас это может быть интересно:

Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Программа для решения квадратных уравнений на C++ : 24 комментария

Программировать так сложно…

  1. Nicknixer Автор записи 15.10.2016

Не так сложно, как Вам кажется! Немного литературы, немного практики и смотреть на код решения такой задачи Вы будете по-другому.

Доброго времени суток! Помогите пожалуйста написать программу, которая считает сколько символов в ряде двумерного массива. То есть , например массив 5 на 5, сколько символов в 1 ряде, сколько во 2 и т.д.

Ответил вам по электронной почте

Критику принимаете? 🙂
Программа дырявая как сито.

Если число очень маленькое, но положительное, например 10^(-20) — у вас будет переполнение или типо того. Оператор > проверяет знак числа (это отдельный бит), а оператор == для дробных чисел не имеет смысла, т.к. в младших разрядах числа обычно находится какой-нибудь мусор, который при таком сравнении дает false.

x = ( -1*b + sqrt(b*b — 4*a*c) ) / (2 * a);
x = ( -1*b — sqrt(b*b — 4*a*c) ) / (2 * a);

Тут есть три вопроса:
1) зачем два раза вычислять одно и тоже (я про корень)
2) что делать если мне корни надо как-то использовать, а не просто вывести (тут есть проблема, ведь у меня то один корень — то два). Чтобы лучше понять в чем проблема — попробуйте вынести вычисление корней в отдельную функцию. У вас то вообще, если корень один — то их выведется все равно два, одинаковых.
3) в переменной «a» может быть ноль (или близкое к нулю число) — при этом мы получим деление на ноль (а точнее, переполнение).

Но это ведь еще не все. Что будет если и «a» и «b» равны нулю? — тебе надо рассмотреть два варианта — если c = 0 (условно, близко к нулю), то корней бесконечно много. А если c != 0, то корней нет.

Вообще, эта задача — прекрасный пример для юнит-тестирования и демонстрации принципов разработки через тестирование. Именно его я рассматривал в своей статье по теме тестирования: Юнит-тестирование. Пример. Boost Unit Test. Дело в том, что тут куча вариантов сделать ошибку, при этом их понимание приходит не сразу, т.е. школьник решая задачу напишет по формуле которой учили (ну и вот как у вас). А потом надо разбираться и смотреть как программа может сломаться, при этом разрабатывать тесты.

  1. Николай Сергейчук Автор записи 09.02.2017

Принимаем 🙂
Согласен с вами во всём! Программу можно реализовать намного лучше, используя различные проверки и валидацию входных данных.
Однако, статья рассчитана на аудиторию, которая только начинает познавать программирование или делает лабораторную. 🙂 Чтобы людям легче было понять, реализация данной программы упрощена до невозможности. И, возможно, несправедливо было с моей стороны не предупредить их о возможных ошибках в работе программы, которые могут вскрыться позже, если подать на вход определенные значения.
Кстати, у вас интересная статья по тестированию!

Николай, доброго времени суток! Можете помочь с написанием програмки в с++? 1-1/2!+1/3!-1/4!+1/5! и так до 1/100! ? Чтобы при заднии в строке номера члена последовательности выдавал сумму до него по такой вот формуле? Буду очень благодарен!

Пожалуйста подскажите как ввести экран правильный ответ дискриминанта

Помогите решить в Dev C++
Sqrt x^2+1+sqrt|x|,x0

Здравствуйте, можете помочь с решением биквадратного и триквадратного уравнения?

#include
using namespace std;
int main()
<
/*Решение квадратных уравнений*/
setlocale(0, «»);
cout a;
cout b;
cout c;
D = pow(b, 2) — 4 * a * c;
cout

ну и? если даже тупо скопировать код и вставить его в cpp.sh , ничего не работает. поебота какая то этот с++

Уважаемая, Лена! Я, надеюсь, вы знаете, что код программы, написанной на языке программирования C++ нельзя тупо вставить в блокнот и сохранить под названием «cpp.sh»? Если не знали, то я, видимо, открыл для вас Америку!

помогите решить. заданы 3 перемены a.b.c записать вы радение на С
< 7a/b+2a, если a=b,
Х= b,
b и а не равно != с

iconcerts где забыл
#include

Я ради интереса написал программу нахождения корней квадратного уравнения на С++, с выводом корней как в десятичном виде, так и в виде простой дроби (причём уже сокращённой), потому что выводя корни в десятичном виде программа их одновременно сокращает и округляет и 1/3 превращается в 0.333333 хотя на самом деле 0.333333 (3), то есть для проверки правильно ли нашёл корни ваш ребёнок, вы с получите что-то типа: X1= 0.285714; X2=0.214286, а на самом деле это будет X1=2/7; X2=3/14, кроме того, если корень из дискриминанта не получается целым числом, вы уже получите двойную неточность: сначала при извлечении корня программа отсечёт значение до 4-6 цифр после запятой с округлением, а затем сделает то же самое при делении числителя на знаменатель. Я и здесь сделал вывод корней в двух значениях: в десятичном и в виде выражения X1= (-b + sqrt(D))/(2*a); X2= (-b — sqrt(D))/(2*a), то есть выводится примерно вот так X1=-5+sqrt(21)/2; X2=-5-sqrt(21)/2 с одновременным разложением дискриминанта под корнем на множители, вынесением этих множителей из-под корня, если они выносятся нацело, их перемножением и дальнейшим сокращением. Вот, например, имеем a=3, b=15, c=3, при решении получаем D=189 программа выдаёт десятичные корни X1= -0.208712 и X2= -4.79129, а в виде выражения имеем: X1= -5+sqrt(21)/2, то есть первоначально получаем: X1= -15+sqrt(189)/6, -> 189=21*9 -> -15+3sqrt(21)/6 далее идёт сокращение на 3 и итог -5+sqrt(21)/2

День добрый.
Недавно начал изучать C++. Решил попробовать написать решение квадратного уравнения именно через оператор вида «условие ? выполняется : не выполняется». Т.е. если условие выполняется, то имеем два решения (даже если d = 0, то тоже должно быть два решения x1 = x2), если d a;
std::cout b;
std::cout c;
d = pow(b, 2) — 4 * a*c;
d >= 0 ? xfst = ((-b + sqrt(d)) / double(2 * a)) , xscd = ((-b — sqrt(d)) / double(2 * a)) : std::cout

  1. Николай Сергейчук Автор записи 12.02.2020

if (d >= 0) <
xfst = ((-b + sqrt(d)) / double(2 * a));
xscd = ((-b — sqrt(d)) / double(2 * a));
std::cout

Создать программу для решения квадратного уравнения.
У меня не получаеться, но и копифейсом я не хочу заниматься.
Прошу помогите. Заранее спасибо.

Здравствуйте! Как решить эту задачу? Приведенный пример сверху не подходит .

Давайте напишем действительно полезную программу! Вы наверняка уже устали считать дискриминант для квадратных уравнений? Давайте автоматизируем этот процесс.

На вход программы подаются три целых числа — коэффициенты уравнения ax^2 + bx + c = 0ax
2
+bx+c=0

Гарантируется, что a neq 0a

=0.

Выведите через пробел корни уравнения в порядке убывания и округленные «вниз». Если уравнение имеет корень кратности 2 — выведите одно число. Если у уравнения нет действительных корней — выведите «NO»

Для извлечения корней используйте функцию sqrt. Она содержится в библиотеке сmath ( она уже импортирована в коде ). Для округления воспользуйтесь функцией floor ( из той же библиотеки ).

1 0 -4
Sample Output 1:

2 -2
Sample Input 2:

1 2 2
Sample Output 2:

Пожалуйста подскажите как ввести экран ответ дискриминанта

Пожалуйста подскажите как ввести на екран ответь дискриминанта

Подскажите как правильно решить?
Обчислити z = (x1 + y1) / (x2 + y2), де х1, х2 — коренi рiвняння 2х^2 + x — 4 =0.
y1, y2 — коренi рiвняння ay^2 + 2y — 1 = 0. Усi коренi дiйснi.

using namespace std;

int main() <
double a = 2, b, c = -4;
int x1, x2;
double a1, b1 = 2, c1 = -1;
int y1, y2;
float z;

if((b*b — 4*a*c) >= 0 ) <
x1 = ( -1*b + sqrt(b*b — 4*a*c)) / (2 * a);
cout a1;

if((b1*b1 — 4*a1*c1) >= 0) <
y1 = ( -1*b1 + sqrt(b1*b1 — 4*a1*c1)) / (2 * a1);
cout = 0, y1 >= 0, y2 >= 0) <
z = (x1 + y1)/(x2 +y2);
cout

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

🎦 Видео

Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Уроки C++. Простые линейные уравненияСкачать

Уроки C++. Простые линейные уравнения

Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМСкачать

Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМ

АЛГЕБРА 7 класс : Уравнение и его корни | ВидеоурокСкачать

АЛГЕБРА 7 класс : Уравнение и его корни | Видеоурок

СЛОЖИТЕ ДВА КОРНЯСкачать

СЛОЖИТЕ ДВА КОРНЯ

Алгебра 7 Линейное уравнение с одной переменнойСкачать

Алгебра 7 Линейное уравнение с одной переменной

Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать

Линейное уравнение с одной переменной. Практическая часть. 6 класс.

Программа для решения корней квадратного уравнения с использованием дискриминанта на языке ПаскальСкачать

Программа для решения корней квадратного уравнения с использованием дискриминанта на языке Паскаль

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.Скачать

Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.

Как решить уравнение с синусом sin1 Линейное уравнение Простое уравнение Как решать синус sin1Скачать

Как решить уравнение с синусом sin1 Линейное уравнение Простое уравнение Как решать синус sin1
Поделиться или сохранить к себе: