Программа для решения уравнений методом зейделя

Метод Зейделя на C++

Для написания программы, решающей систему линейных уравнения методом итерации или Зейделя, Вам потребуется среда разработки, например Visual Studio 2008 или Dev-C++.

Создадим новый проект пустой проект и добавим в него файл исходного кода — main.cpp со следующим содержимым

Содержание
  1. Листинг 1.1 — main.cpp
  2. Листинг 1.2 — norm.h
  3. Листинг 1.3 — iterat.h
  4. Листинг 1.4 — okr.h
  5. Листинг 1.5 — norm.cpp
  6. Листинг 1.6 — iterat.cpp
  7. Листинг 1.7 — okr.cpp
  8. Численные методы решения систем нелинейных уравнений
  9. Введение
  10. Возможности решателя scipy.optimize.root для численного решения систем алгебраических нелинейных уравнений
  11. Методы решения систем нелинейных уравнений
  12. Выбор модельной функции
  13. Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью библиотечной функции optimize.root для разных методов отыскания корней
  14. Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью программы написанной на Python 3 с учётом соотношений (1)-(8) для отыскания корней по модифицированному методу Ньютона
  15. 1.2.3. Метод Зейделя (метод Гаусса-Зейделя, метод последовательных замещений)
  16. 💡 Видео

Видео:Метод простой итерации Пример РешенияСкачать

Метод простой итерации Пример Решения

Листинг 1.1 — main.cpp

Теперь создадим заголовочный файл norm.h, содержащий прототипы функций, вычисляющих нормы матрицы, и iterat.h, содержащий прототип функции iterat() , которая считает количество итераций.

Видео:Метод Зейделя Пример РешенияСкачать

Метод Зейделя Пример Решения

Листинг 1.2 — norm.h

Видео:2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)Скачать

2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)

Листинг 1.3 — iterat.h

Теперь добавим в проект третий заголовочный файл okr.h — в нем будет находиться прототип функции округления

Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Листинг 1.4 — okr.h

Создадим еще три файла — norm.cpp, iterat.cpp и okr.cpp

Видео:Метод_Зейделя_ExcelСкачать

Метод_Зейделя_Excel

Листинг 1.5 — norm.cpp

В файле iterat.cpp будет описана функция, вычисляющая количество итераций по по методу Зейделя, либо по методу простых итераций.

Видео:9 Метод Зейделя Ручной счет Решение системы линейных уравнений СЛАУСкачать

9 Метод Зейделя Ручной счет Решение системы линейных уравнений СЛАУ

Листинг 1.6 — iterat.cpp

И последний файл — okr.cpp, содержащий определение функции округления

Видео:6 Метод Зейделя Блок-схема Mathcad Calc Excel Решение системы линейных уравнений СЛАУСкачать

6 Метод Зейделя Блок-схема Mathcad Calc Excel Решение системы линейных уравнений СЛАУ

Листинг 1.7 — okr.cpp

Вы можете скачать полный архив со всем файлами проекта.

Видео:Метод простых итераций пример решения нелинейных уравненийСкачать

Метод простых итераций пример решения нелинейных уравнений

Численные методы решения систем нелинейных уравнений

Введение

Многие прикладные задачи приводят к необходимости нахождения общего решения системы нелинейных уравнений. Общего аналитического решения системы нелинейных уравнений не найдено. Существуют лишь численные методы.

Следует отметить интересный факт о том, что любая система уравнений над действительными числами может быть представлена одним равносильным уравнением, если взять все уравнения в форме Программа для решения уравнений методом зейделя, возвести их в квадрат и сложить.

Для численного решения применяются итерационные методы последовательных приближений (простой итерации) и метод Ньютона в различных модификациях. Итерационные процессы естественным образом обобщаются на случай системы нелинейных уравнений вида:

Программа для решения уравнений методом зейделя(1)

Обозначим через Программа для решения уравнений методом зейделявектор неизвестных и определим вектор-функцию Программа для решения уравнений методом зейделяТогда система (1) записывается в виде уравнения:

Программа для решения уравнений методом зейделя(2)

Теперь вернёмся к всеми любимому Python и отметим его первенство среди языков программирования, которые хотят изучать [1].

Программа для решения уравнений методом зейделя

Этот факт является дополнительным стимулом рассмотрения числительных методов именно на Python. Однако, среди любителей Python бытует мнение, что специальные библиотечные функции, такие как scipy.optimize.root, spsolve_trianular, newton_krylov, являются самым лучшим выбором для решения задач численными методами.

С этим трудно не согласится хотя бы потому, что в том числе и разнообразие модулей подняло Python на вершину популярности. Однако, существуют случаи, когда даже при поверхностном рассмотрении использование прямых известных методов без применения специальных функций библиотеки SciPy тоже дают неплохие результаты. Иными словами, новое- это хорошо забытое старое.

Так, в публикации [2], на основании проведенных вычислительных экспериментов, доказано, что библиотечная функция newton_krylov, предназначенная для решения больших систем нелинейных уравнений, имеет в два раза меньшее быстродействие, чем алгоритм TSLS+WD
(two-step least squares), реализованный средствами библиотеки NumPy.

Целью настоящей публикации является сравнение по числу итераций, быстродействию, а главное, по результату решения модельной задачи в виде системы из ста нелинейных алгебраических уравнений при помощи библиотечной функции scipy.optimize.root и методом Ньютона, реализованного средствами библиотеки NumPy.

Возможности решателя scipy.optimize.root для численного решения систем алгебраических нелинейных уравнений

Библиотечная функция scipy.optimize.root выбрана в качестве базы сравнения, потому что имеет обширную библиотеку методов, пригодных для сравнительного анализа.

scipy.optimize.root(fun, x0, args=(), method=’hybr’, jac=None, tol=None,callback=None, ptions=None)
fun — Векторная функция для поиска корня.
x0 –Начальные условия поиска корней

method:
hybr -используется модификация Пауэлл гибридный метод;
lm – решает системы нелинейных уравнений методом наименьших квадратов.
Как следует из документации [3] методы broyden1, broyden2, anderson, linearmixing, diagbroyden, excitingmixing, krylov являются точными методами Ньютона. Остальные параметры являются «не обязательными» и с ними можно ознакомится в документации.

Методы решения систем нелинейных уравнений

Приведенный далее материал действительно можно прочитать в литературе, например в [4], но я уважаю своего читателя и для его удобства приведу вывод метода по возможности в сокращенном виде. Те, кто не любит формулы, этот раздел пропускают.

В методе Ньютона новое приближение для решения системы уравнений (2) определяется из решения системы линейных уравнений:

Программа для решения уравнений методом зейделя(3)

Определим матрицу Якоби:

Программа для решения уравнений методом зейделя(4)

Запишем(3) в виде:

Программа для решения уравнений методом зейделя(5)

Многие одношаговые методы для приближенного решения (2) по аналогии с двухслойными итерационными методами для решения систем линейных алгебраических уравнений можно записать в виде:

Программа для решения уравнений методом зейделя(6)

где Программа для решения уравнений методом зейделя— итерационные параметры, a Программа для решения уравнений методом зейделя— квадратная матрица n х n, имеющая обратную.

При использовании записи (6) метод Ньютона (5) соответствует выбору:

Программа для решения уравнений методом зейделя

Система линейных уравнений (5) для нахождения нового приближения Программа для решения уравнений методом зейделяможет решаться итерационно. В этом случае мы имеем двухступенчатый итерационный процесс с внешними и внутренними итерациями. Например, внешний итерационный процесс может осуществляться по методу Ньютона, а внутренние итерации — на основе итерационного метода Зейделя

При решении систем нелинейных уравнений можно использовать прямые аналоги стандартных итерационных методов, которые применяются для решения систем линейных уравнений. Нелинейный метод Зейделя применительно к решению (2) дает:

Программа для решения уравнений методом зейделя(7)

В этом случае каждую компоненту нового приближения из решения нелинейного уравнения, можно получить на основе метода простой итерации и метода Ньютона в различных модификациях. Тем самым снова приходим к двухступенчатому итерационному методу, в котором внешние итерации проводятся в соответствии с методом Зейделя, а внутренние — с методом Ньютона.

Основные вычислительные сложности применения метода Ньютона для приближенного решения систем нелинейных уравнений связаны с необходимостью решения линейной системы уравнений с матрицей Якоби на каждой итерации, причем от итерации к итерации эта матрица меняется. В модифицированном методе Ньютона матрица Якоби обращается только один раз:

Программа для решения уравнений методом зейделя(8)

Выбор модельной функции

Такой выбор не является простой задачей, поскольку при увеличении числа уравнений в системе в соответствии с ростом числа переменных результат решения не должен меняться, поскольку в противном случае невозможно отследить правильность решения системы уравнений при сравнении двух методов. Привожу следующее решение для модельной функции:

Функция f создаёт систему из n нелинейных уравнений, решение которой не зависит от числа уравнений и для каждой из n переменных равно единице.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью библиотечной функции optimize.root для разных методов отыскания корней

Только один из методов, приведенных в документации [3] прошёл тестирование по результату решения модельной функции, это метод ‘krylov’.

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Krylov method iteration = 4219
Optimize root time 7.239 seconds:

Вывод: С увеличением числа уравнений вдвое заметно появление ошибок в решении. При дальнейшем увеличении n решение становится не приемлемым, что возможно из-за автоматической адаптации к шагу, эта же причина резкого падения быстродействия. Но это только моё предположение.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью программы написанной на Python 3 с учётом соотношений (1)-(8) для отыскания корней по модифицированному методу Ньютона

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Newton iteration = 13
Newton method time 0.496 seconds

Решение для n=200:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.]
Newton iteration = 14
Newton method time 1.869 seconds

Чтобы убедиться в том, что программа действительно решает систему, перепишем модельную функцию для ухода от корня со значением 1 в виде:

Получим:
Solution:
[ 0.96472166 0.87777036 0.48175823 -0.26190496 -0.63693762 0.49232062
-1.31649896 0.6865098 0.89609091 0.98509235]
Newton iteration = 16
Newton method time 0.046 seconds

Вывод: Программа работает и при изменении модельной функции.

Теперь вернёмся к начальной модельной функции и проверим более широкий диапазон для n, например в 2 и 500.
n=2
Solution:
[1. 1.]
Newton iteration = 6
Newton method time 0.048 seconds
n=500

Видео:Метод Зейделя в ExcelСкачать

Метод Зейделя в Excel

1.2.3. Метод Зейделя (метод Гаусса-Зейделя, метод последовательных замещений)

Метод Зейделя представляет собой некоторую модификацию метода простой итерации. Основная его идея заключается в том, что при вычислении (k+1)-го приближения неизвестной xi учитываются уже вычисленные ранее (k+1) – е приближения неизвестных x1, х2, .

В этом методе, как и в методе простой итерации, необходимо привести систему к виду (3), чтобы диагональные коэффициенты были максимальными по модулю, и проверить условия сходимости. Если условия сходимости не выполняются, то нужно произвести элементарные преобразования (см. п. 4). Пусть дана система из трех линейных уравнений. Приведем ее к виду (3). Выберем произвольно начальные приближения корней: х1(0), х2(0), х3(0), стараясь, чтобы они в какой-то мере соответствовали искомым неизвестным. За нулевое приближение можно принять столбец свободных членов, т. е. х(0) = b

(т. е. x1(0)=b1, x2(0)=b2, x3(0)=b3). Найдем Первое приближение х(1) по формулам:

Программа для решения уравнений методом зейделя

Следует обратить внимание на особенность метода Зейделя, которая состоит в том, что полученное в первом уравнении значение х1(l) сразу же используется во втором уравнении, а значения х1(1), х2(1) – в третьем уравнении и т. д. То есть все найденные значения х1(1) подставляются в уравнения для нахождения хi+1(1) [6, 8].

Рабочие формулы для метода Зейделя для системы трех уравнений имеют следующий вид:

Программа для решения уравнений методом зейделя

Запишем в общем виде для системы n-уравнений рабочие формулы:

Программа для решения уравнений методом зейделя

Заметим, что теорема сходимости для метода простой итерации справедлива и для метода Зейделя.

Зададим определенную точность решения e, по достижении которой итерационный процесс завершается, т. е. решение продолжается до тех пор, пока не будет выполнено условие для всех уравнений: Программа для решения уравнений методом зейделягде i=1,2,3,…,n.

Пример №2. Методом Зейделя решить систему с точностью e = 10-3:

Программа для решения уравнений методом зейделя

1. Приведем систему к виду:

Программа для решения уравнений методом зейделя

2. В качестве начального вектора х(0) возьмем элементы столбца свободных членов, округлив их значения до двух знаков после запятой:

Программа для решения уравнений методом зейделя

3. Проведем итерации методом Зейделя. При k = 1

Программа для решения уравнений методом зейделя.

При вычислении х2(1) используем уже полученное значение х1(1) =

Программа для решения уравнений методом зейделя.

При вычислении х3(1) используем значения х1(1) и х2(1):

Программа для решения уравнений методом зейделя

Наконец, используя значения х1(1), х2(1), х3(1), получаем:

Программа для решения уравнений методом зейделя

Аналогичным образом ведем вычисления при k=2 и k=3. При k= 2:

Программа для решения уравнений методом зейделя

Программа для решения уравнений методом зейделя

Найдем модули разностей значений Программа для решения уравнений методом зейделяпри k = 2:

Программа для решения уравнений методом зейделя

Они меньше заданного числа e, поэтому в качестве решения возьмем: x1 = 0,80006, x2 = 1,00002, x3 = 1,19999, x4 = 1,40000.

💡 Видео

Решение нелинейного уравнения методом простых итераций (программа)Скачать

Решение нелинейного уравнения методом простых итераций (программа)

Решение системы трёх линейных уравнений методом Зейделя на VBAСкачать

Решение системы трёх линейных уравнений методом Зейделя на VBA

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Решение систем линейных уравнений, урок 5/5. Итерационные методыСкачать

Решение систем линейных уравнений, урок 5/5. Итерационные методы

Решение слау методом итераций. Метод простых итераций c++.Скачать

Решение слау методом итераций. Метод простых итераций c++.

Метод Зейделя в Excel (устар.)Скачать

Метод Зейделя в Excel (устар.)

Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минутСкачать

Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минут

Решение систем линейных алгебраических уравнений методом Зейделя (устар.)Скачать

Решение систем линейных алгебраических уравнений методом Зейделя (устар.)

Алгоритмы С#. Метод простых итерацийСкачать

Алгоритмы С#. Метод простых итераций

Метод: Якоби, Зейделя, Ньютона(2 лекция)Скачать

Метод: Якоби, Зейделя, Ньютона(2 лекция)

2.1 Точные методы решения СЛАУ (Крамера, Гаусса, Жордана, прогонки)Скачать

2.1 Точные методы решения СЛАУ (Крамера, Гаусса, Жордана, прогонки)
Поделиться или сохранить к себе: