Библиотеку Numpy можно использовать для выполнения множества математических и научных операций, таких как скалярное произведение, поиск значений синуса и косинуса, преобразование Фурье и т.д.
- Что такое система линейных уравнений?
- Решение
- Использование методов inv() и dot()
- resolve()
- Пример
- Библиотека NumPy в Python матрицы в питон
- Умножение матриц в Python
- Возведение матрицы в степень в python
- Решение системы линейных уравнений в Python
- Вычисление экспоненты числа или матрицы в Python
- Библиотека Sympy: символьные вычисления в Python
- Первые шаги с SymPy
- Используем SymPy как обычный калькулятор
- Символы
- Алгебраические преобразования
- Раскрытие скобок
- Упрощение выражений
- Вычисления
- Вычисления пределов
- Дифференцирование
- Разложение в ряд
- Интегрирование
- Решение уравнений
- Системы линейных уравнений
- Факторизация
- Булевы уравнения
- Линейная алгебра
- Матрицы
- Дифференциальные уравнения
- Бесплатные кодинг марафоны с ревью кода
- 📺 Видео
Видео:Решения системы линейных уравнений на Python (Sympy).Скачать
Что такое система линейных уравнений?
Википедия определяет систему линейных уравнений как:
В математике система линейных уравнений (или линейная система) – это набор двух или более линейных уравнений, включающих один и тот же набор переменных.
Конечная цель решения системы линейных уравнений – найти значения неизвестных переменных. Вот пример системы линейных уравнений с двумя неизвестными переменными x и y:
Чтобы решить указанную выше систему линейных уравнений, нам нужно найти значения переменных x и y. Есть несколько способов решить такую систему, например, исключение переменных, правило Крамера, метод сокращения строк и матричное решение.
В матричном решении решаемая система линейных уравнений представлена в виде матрицы AX = B. Например, мы можем представить уравнение 1 в виде матрицы следующим образом:
Чтобы найти значение переменных x и y в уравнении 1, нам нужно найти значения в матрице X. Для этого мы можем взять скалярное произведение обратной матрицы A и матрицы B, как показано ниже:
Если вы не знакомы с тем, как найти обратную матрицу, взгляните на эту ссылку, чтобы понять, как вручную найти обратную матрицу.
Видео:Python для самых маленьких. Линейные уравнения. Решение задачСкачать
Решение
Из предыдущего раздела мы знаем, что для решения системы линейных уравнений нам необходимо выполнить две операции: обращение и скалярное произведение матрицы. Библиотека Numpy от Python поддерживает обе операции. Если вы еще не установили библиотеку Numpy, вы можете сделать это с помощью следующей команды pip:
Давайте теперь посмотрим, как решить систему линейных уравнений с помощью библиотеки Numpy.
Видео:СЛАУ в PythonСкачать
Использование методов inv() и dot()
Сначала мы найдем матрицу, обратную матрице A, которую мы определили в предыдущем разделе.
Давайте сначала создадим матрицу A на Python. Для создания матрицы можно использовать метод массива модуля Numpy. Матрицу можно рассматривать как список списков, где каждый список представляет собой строку.
В следующем скрипте мы создаем список с именем m_list, который дополнительно содержит два списка: [4,3] и [-5,9]. Эти списки представляют собой две строки в матрице A. Чтобы создать матрицу A с помощью Numpy, m_list передается методу массива, как показано ниже:
Чтобы найти обратную матрицу, которая передается методу linalg.inv() модуля Numpy:
Следующим шагом является нахождение скалярного произведения между матрицей, обратной матрицей A и B. Важно отметить, что матричное скалярное произведение возможно только между матрицами, если их внутренние размеры равны, т.е. количество столбцов левой матрицы должно соответствовать количеству строк в правой матрице.
Чтобы найти точечный продукт с помощью библиотеки Numpy, используется функция linalg.dot(). Следующий скрипт находит скалярное произведение между обратной матрицей A и B, которая является решением уравнения 1.
Здесь 2 и 4 – соответствующие значения для неизвестных x и y в уравнении 1. Чтобы убедиться, что если вы подставите 2 вместо неизвестного x и 4 вместо неизвестного y в уравнении 4x + 3y, вы увидите что результат будет 20.
Давайте теперь решим систему трех линейных уравнений, как показано ниже:
Вышеупомянутое уравнение можно решить с помощью библиотеки Numpy следующим образом:
В приведенном выше скрипте методы linalg.inv() и linalg.dot() связаны вместе. Переменная X содержит решение уравнения 2 и печатается следующим образом:
Значения неизвестных x, y и z равны 5, 3 и -2 соответственно. Вы можете подставить эти значения в уравнение 2 и проверить их правильность.
Видео:Решение n го нелинейных алгебраических уравнений в PythonСкачать
resolve()
В двух предыдущих примерах мы использовали методы linalg.inv() и linalg.dot() для поиска решения системы уравнений. Однако библиотека Numpy содержит метод linalg.solve(), который можно использовать для непосредственного поиска решения системы линейных уравнений:
Вы можете видеть, что результат такой же, как и раньше.
Видео:Решение 1 го нелинейного алгебраического уравнения в PythonСкачать
Пример
Давайте посмотрим, как систему линейных уравнений можно использовать для решения реальных задач.
Предположим, продавец фруктов продал 20 манго и 10 апельсинов за один день на общую сумму 350 долларов. На следующий день он продал 17 манго и 22 апельсина за 500 долларов. Если цены на фрукты оставались неизменными в оба дня, какова была цена одного манго и одного апельсина?
Эту задачу легко решить с помощью системы двух линейных уравнений.
Допустим, цена одного манго равна x, а цена апельсина – y. Вышеупомянутую проблему можно преобразовать так:
Решение для указанной выше системы уравнений показано здесь:
И вот результат:
Выходные данные показывают, что цена одного манго составляет 10 долларов, а цена одного апельсина – 15 долларов.
Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать
Библиотека NumPy в Python матрицы в питон
В этом уроке мы разберём действия с матрицами в модуле NumPy в Python Питон.
NumPy это модуль для Python, предназначенный для научных расчётов. NumPy позволяет использовать в Питоне математические функции, такие как работа с матрицами, векторами, все тригонометрические функции, возведение в экспоненту и действия с логарифмами. NumPy в Питон позволяет работать с матрицами гораздо быстрее, чем стандартные алгоритмы работы с матрицами.
Для более удобного использования NumPy импортируем этот модуль, используя постфикс as np .
import numpy as np
as np означает, что когда мы вызываем процедуры и функции из NumPy в Python, перед названиями этих процедур и функций вместо numpy мы будем писать np . Это позволит не только удобнее писать код, но и быстрее читать его. Например, вместо numpy.array([1, 2]) мы будем писать np.array([1, 2]) .
Матрицы в NumPy в Питоне задаются с помощью команды np.array([]) . В круглых скобках находится сам массив, в квадратных скобках находятся элементы массива.
Пример. Задание одномерного массива в python
import numpy as np
arr = np.array([1, 2])
Матрица в Python задаётся с помощью двумерного массива. Матрица это таблица состоящая из строк и столбцов. Двумерный массив задаётся с помощью той же команды, что и одномерный массив.
Пример. Задание матрицы двумерного массива и вывод различных его элементов на экран в python
import numpy as np
matrix = np.array([ [‘first’, ‘second’], [‘third’, ‘fourth’] ])
print(matrix[0, 0])
print(matrix[1, 1])
print(matrix[0, 0]) выведет первый элемент из первого массива внутри – first . print(matrix[1, 1]) выведет второй элемент внутреннего второго массива – fourth .
NumPy в Питоне может выполнять различные действия с матрицами, такие как сложение, умножение, возведение матрицы в степень и вычисление определителя матрицы.
Для сложения матриц в Питоне не используются никакие команды, матрицы в Python складываются так же, как и числа.
Пример. Сложение матриц.
import numpy as np
matrix1 = np.array([ [3, 5, 1], [8, 7, 2] ])
matrix2 = np.array([ [5, 3, 4], [1, 10, 9] ])
total = matrix1 + matrix2
print(total)
NumPy в Питоне позволяет складывать только матрицы одинаковых размеров.
Матрицы складываются с помощью сложения всех элементов массива с одинаковыми индексами. Матрица с суммами этих элементов является результатом сложения.
Умножение матрицы на вектор в Python выполняется с помощью команды A.dot(B) , где A и B это матрицы. Для выполнения умножения в Питоне нужно, чтобы количество столбцов матрицы A было равно количеству строк матрицы B .
Пример. Умножение матрицы на вектор в python
import numpy as np
a = np.array([ [2, 1], [2, 2], [4, 3] ])
b = np.array([ [1], [3] ])
total = a.dot(b)
print(total)
Умножение вектора на матрицу определено только тогда, когда число столбцов матрицы равно числу строк вектора. В этом примере была рассмотрена матрица размером 3×2 и вектор-строка размером 2×1 . Число столбцов матрицы ( 2 ) равно числу строк вектора ( 2 ). В результате умножения матрицы на вектор получается вектор, у кторого число строк равно числу строк матрицы
Определитель матрицы в Python вычисляется с помощью с помощью команды
np.linalg.det(A) , где A это квадратная матрица. У квадратной матрицы количество строк равно количеству столбцов.
Пример. Вычисление определителя матрицы в python
import numpy as np
a = np.array([ [2, 1], [4, 3] ])
print(np.linalg.det(a))
Определитель может быть вычислен только для матриц с одинаковым количеством строк и столбцов – квадратных матриц. В этом примере с матрицей размерами 2×2 определитель матрицы равен разнице произведений диагоналей ( 2 * 3 – 1 * 4 = 2.0 )
Видео:Решение систем линейных матричных уравнений через формулы Крамера в PythonСкачать
Умножение матриц в Python
Умножение матрицы на матрицу в Питоне выполняется с помощью команды A.dot(B) , где A и B это матрицы. Умножение определено, если количество столбцов A равно количеству строк B .
Пример. Умножение матрицы на матрицу в python
import numpy as np
a = np.array([ [2, 1, 3], [2, 2, 4] ])
b = np.array([ [1, 1], [3, 2], [2, 4] ])
total = a.dot(b)
print(total)
Чтобы умножение было определено, количество столбцов первой матрицы должно быть равно количеству строк второй матрицы. В этом примере умножаются матрицы размерами 2×3 и 3×2 , результатом умножения является матрица размером 2×2 .
Видео:Использование библиотеки SymPy для работы с системами уравнений в PythonСкачать
Возведение матрицы в степень в python
Возведение матрицы в степень в Питоне выполняется с помощью команды np.linalg.matrix_power(A, P) , где A – квадратная матрица, P – степень, в которую возводится матрица, допускаются только целочисленные степени. Возводить в степень можно только квадратные матрицы, так как количество строк должно быть равно количеству столбцов матрицы.
Пример. Возведение матрицы в степень в python
import numpy as np
a = np.array([[1, 3], [2, 1]])
result = np.linalg.matrix_power(a, 2)
print(result)
Видео:#5. Математические функции и работа с модулем math | Python для начинающихСкачать
Решение системы линейных уравнений в Python
Для решения системы двух линейных уравнений нужно задать два массива. Один массив будет содержать коэффициенты для x и y в каждом уравнении, второй массив будет содержать правые части уравнений. Для решения линейных уравнений используется команда в Python np.linalg.solve(матрица левой части, вектор правой части)
Решение системы линейных уравнений в python
import numpy as np
a = np.array([[1, 2], [3, 2]])
b = np.array([5, 6])
result = np.linalg.solve(a, b)
print(result)
Эта программа на Python решает два линейных уравнения.
1x + 2y = 5
3x + 2y = 6
Видео:Программа, определяющая корни квадратного уравнения. Язык программирования Python.Скачать
Вычисление экспоненты числа или матрицы в Python
Для вычисления экспоненты числа или массива в Питоне используется команда np.exp(A) , где A – число или массив. Если возводится в экспоненту массив, то все элементы массива будут возведены в экспоненту.
Пример. Возведение вектора в экспоненту.
import numpy as np
a = np.array([2, 1, 5])
print(np.exp(a))
В этом примере результатом будет вектор с элементами [e^2,e^1,e^5] , где e это основание натурального логарифма.
Вернуться к содержанию Следующая тема Графики функций и поверхностей в Python
Полезно почитать по теме матрицы и массивы в python:
Матрицы в python
Массивы в python
Видео:СМОЖЕШЬ РЕШИТЬ ЭТУ ЗАДАЧУ В ОДНУ СТРОКУ НА PYTHON?Скачать
Библиотека Sympy: символьные вычисления в Python
Что такое SymPy ? Это библиотека символьной математики языка Python. Она является реальной альтернативой таким математическим пакетам как Mathematica или Maple и обладает очень простым и легко расширяемым кодом. SymPy написана исключительно на языке Python и не требует никаких сторонних библиотек.
Документацию и исходный код этой библиотеки можно найти на ее официальной странице.
Видео:Как решить линейное и квадратное уравнение в Python?Скачать
Первые шаги с SymPy
Используем SymPy как обычный калькулятор
В библиотеке SymPy есть три встроенных численных типа данных: Real , Rational и Integer . С Real и Integer все понятно, а класс Rational представляет рациональное число как пару чисел: числитель и знаменатель рациональной дроби. Таким образом, Rational(1, 2) представляет собой 1/2 , а, например, Rational(5, 2) — соответственно 5/2 .
Библиотека SymPy использует библиотеку mpmath , что позволяет производить вычисления с произвольной точностью. Таким образом, ряд констант (например, пи, e), которые в данной библиотеке рассматриваются как символы, могут быть вычислены с любой точностью.
Как можно заметить, функция evalf() дает на выходе число с плавающей точкой.
В SymPy есть также класс, представляющий такое понятие в математике, как бесконечность. Он обозначается следующим образом: oo .
Символы
В отличие от ряда других систем компьютерной алгебры, в SymPy можно в явном виде задавать символьные переменные. Это происходит следующим образом:
После их задания, с ними можно производить различные манипуляции.
С символами можно производить преобразования с использованием некоторых операторов языка Python. А именно, арифметических ( + , -` , «* , ** ) и логических ( & , | ,
Библиотека SymPy позволяет задавать форму вывода результатов на экран. Обычно мы используем формат такого вида:
Видео:Python - численное решение дифференциального уравнения 1го порядка и вывод графикаСкачать
Алгебраические преобразования
SymPy способна на сложные алгебраические преобразования. Здесь мы рассмотрим наиболее востребованные из них, а именно раскрытие скобок и упрощение выражений.
Раскрытие скобок
Чтобы раскрыть скобки в алгебраических выражениях, используйте следующий синтаксис:
При помощи ключевого слова можно добавить поддержку работы с комплексными переменными, а также раскрытие скобок в тригонометрических функциях.
Упрощение выражений
Если вы хотите привести выражение к более простому виду (возможно, сократить какие-то члены), то используйте функцию simplify .
Также надо сказать, что для определенных видов математических функций существуют альтернативные, более конкретные функции для упрощения выражений. Так, для упрощения степенных функций есть функция powsimp , для тригонометрических — trigsimp , а для логарифмических — logcombine , radsimp .
Видео:FreeDy010 Решение Системы нелинейных уравнений scipy sympyСкачать
Вычисления
Вычисления пределов
Для вычисления пределов в SymPy предусмотрен очень простой синтаксис, а именно limit(function, variable, point) . Например, если вы хотите вычислить предел функции f(x) , где x -> 0 , то надо написать limit(f(x), x, 0) .
Также можно вычислять пределы, которые стремятся к бесконечности.
Дифференцирование
Для дифференцирования выражений в SymPy есть функция diff(func, var) . Ниже даны примеры ее работы.
Проверим результат последней функции при помощи определения производной через предел.
tan 2 (𝑥)+1 Результат тот же.
Также при помощи этой же функции могут быть вычислены производные более высоких порядков. Синтаксис функции будет следующим: diff(func, var, n) . Ниже приведено несколько примеров.
Разложение в ряд
Для разложения выражения в ряд Тейлора используется следующий синтаксис: series(expr, var) .
Интегрирование
В SymPy реализована поддержка определенных и неопределенных интегралов при помощи функции integrate() . Интегрировать можно элементарные, трансцендентные и специальные функции. Интегрирование осуществляется с помощью расширенного алгоритма Риша-Нормана. Также используются различные эвристики и шаблоны. Вот примеры интегрирования элементарных функций:
Также несложно посчитать интеграл и от специальных функций. Возьмем, например, функцию Гаусса:
Результат вычисления можете посмотреть сами. Вот примеры вычисления определенных интегралов.
Также можно вычислять определенные интегралы с бесконечными пределами интегрирования (несобственные интегралы).
Решение уравнений
При помощи SymPy можно решать алгебраические уравнения с одной или несколькими переменными. Для этого используется функция solveset() .
Как можно заметить, первое выражение функции solveset() приравнивается к 0 и решается относительно х . Также возможно решать некоторые уравнения с трансцендентными функциями.
Системы линейных уравнений
SymPy способна решать широкий класс полиномиальных уравнений. Также при помощи данной библиотеки можно решать и системы уравнений. При этом переменные, относительно которых должна быть разрешена система, передаются в виде кортежа во втором аргументе функции solve() , которая используется для таких задач.
Факторизация
Другим мощным методом исследования полиномиальных уравнений является факторизация многочленов (то есть представление многочлена в виде произведения многочленов меньших степеней). Для этого в SymPy предусмотрена функция factor() , которая способна производить факторизацию очень широкого класса полиномов.
Булевы уравнения
Также в SymPy реализована возможность решения булевых уравнений, что по сути означает проверку булевого выражения на истинность. Для этого используется функция satisfiable() .
Данный результат говорит нам о том, что выражение (x & y) будет истинным тогда и только тогда, когда x и y истинны. Если выражение не может быть истинным ни при каких значениях переменных, то функция вернет результат False .
Видео:Математика без Ху!ни. Метод Гаусса.Скачать
Линейная алгебра
Матрицы
Матрицы в SymPy создаются как экземпляры класса Matrix :
В отличие от NumPy , мы можем использовать в матрицах символьные переменные:
И производить с ними разные манипуляции:
Дифференциальные уравнения
При помощи библиотеки SymPy можно решать некоторые обыкновенные дифференциальные уравнения. Для этого используется функция dsolve() . Для начала нам надо задать неопределенную функцию. Это можно сделать, передав параметр cls=Function в функцию symbols() .
Теперь f и g заданы как неопределенные функции. мы можем в этом убедиться, просто вызвав f(x) .
Теперь решим следующее дифференциальное уравнение:
Чтобы улучшить решаемость и помочь этой функции в поиске решения, можно передавать в нее определенные ключевые аргументы. Например, если мы видим, что это уравнение с разделяемыми переменными, то мы можем передать в функцию аргумент hint=’separable’ .
Бесплатные кодинг марафоны с ревью кода
Наш телеграм канал проводит бесплатные марафоны по написанию кода на Python с ревью кода от преподавателя
📺 Видео
Разнёс чужой код за 15 секунд. Часть 1 #код #айти #программирование #рефакторингСкачать
Решение системы ОДУ в PythonСкачать
Python. Команды print() input()Скачать
Математика это не ИсламСкачать