Программа для решения системы линейных уравнений python

Решение систем линейных уравнений с помощью Numpy в Python

Библиотеку Numpy можно использовать для выполнения множества математических и научных операций, таких как скалярное произведение, поиск значений синуса и косинуса, преобразование Фурье и т.д.

Видео:Решения системы линейных уравнений на Python (Sympy).Скачать

Решения системы линейных уравнений на Python (Sympy).

Что такое система линейных уравнений?

Википедия определяет систему линейных уравнений как:

В математике система линейных уравнений (или линейная система) – это набор двух или более линейных уравнений, включающих один и тот же набор переменных.

Конечная цель решения системы линейных уравнений – найти значения неизвестных переменных. Вот пример системы линейных уравнений с двумя неизвестными переменными x и y:

Чтобы решить указанную выше систему линейных уравнений, нам нужно найти значения переменных x и y. Есть несколько способов решить такую систему, например, исключение переменных, правило Крамера, метод сокращения строк и матричное решение.

В матричном решении решаемая система линейных уравнений представлена в виде матрицы AX = B. Например, мы можем представить уравнение 1 в виде матрицы следующим образом:

Чтобы найти значение переменных x и y в уравнении 1, нам нужно найти значения в матрице X. Для этого мы можем взять скалярное произведение обратной матрицы A и матрицы B, как показано ниже:

Если вы не знакомы с тем, как найти обратную матрицу, взгляните на эту ссылку, чтобы понять, как вручную найти обратную матрицу.

Видео:Python для самых маленьких. Линейные уравнения. Решение задачСкачать

Python для самых маленьких. Линейные уравнения. Решение задач

Решение

Из предыдущего раздела мы знаем, что для решения системы линейных уравнений нам необходимо выполнить две операции: обращение и скалярное произведение матрицы. Библиотека Numpy от Python поддерживает обе операции. Если вы еще не установили библиотеку Numpy, вы можете сделать это с помощью следующей команды pip:

Давайте теперь посмотрим, как решить систему линейных уравнений с помощью библиотеки Numpy.

Видео:СЛАУ в PythonСкачать

СЛАУ в Python

Использование методов inv() и dot()

Сначала мы найдем матрицу, обратную матрице A, которую мы определили в предыдущем разделе.

Давайте сначала создадим матрицу A на Python. Для создания матрицы можно использовать метод массива модуля Numpy. Матрицу можно рассматривать как список списков, где каждый список представляет собой строку.

В следующем скрипте мы создаем список с именем m_list, который дополнительно содержит два списка: [4,3] и [-5,9]. Эти списки представляют собой две строки в матрице A. Чтобы создать матрицу A с помощью Numpy, m_list передается методу массива, как показано ниже:

Чтобы найти обратную матрицу, которая передается методу linalg.inv() модуля Numpy:

Следующим шагом является нахождение скалярного произведения между матрицей, обратной матрицей A и B. Важно отметить, что матричное скалярное произведение возможно только между матрицами, если их внутренние размеры равны, т.е. количество столбцов левой матрицы должно соответствовать количеству строк в правой матрице.

Чтобы найти точечный продукт с помощью библиотеки Numpy, используется функция linalg.dot(). Следующий скрипт находит скалярное произведение между обратной матрицей A и B, которая является решением уравнения 1.

Здесь 2 и 4 – соответствующие значения для неизвестных x и y в уравнении 1. Чтобы убедиться, что если вы подставите 2 вместо неизвестного x и 4 вместо неизвестного y в уравнении 4x + 3y, вы увидите что результат будет 20.

Давайте теперь решим систему трех линейных уравнений, как показано ниже:

Вышеупомянутое уравнение можно решить с помощью библиотеки Numpy следующим образом:

В приведенном выше скрипте методы linalg.inv() и linalg.dot() связаны вместе. Переменная X содержит решение уравнения 2 и печатается следующим образом:

Значения неизвестных x, y и z равны 5, 3 и -2 соответственно. Вы можете подставить эти значения в уравнение 2 и проверить их правильность.

Видео:Решение n го нелинейных алгебраических уравнений в PythonСкачать

Решение n го нелинейных алгебраических  уравнений в Python

resolve()

В двух предыдущих примерах мы использовали методы linalg.inv() и linalg.dot() для поиска решения системы уравнений. Однако библиотека Numpy содержит метод linalg.solve(), который можно использовать для непосредственного поиска решения системы линейных уравнений:

Вы можете видеть, что результат такой же, как и раньше.

Видео:Решение 1 го нелинейного алгебраического уравнения в PythonСкачать

Решение 1 го нелинейного алгебраического уравнения в Python

Пример

Давайте посмотрим, как систему линейных уравнений можно использовать для решения реальных задач.

Предположим, продавец фруктов продал 20 манго и 10 апельсинов за один день на общую сумму 350 долларов. На следующий день он продал 17 манго и 22 апельсина за 500 долларов. Если цены на фрукты оставались неизменными в оба дня, какова была цена одного манго и одного апельсина?

Эту задачу легко решить с помощью системы двух линейных уравнений.

Допустим, цена одного манго равна x, а цена апельсина – y. Вышеупомянутую проблему можно преобразовать так:

Решение для указанной выше системы уравнений показано здесь:

И вот результат:

Выходные данные показывают, что цена одного манго составляет 10 долларов, а цена одного апельсина – 15 долларов.

Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Библиотека NumPy в Python матрицы в питон

В этом уроке мы разберём действия с матрицами в модуле NumPy в Python Питон.
NumPy это модуль для Python, предназначенный для научных расчётов. NumPy позволяет использовать в Питоне математические функции, такие как работа с матрицами, векторами, все тригонометрические функции, возведение в экспоненту и действия с логарифмами. NumPy в Питон позволяет работать с матрицами гораздо быстрее, чем стандартные алгоритмы работы с матрицами.
Для более удобного использования NumPy импортируем этот модуль, используя постфикс as np .
import numpy as np
as np означает, что когда мы вызываем процедуры и функции из NumPy в Python, перед названиями этих процедур и функций вместо numpy мы будем писать np . Это позволит не только удобнее писать код, но и быстрее читать его. Например, вместо numpy.array([1, 2]) мы будем писать np.array([1, 2]) .

Матрицы в NumPy в Питоне задаются с помощью команды np.array([]) . В круглых скобках находится сам массив, в квадратных скобках находятся элементы массива.
Пример. Задание одномерного массива в python
import numpy as np
arr = np.array([1, 2])
Матрица в Python задаётся с помощью двумерного массива. Матрица это таблица состоящая из строк и столбцов. Двумерный массив задаётся с помощью той же команды, что и одномерный массив.
Пример. Задание матрицы двумерного массива и вывод различных его элементов на экран в python
import numpy as np
matrix = np.array([ [‘first’, ‘second’], [‘third’, ‘fourth’] ])
print(matrix[0, 0])
print(matrix[1, 1])
print(matrix[0, 0]) выведет первый элемент из первого массива внутри – first . print(matrix[1, 1]) выведет второй элемент внутреннего второго массива – fourth .
NumPy в Питоне может выполнять различные действия с матрицами, такие как сложение, умножение, возведение матрицы в степень и вычисление определителя матрицы.

Для сложения матриц в Питоне не используются никакие команды, матрицы в Python складываются так же, как и числа.
Пример. Сложение матриц.
import numpy as np
matrix1 = np.array([ [3, 5, 1], [8, 7, 2] ])
matrix2 = np.array([ [5, 3, 4], [1, 10, 9] ])
total = matrix1 + matrix2
print(total)
NumPy в Питоне позволяет складывать только матрицы одинаковых размеров.
Матрицы складываются с помощью сложения всех элементов массива с одинаковыми индексами. Матрица с суммами этих элементов является результатом сложения.

Умножение матрицы на вектор в Python выполняется с помощью команды A.dot(B) , где A и B это матрицы. Для выполнения умножения в Питоне нужно, чтобы количество столбцов матрицы A было равно количеству строк матрицы B .
Пример. Умножение матрицы на вектор в python
import numpy as np
a = np.array([ [2, 1], [2, 2], [4, 3] ])
b = np.array([ [1], [3] ])
total = a.dot(b)
print(total)
Умножение вектора на матрицу определено только тогда, когда число столбцов матрицы равно числу строк вектора. В этом примере была рассмотрена матрица размером 3×2 и вектор-строка размером 2×1 . Число столбцов матрицы ( 2 ) равно числу строк вектора ( 2 ). В результате умножения матрицы на вектор получается вектор, у кторого число строк равно числу строк матрицы

Определитель матрицы в Python вычисляется с помощью с помощью команды

np.linalg.det(A) , где A это квадратная матрица. У квадратной матрицы количество строк равно количеству столбцов.
Пример. Вычисление определителя матрицы в python
import numpy as np
a = np.array([ [2, 1], [4, 3] ])
print(np.linalg.det(a))
Определитель может быть вычислен только для матриц с одинаковым количеством строк и столбцов – квадратных матриц. В этом примере с матрицей размерами 2×2 определитель матрицы равен разнице произведений диагоналей ( 2 * 3 – 1 * 4 = 2.0 )

Видео:Решение систем линейных матричных уравнений через формулы Крамера в PythonСкачать

Решение систем линейных матричных уравнений через формулы Крамера в Python

Умножение матриц в Python

Умножение матрицы на матрицу в Питоне выполняется с помощью команды A.dot(B) , где A и B это матрицы. Умножение определено, если количество столбцов A равно количеству строк B .
Пример. Умножение матрицы на матрицу в python
import numpy as np
a = np.array([ [2, 1, 3], [2, 2, 4] ])
b = np.array([ [1, 1], [3, 2], [2, 4] ])
total = a.dot(b)
print(total)
Чтобы умножение было определено, количество столбцов первой матрицы должно быть равно количеству строк второй матрицы. В этом примере умножаются матрицы размерами 2×3 и 3×2 , результатом умножения является матрица размером 2×2 .

Видео:Использование библиотеки SymPy для работы с системами уравнений в PythonСкачать

Использование библиотеки SymPy для работы с системами уравнений в Python

Возведение матрицы в степень в python

Возведение матрицы в степень в Питоне выполняется с помощью команды np.linalg.matrix_power(A, P) , где A – квадратная матрица, P – степень, в которую возводится матрица, допускаются только целочисленные степени. Возводить в степень можно только квадратные матрицы, так как количество строк должно быть равно количеству столбцов матрицы.
Пример. Возведение матрицы в степень в python
import numpy as np
a = np.array([[1, 3], [2, 1]])
result = np.linalg.matrix_power(a, 2)
print(result)

Видео:#5. Математические функции и работа с модулем math | Python для начинающихСкачать

#5. Математические функции и работа с модулем math | Python для начинающих

Решение системы линейных уравнений в Python

Для решения системы двух линейных уравнений нужно задать два массива. Один массив будет содержать коэффициенты для x и y в каждом уравнении, второй массив будет содержать правые части уравнений. Для решения линейных уравнений используется команда в Python np.linalg.solve(матрица левой части, вектор правой части)
Решение системы линейных уравнений в python
import numpy as np
a = np.array([[1, 2], [3, 2]])
b = np.array([5, 6])
result = np.linalg.solve(a, b)
print(result)
Эта программа на Python решает два линейных уравнения.
1x + 2y = 5
3x + 2y = 6

Видео:Программа, определяющая корни квадратного уравнения. Язык программирования Python.Скачать

Программа, определяющая корни квадратного уравнения. Язык программирования Python.

Вычисление экспоненты числа или матрицы в Python

Для вычисления экспоненты числа или массива в Питоне используется команда np.exp(A) , где A – число или массив. Если возводится в экспоненту массив, то все элементы массива будут возведены в экспоненту.
Пример. Возведение вектора в экспоненту.
import numpy as np
a = np.array([2, 1, 5])
print(np.exp(a))
В этом примере результатом будет вектор с элементами [e^2,e^1,e^5] , где e это основание натурального логарифма.

Вернуться к содержаниюПрограмма для решения системы линейных уравнений python Следующая тема Графики функций и поверхностей в PythonПрограмма для решения системы линейных уравнений python

Полезно почитать по теме матрицы и массивы в python:
Матрицы в python
Массивы в python

Видео:СМОЖЕШЬ РЕШИТЬ ЭТУ ЗАДАЧУ В ОДНУ СТРОКУ НА PYTHON?Скачать

СМОЖЕШЬ РЕШИТЬ ЭТУ ЗАДАЧУ В ОДНУ СТРОКУ НА PYTHON?

Библиотека Sympy: символьные вычисления в Python

Что такое SymPy ? Это библиотека символьной математики языка Python. Она является реальной альтернативой таким математическим пакетам как Mathematica или Maple и обладает очень простым и легко расширяемым кодом. SymPy написана исключительно на языке Python и не требует никаких сторонних библиотек.

Документацию и исходный код этой библиотеки можно найти на ее официальной странице.

Видео:Как решить линейное и квадратное уравнение в Python?Скачать

Как решить линейное и квадратное уравнение в Python?

Первые шаги с SymPy

Используем SymPy как обычный калькулятор

В библиотеке SymPy есть три встроенных численных типа данных: Real , Rational и Integer . С Real и Integer все понятно, а класс Rational представляет рациональное число как пару чисел: числитель и знаменатель рациональной дроби. Таким образом, Rational(1, 2) представляет собой 1/2 , а, например, Rational(5, 2) — соответственно 5/2 .

Библиотека SymPy использует библиотеку mpmath , что позволяет производить вычисления с произвольной точностью. Таким образом, ряд констант (например, пи, e), которые в данной библиотеке рассматриваются как символы, могут быть вычислены с любой точностью.

Как можно заметить, функция evalf() дает на выходе число с плавающей точкой.

В SymPy есть также класс, представляющий такое понятие в математике, как бесконечность. Он обозначается следующим образом: oo .

Символы

В отличие от ряда других систем компьютерной алгебры, в SymPy можно в явном виде задавать символьные переменные. Это происходит следующим образом:

После их задания, с ними можно производить различные манипуляции.

С символами можно производить преобразования с использованием некоторых операторов языка Python. А именно, арифметических ( + , -` , «* , ** ) и логических ( & , | ,

Библиотека SymPy позволяет задавать форму вывода результатов на экран. Обычно мы используем формат такого вида:

Видео:Python - численное решение дифференциального уравнения 1го порядка и вывод графикаСкачать

Python - численное решение дифференциального уравнения 1го порядка и вывод графика

Алгебраические преобразования

SymPy способна на сложные алгебраические преобразования. Здесь мы рассмотрим наиболее востребованные из них, а именно раскрытие скобок и упрощение выражений.

Раскрытие скобок

Чтобы раскрыть скобки в алгебраических выражениях, используйте следующий синтаксис:

При помощи ключевого слова можно добавить поддержку работы с комплексными переменными, а также раскрытие скобок в тригонометрических функциях.

Упрощение выражений

Если вы хотите привести выражение к более простому виду (возможно, сократить какие-то члены), то используйте функцию simplify .

Также надо сказать, что для определенных видов математических функций существуют альтернативные, более конкретные функции для упрощения выражений. Так, для упрощения степенных функций есть функция powsimp , для тригонометрических — trigsimp , а для логарифмических — logcombine , radsimp .

Видео:FreeDy010 Решение Системы нелинейных уравнений scipy sympyСкачать

FreeDy010 Решение Системы нелинейных уравнений scipy sympy

Вычисления

Вычисления пределов

Для вычисления пределов в SymPy предусмотрен очень простой синтаксис, а именно limit(function, variable, point) . Например, если вы хотите вычислить предел функции f(x) , где x -> 0 , то надо написать limit(f(x), x, 0) .

Также можно вычислять пределы, которые стремятся к бесконечности.

Дифференцирование

Для дифференцирования выражений в SymPy есть функция diff(func, var) . Ниже даны примеры ее работы.

Проверим результат последней функции при помощи определения производной через предел.

tan 2 (𝑥)+1 Результат тот же.

Также при помощи этой же функции могут быть вычислены производные более высоких порядков. Синтаксис функции будет следующим: diff(func, var, n) . Ниже приведено несколько примеров.

Разложение в ряд

Для разложения выражения в ряд Тейлора используется следующий синтаксис: series(expr, var) .

Интегрирование

В SymPy реализована поддержка определенных и неопределенных интегралов при помощи функции integrate() . Интегрировать можно элементарные, трансцендентные и специальные функции. Интегрирование осуществляется с помощью расширенного алгоритма Риша-Нормана. Также используются различные эвристики и шаблоны. Вот примеры интегрирования элементарных функций:

Также несложно посчитать интеграл и от специальных функций. Возьмем, например, функцию Гаусса:

Результат вычисления можете посмотреть сами. Вот примеры вычисления определенных интегралов.

Также можно вычислять определенные интегралы с бесконечными пределами интегрирования (несобственные интегралы).

Решение уравнений

При помощи SymPy можно решать алгебраические уравнения с одной или несколькими переменными. Для этого используется функция solveset() .

Как можно заметить, первое выражение функции solveset() приравнивается к 0 и решается относительно х . Также возможно решать некоторые уравнения с трансцендентными функциями.

Системы линейных уравнений

SymPy способна решать широкий класс полиномиальных уравнений. Также при помощи данной библиотеки можно решать и системы уравнений. При этом переменные, относительно которых должна быть разрешена система, передаются в виде кортежа во втором аргументе функции solve() , которая используется для таких задач.

Факторизация

Другим мощным методом исследования полиномиальных уравнений является факторизация многочленов (то есть представление многочлена в виде произведения многочленов меньших степеней). Для этого в SymPy предусмотрена функция factor() , которая способна производить факторизацию очень широкого класса полиномов.

Булевы уравнения

Также в SymPy реализована возможность решения булевых уравнений, что по сути означает проверку булевого выражения на истинность. Для этого используется функция satisfiable() .

Данный результат говорит нам о том, что выражение (x & y) будет истинным тогда и только тогда, когда x и y истинны. Если выражение не может быть истинным ни при каких значениях переменных, то функция вернет результат False .

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Линейная алгебра

Матрицы

Матрицы в SymPy создаются как экземпляры класса Matrix :

В отличие от NumPy , мы можем использовать в матрицах символьные переменные:

И производить с ними разные манипуляции:

Дифференциальные уравнения

При помощи библиотеки SymPy можно решать некоторые обыкновенные дифференциальные уравнения. Для этого используется функция dsolve() . Для начала нам надо задать неопределенную функцию. Это можно сделать, передав параметр cls=Function в функцию symbols() .

Теперь f и g заданы как неопределенные функции. мы можем в этом убедиться, просто вызвав f(x) .

Теперь решим следующее дифференциальное уравнение:

Чтобы улучшить решаемость и помочь этой функции в поиске решения, можно передавать в нее определенные ключевые аргументы. Например, если мы видим, что это уравнение с разделяемыми переменными, то мы можем передать в функцию аргумент hint=’separable’ .

Бесплатные кодинг марафоны с ревью кода

Наш телеграм канал проводит бесплатные марафоны по написанию кода на Python с ревью кода от преподавателя

📺 Видео

Разнёс чужой код за 15 секунд. Часть 1 #код #айти #программирование #рефакторингСкачать

Разнёс чужой код за 15 секунд. Часть 1 #код #айти #программирование #рефакторинг

Решение системы ОДУ в PythonСкачать

Решение  системы ОДУ в Python

Python. Команды print() input()Скачать

Python. Команды print() input()

Математика это не ИсламСкачать

Математика это не Ислам
Поделиться или сохранить к себе: