Видео:Как найти проекцию вектора скорости и ускорения. Выполнялка 112Скачать

Ваш ответ
Видео:Урок 9. Проекции вектора на координатные осиСкачать

решение вопроса
Видео:Построение проекции вектора на осьСкачать

Похожие вопросы
- Все категории
- экономические 43,299
- гуманитарные 33,630
- юридические 17,900
- школьный раздел 607,256
- разное 16,836
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Видео:Физика - перемещение, скорость и ускорение. Графики движения.Скачать

Как найти проекцию скорости на ось х
07.06.2019
5 июня Что порешать по физике
30 мая Решения вчерашних ЕГЭ по математике
3.1. Равнопеременное движение по прямой.
3.1.1. Равнопеременное движение по прямой — движение по прямой с постоянным по модулю и направлению ускорением:
3.1.2. Ускорение () — физическая векторная величина, показывающая, на сколько изменится скорость за 1 с.
В векторном виде:
где — начальная скорость тела,
— скорость тела в момент времени t.
В проекции на ось Ox:
где — проекция начальной скорости на ось Ox,
— проекция скорости тела на ось Ox в момент времени t.
Знаки проекций зависят от направления векторов и оси Ox.
3.1.3. График проекции ускорения от времени.
При равнопеременном движении ускорение постоянно, поэтому будет представлять собой прямые линии, параллельные оси времени (см. рис.):
Значение ускорения: чем дальше от оси времени лежит прямая, тем больше модуль ускорения
3.1.4. Скорость при равнопеременном движении.
В векторном виде:
В проекции на ось Ox:
Для равноускоренного движения:
Для равнозамедленного движения:
3.1.5. График проекции скорости в зависимости от времени.
График проекции скорости от времени — прямая линия.
Направление движения: если график (или часть его) находятся над осью времени, то тело движется в положительном направлении оси Ox.
Значение ускорения: чем больше тангенс угла наклона (чем круче поднимается вверх или опускает вниз), тем больше модуль ускорения; где
— изменение скорости за время
Пересечение с осью времени: если график пересекает ось времени, то до точки пересечения тело тормозило (равнозамедленное движение), а после точки пересечения начало разгоняться в противоположную сторону (равноускоренное движение).
3.1.6. Геометрический смысл площади под графиком в осях
Площадь под графиком, когда на оси Oy отложена скорость, а на оси Ox — время — это путь, пройденный телом.
На рис. 3.5 нарисован случай равноускоренного движения. Путь в данном случае будет равен площади трапеции:
(3.9)
3.1.7. Формулы для расчета пути
Все формулы, представленные в таблице, работают только при сохранении направления движения, то есть до пересечения прямой с осью времени на графике зависимости проекции скорости от времени.
Если же пересечение произошло, то движение проще разбить на два этапа:
до пересечения (торможение):
После пересечения (разгон, движение в обратную сторону)
В формулах выше — время от начала движения до пересечения с осью времени (время до остановки), — путь, который прошло тело от начала движения до пересечения с осью времени,
— время, прошедшее с момента пересечения оси времени до данного момента t,
— путь, который прошло тело в обратном направлении за время, прошедшее с момента пересечения оси времени до данного момента t,
— модуль вектора перемещения за все время движения, L — путь, пройденный телом за все время движения.
3.1.8. Перемещение за -ую секунду.
За время тело пройдет путь:
За время тело пройдет путь:
Тогда за -ый промежуток тело пройдет путь:
За промежуток можно принимать любой отрезок времени. Чаще всего
с.
Если то
Тогда за 1-ую секунду тело проходит путь:
Если внимательно посмотрим, то увидим, что и т. д.
Таким образом, приходим к формуле:
Словами: пути, проходимые телом за последовательные промежутки времени соотносятся между собой как ряд нечетных чисел, и это не зависит от того, с каким ускорением движется тело. Подчеркнем, что это соотношение справедливо при
3.1.9. Уравнение координаты тела при равнопеременном движении
Знаки проекций начальной скорости и ускорения зависят от взаимного расположения соответствующих векторов и оси Ox.
Для решения задач к уравнению необходимо добавлять уравнение изменения проекции скорости на ось:
3.2. Графики кинематических величин при прямолинейном движении
3.3. Свободное падение тела
Под свободным падением подразумевается следующая физическая модель:
1) Падение происходит под действием силы тяжести:
2) Сопротивление воздуха отсутствует (в задачах иногда пишут «сопротивлением воздуха пренебречь»);
3) Все тела, независимо от массы падают с одинаковым ускорением (иногда добавляют — «независимо от формы тела», но мы рассматриваем движение только материальной точки, поэтому форма тела уже не учитывается);
4) Ускорение свободного падения направлено строго вниз и на поверхности Земли равно (в задачах часто принимаем
для удобства подсчетов);
3.3.1. Уравнения движения в проекции на ось Oy
В отличии от движения по горизонтальной прямой, когда далеко не всех задач происходит смена направления движения, при свободном падении лучше всего сразу пользоваться уравнениями, записанными в проекциях на ось Oy.
Уравнение координаты тела:
Уравнение проекции скорости:
Как правило, в задачах удобно выбрать ось Oy следующим образом:
Ось Oy направлена вертикально вверх;
Начало координат совпадает с уровнем Земли или самой нижней точкой траектории.
При таком выборе уравнения и
перепишутся в следующем виде:
3.4. Движение в плоскости Oxy.
Мы рассмотрели движение тела с ускорением вдоль прямой. Однако этим равнопеременное движение не ограничивается. Например, тело, брошенное под углом к горизонту. В таких задачах необходимо учитывать движение сразу по двум осям:
Или в векторном виде:
И изменение проекции скорости на обе оси:
3.5. Применение понятия производной и интеграла
Мы не будем приводить здесь подробное определение производной и интеграла. Для решения задач нам понадобятся лишь небольшой набор формул.
где A, B и то есть постоянные величины.
Теперь посмотрим, как понятие производной и интеграла применимо к физическим величинам. В математике производная обозначается «’», в физике производная по времени обозначается «∙» над функцией.
то есть скорость является производной от радиус-вектора.
Для проекции скорости:
то есть ускорение является производной от скорости.
Для проекции ускорения:
Таким образом, если известен закон движения то легко можем найти и скорость и ускорение тела.
Теперь воспользуемся понятием интеграла.
то есть, скорость можно найти как интеграл по времени от ускорения.
то есть, радиус-вектор можно найти, взяв интеграл от функции скорости.
Таким образом, если известна функция то легко можем найти и скорость, и закон движения тела.
Константы в формулах определяются из начальных условий — значения и
в момент времени
3.6. Треугольник скоростей и треугольник перемещений
3.6.1. Треугольник скоростей
В векторном виде при постоянном ускорении закон изменения скорости имеет вид (3.5):
Эта формула означает, что вектор равен векторной сумме векторов
и
Векторную сумму всегда можно изобразить на рисунке (см. рис.).
В каждой задаче, в зависимости от условий, треугольник скоростей будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.
3.6.2. Треугольник перемещений
В векторном виде закон движения при постоянном ускорении имеет вид:
При решении задачи можно выбирать систему отсчета наиболее удобным образом, поэтому не теряя общности, можем выбрать систему отсчета так, что то есть начало системы координат помещаем в точку, где в начальный момент находится тело. Тогда
то есть вектор равен векторной сумме векторов
и
Изобразим на рисунке (см. рис.).
Как и в предыдущем случае в зависимости от условий треугольник перемещений будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.
10 класс
Материалы к зачету по теме «Основные законы механики «
1. Механическое движение.
Явление механического движения тел (материальных точек)состоит в том, что положение тела относительно других тел, т. е. его координаты, с течением времени изменяется.Чтобы найти координаты тела в любой момент времени, нужно знать начальные координаты и вектор перемещения тела. Изменение координаты тела равно проекции вектора перемещения на соответствующую ось координат.
Прямолинейное равномерное движение — это самый простой вид движения.При таком движении нужно определять лишь одну координату потому, что координатную ось можно направить вдоль направления движения тела. Координату х тела (материальной точки) в любой момент времени t можно вычислить по формуле:

где 

Механическое движение относительно. Это значит, что перемещение и скорость тела относительно различных систем координат, движущихся друг относительно друга, различны.
Покой также относителен. Если относительно какой-то системы координат тело покоится, то существуют и такие системы отсчета, относительно которых оно движется.
2. Основная задача механики
состоит в нахождении положения тела в любой момент времени. Решение этой задачи идет по своеобразной «цепочке»:
чтобы найти координату точки, нужно знать ее перемещение, а чтобы вычислить перемещение, нужно знать скорость движения.
По такой цепочке: скорость → перемещение → координата решают задачи механики для прямолинейного равномерного движения.
Если движение ускоренное, то нужно знать ускорение, так что при таком движении задачи решают по «цепочке» ускорение → скорость → перемещение → координата. И для равномерного, и для ускоренного движения должны быть известны начальные условия — начальные координаты и начальная скорость.
При прямолинейном ускоренном движении мгновенная скорость тела (материальной точки) непрерывно изменяется от одного момента времени к другому. Поэтому для вычисления скорости в любой момент времени и в любой точке нужно знать быстроту ее изменения, т.е. ускорение:

Проекцию скорости тела на выбранную координатную ось в любой момент времени t вычисляют по формуле:

Координату тела находят по формуле:

Проекцию перемещения находят по формуле:

Из приведенных формул получаются формулы для скорости, координат и перемещений при равномерном прямолинейном движении, если принять, что а x = 0.
Значение проекции перемещения при равноускоренном движении можно определить также по формуле:

| Так как | ![]() | , то для координаты тела х имеем: | ![]() |
При вычислениях по приведенным формулам знаки проекций векторов 
3. При криволинейном движении непрерывно изменяется направление вектора скорости, и в каждой точке траектории он направлен по касательной к траектории в данной точке. Поэтому даже равномерное движение по криволинейной траектории, при котором значение модуля скорости постоянно, есть ускоренное движение. Движение тела (материальной точки) по окружности описывают не только с помощью линейных величин — перемещения и скорости, но и с помощью угловых величин — угла поворота радиуса φ, проведенного из центра окружности к телу, и угловой скорости ω.
Связь между линейной и угловой скоростью выражается формулой:

где r — радиус окружности.
При равномерном движении по окружности вектор ускорения в любой точке окружности перпендикулярен вектору скорости и направлен к центру окружности. Модуль вектора центростремительного ускорения выражается равенством:

Относительно вращающегося стержня (оси) не закрепленное на нем тело (точка) движется вдоль стержня по направлению от оси вращения.
Пример решения задачи:
1. Ширина реки 200 м. Лодка, держа курс перпендикулярно течению реки, достигла противоположного берега за 140 с. Скорость течения воды в реке 0,8 м/с. Определите скорость и перемещение лодки относительно берега.
![]() ![]() | ![]() |
Вычисления:

Ответ: Скорость лодки относительно берега 1,6 м/с, перемещение 112 м.
Решите задачи самостоятельно:
1. Через реку переправляется лодка, выдерживая курс перпендикулярно течению. Скорость лодки
4 м/с, скорость течения реки 3 м/с. Какова ширина реки, если лодку снесло на 60 м?
2. 9 км/ч = . м/с; 10 м/с = . км/ч; 8 км/с = . км/ч, 54 км/ч = . м/с.
3. Автомобиль движется: а) с постоянной скоростью; б) с постоянным ускорением;
в) с положительным ускорением; г) с отрицательным ускорением.
Назовите вид каждого движения и изобразите соответствующие графики скорости.
В векторной форме уравнения записываются легко и кратко. Но для практических вычислений нужно знать проекции вектора на оси координат выбранной системы отсчета. Положение точки А (рис. 2.8) задается радиус-вектором г . Спроецируем вектор г на оси х,у, z.
Рис. 2.8. Вектор перемещения точки А и её скорость 1)
Понятно, что х, у9 z зависят от времени t, т. е. *(/), y(t), z(t). Зная зависимость этих координат от времени (закон движения точки), можно найти в каждый момент времени скорость точки.
Проекции вектора скорости и на оси x,y9z в обозначениях Лейбница:
Эти три равенства эквивалентны векторному равенству и = —.
Согласно общей формуле (2.2.2) модуль вектора скорости
Так как скорость — величина векторная, то её можно представить с помощью единичных векторов i, j, k :
В произвольном случае движения скорость нс остается постоянной. Быстрота изменения скорости по времени и направлению характеризуется ускорением
Ускорение — величина векторная. При криволинейном движении и изменяется также и по направлению. В какую сторону? С какой скоростью? Выражение (2.3.8) на эти вопросы не отвечает.
Введем единичный вектор т (рис. 2.9), связанный с точкой А и направленный по касательной к траектории движения точки А (векторы т и и в точке А совпадают). Тогда можно записать:
где о = |о| — модуль вектора скорости.
Рис. 2.9. К выводу тангенциальной составляющей ускорение: единичный вектор х направлен по касательной к траектории
Найдем ускорение:
Получаем два слагаемых ускорения: aх — тангенциальное ускоре-
пие, совпадающее с направлением о в данной точке, ап — нормальное ускорение, или центростремительное, т. к. направлено оно к центру кривизны, перпендикулярно вектору т .
где do/dt — скорость изменения модуля вектора скорости о.
Итак, az показывает изменение вектора скорости по величине:
- • если do/d/ > 0, то аг направлено в ту же сторону, что и вектор о, т. е. ускоренное движение;
- • если do/d/ 0), центры кривизны О и О’ сливаются и угол поворота Д d dx d r dx i) 2 r
Tогда — = —, следовательно — = — n ; наконец, и — = — n , т. с.
Нормальное ускорение показывает быстроту изменения направления вектора скорости. Модуль нормального ускорения
Центростремительным называют ускорение, когда движение происходит по окружности. А когда движение происходит по произвольной кривой, говорят, нормальное ускорение, перпендикулярное к касательной в любой точке траектории.
Итак, возвращаясь к выражению (2.3.9), можно записать, что суммарный вектор ускорения при движении точки вдоль плоской кривой равен:
На рис. 2.11 изображено взаимное расположение векторов ускорения:
Рис. 2.11. Суммарное ускорение, нормальная и тангенциальная составляющие ускорения
Как видно из этого рисунка, модуль общего ускорения равен:
Рассмотрим несколько предельных (частных) случаев:
- • аТ = 0; ап = 0 — равномерное прямолинейное движение;
- • ах = const ;ап = 0 — равноускоренное прямолинейное движение;
- • ах — 0; ап = const — равномерное движение по окружности.
Прямая задача кинематики сводится к определению кинематических характеристик по известному закону движения.
При движении с постоянным ускорением (а = const)
Если и = о0 ± at (а = const), то
Обратная задача кинематики заключается в нахождении закона движения по известной скорости (ускорению) и начальному кинематическому состоянию.
Пусть нам известно ускорение точки в каждый момент времени.
Видео:Векторы и действия над ними, проекция вектора на координатные оси. 9 класс.Скачать

Проекция скорости на оси х задана уравнением
Проекция скорости движения тела, движущегося вдоль оси х, задана уравнением Vх=8-2t.Отметьте,какет из приведенных четырех утверждений правильные,а какие-нет.
нужно каждое утверждение объяснить
А.За первые 2 с движения координата х тела изменилась на 12 м Б
.Координата х тела изменяется по закону:х=8-2t В.
Тело движется равномерно Г.
Через 4 с после начала движения, скорость тела будет равна нулю
🎥 Видео
Урок 18 (осн). Координаты тела. График движения. График скоростиСкачать

Решение графических задач на равномерное движениеСкачать

ЕГЭ по физике. Задание 1. Определение проекции ускоренияСкачать

Урок 16. Решение задач на графики РПД (продолжение)Скачать

Скорость и перемещение при прямолинейном равноускоренном движении. 9 класс.Скачать

Равномерное прямолинейное движение - физика 9Скачать

Урок 15. Решение задач на графики движенияСкачать

Физика - уравнения равноускоренного движенияСкачать

9 класс, 3 урок, Графики прямолинейного равномерного движенияСкачать

Графики зависимости пути и скорости от времениСкачать

Уравнение равномерного прямолинейного движения | Физика 10 класс #3 | ИнфоурокСкачать

Уравнение движения тела дано в виде x=2−3t. ВычислиСкачать

Задача из ЕГЭ по физике │Анализ графика #1Скачать

Урок 25. График скорости РУД. Перемещение при РУД.Скачать

УСКОРЕНИЕ - Что такое равноускоренное движение? Как найти ускорение // Урок Физики 9 классСкачать





























