В процессе работы над индивидуальным проектом по математике «Различные способы решения квадратных уравнений» учениками 9 класса школы была поставлена и реализована цель, изучить различные методы решения квадратных уравнений.
- Подробнее о проекте:
- Оглавление
- Введение
- История развития квадратных уравнений
- Квадратные уравнения в Древнем Вавилоне
- Как составлял и решал Диофант квадратные уравнения
- Квадратные уравнения в Индии
- Квадратные уравнения у ал – Хорезми
- Квадратные уравнения в Европе XIII — XVII вв.
- О теореме Виета
- Презентация «Решение уравнений в Древней Индии, Греции, Китае»
- Описание презентации по отдельным слайдам:
- Математика: теория и методика преподавания в образовательной организации
- Дистанционное обучение как современный формат преподавания
- Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- Решение уравнений в древней индии
- Скачать:
- Подписи к слайдам:
- 🎥 Видео
Подробнее о проекте:
В готовом творческом и исследовательском проекте по математике «Различные способы решения квадратных уравнений» автор выполняет практические задания по решению квадратных уравнений разными способами, подробно описывает их. Также в работе представлен интересный блок из истории развития квадратных уравнений в разных странах и в разные временные отрезки, объясняется теорема Виета. В практической части работы продемонстрированы способы решения квадратных уравнений, некоторые из которых в школе не изучаются.
Оглавление
Введение
1. История развития квадратных уравнений.
2. О теореме Виета.
3. Способы решения квадратных уравнений.
Заключение
Литература
Приложение
Введение
Актуальность. Практически все, что окружает современного человека — это все так или иначе связано с математикой. А достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем решение многих практических задач сводится к решению квадратных уравнений.
В школьном курсе математики мы изучили квадратные уравнения, узнали различные способы решения уравнений второй степени. Этот материал нас заинтересовал, и мы решили узнать, существуют ли другие способы решения квадратных уравнений. Это определило тему нашего исследования: «Квадратные уравнения и методы их решения».
В учебниках мы знакомимся с несколькими видами квадратных уравнений, и отрабатываем решение по формулам. Нам пришла идея рассмотреть те способы решения квадратных уравнений, на которые недостаточно времени уделено на уроках или совсем не рассматриваются в школьном курсе.
Вместе с тем, современные научно-методические исследования показывают, что использование разнообразных методов и способов позволяет значительно повысить эффективность и качество изучения решений квадратных уравнений.
Цель исследования: изучение различных методов решения квадратных уравнений.
- Произвести анализ учебно-методической литературы по решению квадратных уравнений.
- Произвести анализ различных способов решения квадратных уравнений.
- Изучить различные способы решения квадратных уравнений, апробировать их на практике, собрать дидактический материла.
Гипотеза: существуют методы решения квадратных уравнений не изучаемые в школе.
Новизна исследования состоит в комплексном рассмотрении способов решения уравнений второй степени.
Объект исследования: квадратные уравнения.
Предмет исследования: методы решения квадратных уравнений.
Практическая значимость работы состоит в приобретении навыка решения квадратных уравнений различными способами.
Применяемые методы исследования:
- эмпирические: изучение литературы, обработка материалов.
- теоретические: сравнение, классификация, анализ, обобщение.
Структура работы: работа состоит из введения, теоретической и практической частей, заключения, списка литературы и приложения.
Видео:МАТЕМАТИКА В ДРЕВНЕЙ ИНДИИ | ИСТОРИЯ МАТЕМАТИКИСкачать
История развития квадратных уравнений
Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Уравнения — это наиболее объёмная тема всего курса математики.
В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. «Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37.», — поучал во II тысячелетии до новой эры египетский писец Ахмес.
В древних математических задачах Междуречья, Индии . [4, c.23], Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.
Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри», «Делай так», «Ты правильно нашел». В этом смысле исключением является «Арифметика» греческого математика Диофанта Александрийского (III в.) — собрание задач на составление уравнений с систематическим изложением их решений.
Уравнения второй степени умели решать еще в древнем Вавилоне. Математики Древней Греции решали квадратные уравнения с помощью геометрических построений [4, c.21]; например, Евклид — при помощи деления отрезка в среднем и крайнем отношениях. Задачи, приводящие к квадратным уравнениям, рассматриваются во многих древних математических рукописях и трактах.
Вывод формулы решения квадратного уравнения в общем виде имеется у Виета. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.
Квадратные уравнения в Древнем Вавилоне
Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.
Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.
Как составлял и решал Диофант квадратные уравнения
В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней. При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные. Вот, к примеру, одна из его задач.
Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение — 96»
Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х, другое же меньше, т.е. 10 — х. Разность между ними 2х. Отсюда уравнение: (10 + х)(10 — х) = 96
или же: 100 — х2 = 96, х2 — 4 = 0 (1) Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа. Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения: у(20 — у) = 96,
у2 — 20у + 96 = 0. (2)
Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).
Квадратные уравнения в Индии
Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам» [4, c.23], составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ах2 + bх = с, а > 0. (1)
В уравнении (1) коэффиценты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.
В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму. Вот одна из задач знаменитого индийского математика XII в. Бхаскары.
«Обезьянок резвых стая А двенадцать по лианам…
Власть поевши, развлекалась. Стали прыгать, повисая…
Их в квадрате часть восьмая Сколько ж было обезьянок,
На поляне забавлялась. Ты скажи мне, в этой стае?»
Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.
Соответствующее задаче 13 уравнение: (x/8)2 + 12 = x.
Бхаскара пишет под видом: х2 — 64х = -768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем:
х2 — 64х + 322 = -768 + 1024,
(х — 32)2 = 256, х — 32 = ± 16, х1 = 16, х2 = 48.
Квадратные уравнения у ал – Хорезми
Задача 14. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х2 + 21 = 10х).
Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножишь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.
Трактат ал — Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.
Квадратные уравнения в Европе XIII — XVII вв.
Формулы решения квадратных уравнений по образцу ал — Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения.
Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII.
Общее правило решения квадратных уравнений, приведенных к единому каноническому виду: х2 + bx = с, при всевозможных комбинациях знаков коэффициентов b, с было сформулировано в Европе лишь в 1544 г. М. Штифелем.
Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.
Видео:МАТЕМАТИКА ДРЕВНЕГО КИТАЯ И ИНДИИ | История математикиСкачать
О теореме Виета
Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. следующим образом: «Если B + D, умноженное на A — A2, равно BD, то A равно В и равноD».
Чтобы понять Виета, следует вспомнить, что А, как и всякая гласная буква, означало у него неизвестное (наше х), гласные же В,D — коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место (а + b)х — х2 = ab, т.е. х2 — (а + b)х + аb = 0,то х1 = а, х2 = b.
Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. [4, c.25]
Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и поэтому при решении уравнений рассматривал лишь случаи, когда все корни положительны.
Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
Презентация «Решение уравнений в Древней Индии, Греции, Китае»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Рабочие листы и материалы для учителей и воспитателей
Более 2 500 дидактических материалов для школьного и домашнего обучения
Описание презентации по отдельным слайдам:
Муниципальное бюджетное общеобразовательное учреждение
>
Реферат с элементами самостоятельного поиска
>
Колобова Татьяна Евгеньевна, учащаяся 8 > класса Руководитель: Рыбакова Наталья Александровна
Математика – древний, важный и сложный компонент культуры человека. Она появилась из необходимости практической деятельности человека. Изучая историю математики, мы знакомимся с благородными идеями многих поколений.
Мне приходиться делить время между политикой
и уравнениями. Однако уравнения гораздо важнее.
Политика существует только для данного момента,
а уравнения будут существовать вечно.
А. Эйнштейн
Математика древних греков удивляет в первую очередь богатством своего содержания
Древняя Греция
Диофантовы уравнения
Диофант Александрийский
Математик Древней Греции.
Некоторые называют его «отцом алгебры ».
Создатель «Арифметики», которая
состоит из 13 книг.
Пример: 1) 5x + 35y=40
Решение: Наибольший общий делитель (5, 35) = 5, 40 можно поделить на 5, значит, у этого уравнения есть корни, Например: x=1, y=1
Решение квадратных уравнений с помощью геометрии
x 2
В древние времена, когда геометрия была более изучаема, чем алгебра, математики Древней Греции решали уравнение вот так:
x² + 4x — 21 = 0
x² + 4x = 21, или x² + 4x +4=21+4
Решение: Выражения x² + 4x +4 и 21+4 геометрически представляют тот же самый квадрат, а исходное уравнение x² +4x –21 +4 –4 = 0 – одинаковые уравнения. Получается, что x + 2 = ±5, или х1 = 3 х2 = -7
Творчество математиков Индии значительно повлияло на развитие арифметики, алгебры и тригонометрии
Индийские математики
Математики Индии в отличие от греческих математиков вывели более простую формулу решения квадратных уравнений. Она встречается в школьных учебниках.
Но, не все индийские математики решали именно по этой формуле. Например, Бхаскара решал
квадратные уравнения вот так:
x2 — 44х + 484 = -684 + 1008,
(х — 22)2 = 324,
х — 22= ±18,
x1 = 4, x2 = 40.
Формула корней квадратного уравнения
Магавира при решении систем линейных уравнений использовал метод, который не отличается от метода уравнивания коэффициентов.
Например:
6x -3y =3
5x +4y =22
1) НОК (3;4) =12,
6x -3y =3 *4 24x -12y =12
5x +4y =22 *3 15x +12y =66
2) + 24x -12y =12
15x +12y =66
39x =78 3) 6*2 -3y =3
x= 2 y=3 Ответ: x=2, y=3
Самые заметные научные открытия китайских учёных:
метод численного решения уравнений n -степени (метод Руффини – Горнера);
теоретико-числовые задачи на системы сравнений первой степени с одним неизвестным (сравнения Гаусса);
метод решения систем линейных уравнений (метод Гаусса);
вычисление числа π (пи)
Пример: (y +4)2=y2 +202
Решение китайских учёных
предположительно такое:
(y +4)2=y2 +202 ,
y2+8y+16= y2 +400,
8y=384,
y=48,
Ответ: y=48
В ходе работы я узнала много нового и полезного из области математики. Познакомилась с биографией великих математиков. Узнала, каким методом решали уравнения древнегреческие, индийские и китайские математики. Составила и решила уравнения новыми для меня способами.
Литература
БерезкинаЭ. И. Математика древнего Китая. М.: Наука, 1980
Депман И.Я. История арифметики. — М.: Просвещение, 1965. — 415 с.
Панов В. Ф. Математика древняя и юная/ Под ред. В. С. Зарубина. — 2-е изд. —М.: Изд-во МГТУ им. Н. Э. Баумана, 2006. —648 с.
Рыбников К.А. Возникновение и развитие математической науки. — М.: Изд-во «Просвещение», 1987. — 159 с.
Стройк Д. Я. Краткий очерк истории математики. Пер. с нем.—5- изд., испр.— М.: Наука. Гл. ред. физ.мат. лит., 1990.— 256 с
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 710 человек из 76 регионов
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 859 человек из 77 регионов
Курс повышения квалификации
Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС
- Сейчас обучается 48 человек из 21 региона
«Мотивация здорового образа жизни. Организация секций»
Свидетельство и скидка на обучение каждому участнику
- Для всех учеников 1-11 классов
и дошкольников - Интересные задания
по 16 предметам
«Как закрыть гештальт: практики и упражнения»
Свидетельство и скидка на обучение каждому участнику
Видео:Математика это не ИсламСкачать
Дистанционные курсы для педагогов
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 848 562 материала в базе
Ищем педагогов в команду «Инфоурок»
Другие материалы
- 15.04.2018
- 985
- 1
- 15.04.2018
- 596
- 7
- 15.04.2018
- 2605
- 58
- 15.04.2018
- 621
- 3
- 15.04.2018
- 394
- 5
- 15.04.2018
- 1040
- 11
- 15.04.2018
- 374
- 1
- 15.04.2018
- 303
- 0
«Учись, играя: эффективное обучение иностранным языкам дошкольников»
Свидетельство и скидка на обучение
каждому участнику
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 15.04.2018 8342
- PPTX 3.8 мбайт
- 73 скачивания
- Рейтинг: 1 из 5
- Оцените материал:
Настоящий материал опубликован пользователем Рыбакова Наталья Александровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 6 лет
- Подписчики: 2
- Всего просмотров: 18832
- Всего материалов: 11
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Как решают уравнения в России и США!?Скачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
25% школ выбрали компьютерный формат проведения ВПР
Время чтения: 1 минута
Минобрнауки РФ откроет центр по сбору учебников для школьников и студентов из ЛНР и ДНР
Время чтения: 2 минуты
Минпросвещения предлагает изменить форму для проведения ВОШ
Время чтения: 1 минута
Роспотребнадзор сообщил об опасности размещения вышек сотовой связи на территории школ
Время чтения: 1 минута
В Госдуму внесли законопроект о возможности повторной сдачи ЕГЭ
Время чтения: 1 минута
Онлайн-семинар о здоровом образе жизни и организации секций
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Видео:Как решают уравнения в России и СШАСкачать
Решение уравнений в древней индии
Видео:Математика 3 класс (Урок№2 - Решение уравнений способом подбора неизвестного. Буквенные выражения.)Скачать
Скачать:
Вложение | Размер |
---|---|
prezentatsiya.pptx | 884.61 КБ |
Предварительный просмотр:
Видео:ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать
Подписи к слайдам:
Решение Уравнений В древней Индии✴️ Василенкова дарья 7 «а»
Происхождение математики в древней индии В Индии математика зародилась примерно тогда же, когда и в Египте, – пять с лишним тысяч лет назад. К началу нашего летоисчисления индийцы уже были замечательными математиками. Кое в чем они обогнали даже древних греков. Однако Индия была оторвана от других стран, – на пути лежали тысячи километров расстояния и высокие горы.
Происхождение цифр в древней индии Индийские ученые сделали одно из важнейших в математике открытий. Они изобрели позиционную систему счисления – способ записи и чтения чисел. Чтобы назвать большое число, индийцам приходилось после каждой цифры произносить название разряда. Это было громоздко, неудобно, и индийцы стали поступать иначе. Например, число 278 396 читали так: два, семь, восемь, три, девять, шесть – сколько цифр – столько слов. А если в числе не было какого-нибудь разряда, как, например, в числах 206 или 7013, то вместо названия цифры говорили слово «пусто». Чтобы не получалось путаницы, при записи на месте «пустого» разряда ставили точку. Позднее вместо точки стали рисовать кружок, который на языке хинди назывался «сунья», что значит «пустое место». Арабские математики перевели это слово на свой язык. Вместо «сунья» они стали говорить «сифр», а это уже знакомое нам слово. Слово «цифра» по наследству от арабов досталось и нам.
Метод решения уравнений в Древней индии Задачи на уравнения встречаются уже в астрономическом трактате «Ариабхаттаим», составленном в 449 г. индийским математиком и астрономом Арибхаттой. Но это уже раннее средневековье. В Алгебраическом трактате ал-Хорезми даётся классификация линейных и квадратных уравнений. Индийские учёные знали решения неопределённых уравнений в целых числах (в том числе и в отрицательных, чего сам Диофант избегал). Формула решений квадратного уравнения. Греческий математик Герон ( I или II век нашего летоисчисления) вывел формулу для решения квадратного равнении 2 + bx = c умножением всех членов на а и прибавлением к обеим половинам уравнения :В индии пришли к более простому способу вывода, который встречается в школьных учебниках: они умножали на 4 a и к обеим половинам по b2.
🎥 Видео
5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Вот как надо стихи сдавать! Прикол в школе)))Скачать
Быстрый способ решения квадратного уравненияСкачать
Квадратные уравнения и геометрическая алгебра древнихСкачать
Как мнимые числа спасли математику [Veritasium]Скачать
Индийская олимпиадная задача по математикеСкачать
Как решать квадратные уравнения без дискриминантаСкачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
ГВЭ по математике для 9 класса #1Скачать
Как проверяют учеников перед ЕНТСкачать
Тест скорости чтенияСкачать
2 уравнения и 3 неизвестных — система, которая на олимпиаде вынесла почти всехСкачать