Федеральное агентство по образованию
ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Институт математики, экономики и информатики
Кафедра дифференциальных и интегральных уравнений
ПРИВЕДЕНИЕ К КАНОНИЧЕСКОМУ ВИДУ ЛИНЕЙНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ ВТОРОГО ПОРЯДКА
Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными …………………………………………………………………………
1.1. Необходимый теоретический материал………………………..
1.2. Пример выполнения задачи1 (приведение к
каноническому виду уравнений гиперболического типа) .
1.3. Пример выполнения задачи 2 (приведение к
каноническому виду уравнений параболического типа)
1.4. Пример выполнения задачи 3 (приведение к
каноническому виду уравнений эллиптического типа) ..
1.5. Задачи для самостоятельного решения ………………….….
Упрощение группы младших производных
для уравнений второго порядка с постоянными коэффициентами
2.1. Необходимый теоретический материал …………………..
2.2. Пример выполнения задачи 4
2.3. Задачи для самостоятельного решения ……………………..
В настоящих методических указаниях изложен теоретический материал и на конкретных примерах разобрано приведение к каноническому виду линейных уравнений с частными производными второго порядка с двумя независимыми переменными для уравнений гиперболического, эллиптического и параболического типов.
Методические указания предназначены для студентов математических специальностей очной и заочной формы обучения.
§1. Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными.
Задача. Определить тип уравнения

и привести его к каноническому виду.
1.1. Необходимый теоретический материал.
I. Тип уравнения (1) определяется знаком выражения 
· если 
· если 
· если 
Уравнение (1) будет являться уравнением гиперболического, эллиптического, параболического типа в области D, если оно гиперболично, эллиптично, параболично в каждой точке этой области.
Уравнение (1) может менять свой тип при переходе из одной точки (области) в другую. Например, уравнение 



II. Чтобы привести уравнение к канонического виду, необходимо:
1. Определить коэффициенты 
2. Вычислить выражение 
3. Сделать вывод о типе уравнения (1) (в зависимости от знака выражения 
4. Записать уравнение характеристик:

5. Решить уравнение (2). Для этого:
а) разрешить уравнение (2) как квадратное уравнение относительно dy:

б) найти общие интегралы уравнений (3) (характеристики уравнения (1)):
· 
в случае уравнения гиперболического типа;
· 
в случае уравнения параболического типа;
· 
в случае уравнения эллиптического типа.
6. Ввести новые (характеристические) переменные 

· в случае уравнения гиперболического типа в качестве 

· в случае уравнения параболического типа в качестве 





· в случае уравнения эллиптического типа в качестве 

7. Пересчитать все производные, входящие в уравнение (1), используя правило дифференцирования сложной функции:





8. Подставить найденные производные в исходное уравнение (1) и привести подобные слагаемые. В результате уравнение (1) примет один из следующих видов:
· в случае уравнения гиперболического типа:

· в случае уравнения параболического типа:

· в случае уравнения эллиптического типа:

1.2. Пример выполнения задачи 1.
Определить тип уравнения
и привести его к каноническому виду.
1. Определим коэффициенты 
2. Вычислим выражение 

3. 
4. Запишем уравнение характеристик:

5. Решим уравнение (9). Для этого:
а) разрешаем уравнение (9) как квадратное уравнение относительно dy: 



б) найдём общие интегралы уравнений (10) (характеристики уравнения (9)):
6. Введём характеристические переменные:
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (8) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Или после деления на -100 (коэффициент при 
Ответ. Уравнение (8) является уравнением гиперболического типа на всей плоскости XOY. Канонический вид
где
1.3. Пример выполнения задачи 2.
Определить тип уравнения
и привести его к каноническому виду.
1. Определим коэффициенты 
2. Вычислим выражение 

3. 
4. Запишем уравнение характеристик:

5. Решим уравнение (12). Для этого:
а) разрешаем уравнение (9) как квадратное уравнение относительно dy. Однако в этом случае левая часть уравнения является полным квадратом:


б) имеем только одно уравнение характеристик (13). Найдём его общий интеграл (уравнения параболического типа имеют только одно семейство вещественных характеристик):
6. Введём характеристические переменные: одну из переменных 
а в качестве 


7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (11) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Функцию, стоящую в правой части уравнения (11) необходимо также выразить через характеристические переменные.
После деления на 25 (коэффициент при 
Ответ. Уравнение (11) является уравнением параболического типа на всей плоскости XOY. Канонический вид
где
1.4. Пример выполнения задачи 3.
Определить тип уравнения

и привести его к каноническому виду.
1. Определим коэффициенты 
2. Вычислим выражение 

3. 
4. Запишем уравнение характеристик:

5. Решим уравнение (15). Для этого:
а) разрешаем уравнение (15) как квадратное уравнение относительно dy: 
б) уравнения (16) – это пара комплексно-сопряженных уравнений. Они имеют пару комплексно-сопряженных общих интегралов. (Уравнения эллиптического типа не имеют вещественных характеристик)

6. Введём характеристические переменные как вещественную и мнимую части одного из общих интегралов (17):
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (14) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Или после деления на 4 (коэффициент при 

Ответ. Уравнение (14) является уравнением эллиптического типа на всей плоскости XOY. Канонический вид
где
1.5. Задачи для самостоятельного решения.
Определить тип уравнения и привести его к каноническому виду.










Определить тип уравнения и привести его к каноническому виду.
Определить тип уравнения и привести его к каноническому виду.
§2. Упрощение группы младших производных
для уравнений второго порядка с постоянными коэффициентами
2. 1. Необходимый теоретический материал
В самом общем виде линейное уравнение с частными производными второго порядка с двумя независимыми переменными имеет вид

Преобразованием независимых переменных группа старших производных уравнения может быть упрощена. Уравнение (1) приводится к одному из следующих видов
· в случае уравнения гиперболического типа:

· в случае уравнения параболического типа:

· в случае уравнения эллиптического типа:

Если коэффициенты исходного уравнения постоянны, то для дальнейшего упрощения уравнения любого типа нужно сделать замену неизвестной функции

где 





Чтобы реализовать замену (14) в уравнениях (11), (12), (13), необходимо пересчитать все производные, входящие в эти уравнения по формулам

Подробно рассмотрим этот процесс на примере уравнения гиперболического типа, т. е. уравнения (11). Пересчитаем производные, входящие в это уравнение, используя формулы (15).
Здесь слева расставлены соответствующие коэффициенты уравнения (11). Собирая подобные слагаемые, получим

В уравнении (16) приравняем к нулю коэффициенты при 
Откуда 


где 
2.2. Пример выполнения задачи 4
к каноническому виду и упростить группу младших производных.
9. Определим коэффициенты 
10. Вычислим выражение 

11. 
12. Запишем уравнение характеристик:

5. Решим уравнение (18). Для этого:
а) разрешаем уравнение (18) как квадратное уравнение относительно dy: 

б) найдём общие интегралы уравнений (19) (характеристики уравнения (17)):
6. Введём характеристические переменные:
13. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (17) при соответствующих производных.
14. Собирая подобные слагаемые, получим:

Теперь с помощью замены неизвестной функции (14)
упростим группу младших производных.
Пересчитаем производные, входящие в уравнение (20), используя формулы (15).
Здесь слева расставлены соответствующие коэффициенты уравнения (20). Собирая подобные слагаемые, получим

В уравнении (21) приравняем к нулю коэффициенты при 
Откуда 


Ответ. Уравнение (20) является уравнением эллиптического типа на всей плоскости XOY. Его канонический вид

где 
2.3. Задачи для самостоятельного решения
Задача 4. Привести уравнения к каноническому виду и упростить группу младших производных.










- Приведение кривой второго порядка к каноническому виду
- Алгоритм перехода кривой второго порядка к каноническому виду
- Лекция 13. КЛАССИФИКАЦИЯ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ 2-ГО ПОРЯДКА, ПРИВЕДЕНИЕ ИХ К КАНОНИЧЕСКОМУ ВИДУ И НАХОЖДЕНИЕ ОБЩЕГО РЕШЕНИЯ
- Поверхности второго порядка: их виды, уравнения, примеры
- Общее уравнение поверхности второго порядка и инварианты поворота и переноса декартовой прямоугольной системы координат
- Виды поверхностей второго порядка и приведение общего уравнения поверхности второго порядка к каноническому
- Эллипсоид
- Мнимый эллипсоид
- Мнимый конус
- Однополостный гиперболоид
- Двуполостный гиперболоид
- Конус
- Эллиптический параболоид
- Гиперболический параболоид
- Эллиптический цилиндр
- Мнимый эллиптический цилиндр
- Мнимые пересекающиеся плоскости
- Гиперболический цилиндр
- Пересекающиеся плоскости
- Параболический цилиндр
- Параллельные плоскости
- Мнимые параллельные плоскости
- Совпадающие плоскости
- Решение примеров на определение вида поверхности второго порядка
- Определить вид поверхности второго порядка самостоятельно, а затем посмотреть решение
- 🎥 Видео
Видео:Приведение ДУ 2 порядка в частных производных к каноническому видуСкачать

Приведение кривой второго порядка к каноническому виду
Пример №1 . Привести уравнение второго порядка к каноническому виду с помощью поворота и параллельного переноса осей координат. Построить кривую.
Пример №2 . Выполнив последовательно преобразования координат: поворот, а затем параллельный перенос координатных осей, преобразовать к каноническому виду уравнение кривой второго порядка и построить ее в исходной системе координат, а также найти параметры кривой.
Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать

Алгоритм перехода кривой второго порядка к каноническому виду
Пример №1 . 4y=-6-sqrt(4x-x 2 )
sqrt(4x-x 2 ) = -(4y+6)
Возведем в квадрат
4x-x 2 = (4y+6) 2
Раскрывая скобки, получаем:
16y 2 +48y + 36 +x 2 -4x = 0
Далее решается калькулятором. Если самостоятельно решать, то получим:
4x-x 2 = (4y+6) 2
-(x 2 — 4x) = 2(y+3/2) 2
-(x 2 — 4x + 4) = (y+3/2) 2
-(x — 2) 2 = (y+3/2) 2
(y+3/2) 2 + (x — 2) 2 = 0
Пример №2 . x=1-2/3 sqrt(y 2 -4y-5)
Здесь надо сначала привести к нормальному виду.
3/2(x-1)=sqrt(y 2 -4y-5)
Возводим в квадрат
9/4(x-1) 2 =y 2 -4y-5
9/4x 2 -9/4*2x+9/4-y 2 +4y+5=0
9/4x 2 -9/2x-y 2 +4y+29/4=0
Далее можно решать как с калькулятором, так и без него:
9/4(x-1) 2 =y 2 -4y-5
9/4(x-1) 2 =y 2 -4y+4-4-5
9/4(x-1) 2 =(y 2 -2)-9
9/4(x-1) 2 -(y 2 -2) = -9
-1/4(x-1) 2 +1/9(y 2 -2) = 1
Видео:13. Общие уравнения прямой в пространстве / приведение к каноническому видуСкачать

Лекция 13. КЛАССИФИКАЦИЯ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ 2-ГО ПОРЯДКА, ПРИВЕДЕНИЕ ИХ К КАНОНИЧЕСКОМУ ВИДУ И НАХОЖДЕНИЕ ОБЩЕГО РЕШЕНИЯ

которое можно также записать в виде


которое можно также записать в виде

где u – искомая функция х и у; A, B, C, E, D, K – коэффициенты, которые могут быть как функциями х и у, так и постоянными величинами, некоторые из которых могут быть равные нулю.
Уравнение (13.1) или (13.1*) называется линейным, а уравнение (13.2) или (13.2*) называется квазилинейным, поскольку оно линейно только относительно старших производных, входящих в это уравнение.
Линейные уравнения в частных производных классифицируются на три типа:
— линейные уравнения гиперболического типа (ГТ);
— линейные уравнения параболического типа (ПТ);
— линейные уравнения эллиптического типа (ЭТ).
Для того, чтобы классифицировать уравнения в частных производных необходимо проанализировать выражение
состоящее из коэффициентов при старших производных в уравнениях (13.1) — (13.2*).
Если В 2 – АС > 0, то исходное уравнение будет принадлежать к уравнениям ГТ.
Если В 2 – АС = 0, то исходное уравнение будет принадлежать к уравнениям ПТ.
убедимся в том, что все волновые уравнения принадлежат к уравнениям ГТ.
2. Запишем уравнение теплопроводности, описывающее распределение нестационарного температурного поля в тонком стержне без влияния внешних источников температуры
и, сравнив его с уравнением (13.2*), определим значения коэффициентов
убедимся в том, что все уравнения, описывающие тепловые и диффузионные процессы, принадлежат к уравнениям ПТ.
3. Запишем стационарное уравнение Лапласа, описывающее распределение нестационарного температурного поля в мембране без влияния внешних источников температуры
и, сравнив его с уравнением (13.2*), определим значения коэффициентов
В 2 – АС = 0 2 – 1×1 =-1 2 , привести к виду

Это уравнение представляет собой уравнение первого порядка, второй степени, которое можно легко разрешить относительно производной

Полученное уравнение распадается на два уравнения

Решая эти уравнения, найдем два интеграла, т.е. два семейства характеристик:

Используя эти интегралы, введем новые независимые переменные

Вычислим все производные, входящие в уравнение (13.1*):

Подставляя вычисленные производные в уравнение (13.1*), получим его каноническую форму.
I.Для уравнений гиперболического типа уравнение характеристик имеет вид (13.3*), которое распадается на уравнения (13.4). С помощью их интегралов, произведя замену переменных (13.5) и, вычислив производные (13.6), после подстановки их в исходное уравнение, получим каноническую форму уравнения гиперболического типа

II. Для уравнений параболического типа уравнения характеристик принимает вид одного уравнения

которое имеет только одно семейство характеристик:

В этом случае для того, чтобы произвести замену переменных (13.5), необходимо в качестве недостающего второго интеграла C2 выбрать некоторую произвольную функцию 


После такой замены, вычисления производных (13.6) и их подстановки в уравнение параболического типа получим его каноническую форму

III.Для уравнений эллиптического типа уравнения характеристик принимает вид (13.3*) и оно распадается на два уравнения в комплексной форме:


следовательно, уравнения (13) имеют два комплексно-сопряженных интеграла

причем функции 

После такой замены, вычисления производных (13.6) и их подстановки в уравнение эллиптического типа получим его каноническую форму

Пример 13.1. Привести к каноническому виду уравнение:

▲ Запишем общий вид уравнения второго порядка

и сравним коэффициенты при производных в уравнении (П13.1.2) и в исходном (П13.1.1):

Определим, к какому типу принадлежит исходное уравнение:

следовательно, исходное уравнение (П13.1.1) принадлежит к уравнениям гиперболического типа.
Осуществим переход к канонической форме с помощью общих интегралов уравнения характеристик (13.3). В нашем случае это уравнение имеет вид:
Следовательно, С1 и С2 определяют уравнения семейств характеристик. Тогда преобразование независимых переменных (13.5) будет иметь вид
Найдем 

и после преобразований, получим

с учетом того, что 

Пример 13.2. Привести к каноническому виду уравнение:

▲ Запишем общий вид уравнения второго порядка

и сравним коэффициенты при производных в уравнении (П13.2.2) и в исходном (П13.2..1):

Определим, к какому типу принадлежит исходное уравнение (П13.2.1)

следовательно, исходное уравнение (П13.2.1) принадлежит к уравнениям параболического типа.
Осуществим переход к канонической форме с помощью общих интегралов уравнения характеристик (13.3). В нашем случае это уравнение имеет вид:
Произведем замену переменных 

Подставим полученные производные в исходное уравнение (П13.2.1) и после преобразований, получим


Таким образом, окончательно каноническая форма исходного уравнения (П13.2.1) имеет вид:

Пример 13.3. Привести к каноническому виду уравнение:

▲ Запишем общий вид уравнения второго порядка
и сравним коэффициенты при производных в уравнении и в исходном:

Определим, к какому типу принадлежит исходное уравнение

следовательно, исходное уравнение принадлежит к уравнениям эллиптического типа.
Осуществим переход к канонической форме с помощью общих интегралов уравнения характеристик (13.3). В нашем случае это уравнение имеет вид:

Следовательно, получаем два семейства мнимых характеристик

Произведем замену
и вычислим 
Подставим полученные производные в исходное уравнение и после преобразований окончательно получим каноническую форму исходного уравнения

Пример 13.4. Найти решение уравнения

▲ Во-первых, осуществим переход к канонической форме с помощью общих интегралов уравнения характеристик (13.3). В нашем случае это уравнение имеет вид:


Это степенное уравнение первого порядка распадается на два уравнения

Следовательно, получаем два семейства мнимых характеристик

Произведем замену
и вычислим 
Подставим полученные производные в исходное уравнение и после преобразований
окончательно получим каноническую форму исходного уравнения

Приведение исходного уравнения к канонической форме в ряде случаев позволяет достаточно легко найти общее решение исходного уравнения. Поскольку в данном методе используется уравнение характеристик (13.3), то данным метод нахождения общего решения называется методом характеристик. Рассмотрим примеры нахождения решения уравнений методом характеристик.
Пример 13.5. Найти общее решение уравнения:

▲ Запишем общий вид уравнения второго порядка
и сравним коэффициенты при производных в этом уравнении и в исходном:
Осуществим переход к канонической форме с помощью общих интегралов уравнения характеристик (13.3). В нашем случае это уравнение имеет вид:
Следовательно, С1 и С2 определяют уравнения семейств характеристик. Тогда преобразование независимых переменных (13.5) будет иметь вид
Найдем 
Подставим полученные производные в исходное уравнение, и после преобразований окончательно получим каноническую форму исходного уравнения


Интегрируя дважды это уравнение, получим решение
Возвращаясь к «старым» переменным х и у, запишем окончательно общее решение исходного уравнения

Пример 13.6. Найти решение уравнения

▲ Во-первых, осуществим переход к канонической форме с помощью общих интегралов уравнения характеристик (13.3). В нашем случае это уравнение имеет вид:

которое распадается на два уравнения

для которых семейство характеристик имеет вид



приведем исходное уравнение к каноническому виду.
Вычислим 
Подставим полученные производные в исходное уравнение и после преобразований получим каноническую форму исходного уравнения


тогда уравнение (П13.6.1) принимает вид
Это однородное линейное уравнение, которое к тому же является уравнением с разделяющимися переменными. Разделив переменные, найдем

Подставив найденную функцию 

Обозначив 
и, возвращаясь к «старым» переменным получим общее решение исходного уравнения

Пример 13.7. Найти решение уравнения

▲ Во-первых, осуществим переход к канонической форме с помощью общих интегралов уравнения характеристик (13.3). В нашем случае это уравнение имеет вид:

которое распадается на два уравнения

для которых семейство характеристик имеет вид



приведем исходное уравнение к каноническому виду.
Вычислим 
Подставим полученные производные в исходное уравнение и после преобразований получим каноническую форму исходного уравнения

если а ≠ 0, то окончательный вид канонической формы исходного уравнения будет выглядеть следующим образом

Уравнение (П13.7.1) означает, что функция u(ξ,η) является вещественной (или мнимой) частью аналитической функции f(ξ+ηi). Поэтому общее решение исходного уравнения имеет вид

Пример 13.8. Найти решение уравнения

▲ Во-первых, осуществим переход к канонической форме с помощью общих интегралов уравнения характеристик (13.3). В нашем случае это уравнение имеет вид:

которое распадается на два уравнения

для которых семейство характеристик имеет вид



приведем исходное уравнение к каноническому виду.
Вычислим 
Подставим полученные производные в исходное уравнение и после преобразований получим каноническую форму исходного уравнения
окончательный вид канонической формы исходного уравнения будет выглядеть следующим образом

Уравнение (П13.8.1) означает, что функция u(ξ,η) является вещественной (или мнимой) частью аналитической функции f(ξ+ηi). Поэтому общее решение исходного уравнения имеет вид

Видео:Приведение линейного уравнения в частных производных c постоянными коэфф--ми к каноническому виду.Скачать

Поверхности второго порядка: их виды, уравнения, примеры
Видео:2. Приведение уравнений второго порядка к каноническому видуСкачать

Общее уравнение поверхности второго порядка и инварианты поворота и переноса декартовой прямоугольной системы координат
Общее уравнение поверхности второго порядка имеет вид
Для определения вида поверхности второго порядка по общему уравнению и приведения общего уравнения к каноническому, нам понадобятся выражения, которые называются инвариантами. Инварианты — это определители и суммы определителей, составленные из коэффициентов общего уравнения, которые не меняются при переносе и повороте системы координат. Эти инварианты следующие:
Следующие два выражения, называемые семиинвариантами, являются инвариантами поворота декартовой прямоугольной системы координат:
В случае, если I 3 = 0 , K 4 = 0 , семиинвариант K 3 будет также и инвариантом переноса; в случае же I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 = 0 семиинвариант K 2 = 0 будет также и инвариантом переноса.
Видео:Общее уравнение прямой привести к каноническому видуСкачать

Виды поверхностей второго порядка и приведение общего уравнения поверхности второго порядка к каноническому
I. Если I 3 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

где λ 1 , λ 2 , λ 3 — корни характеристического уравнения

В зависимости от того, какие знаки у чисел λ 1 , λ 2 , λ 3 и K 4 /I 3 , определяется вид поверхности второго порядка.
Эллипсоид
Если числа λ 1 λ 2 , λ 3 одного знака, а K 4 /I 3 имеет знак им противоположный, то общее уравнение поверхности второго порядка определяет эллипсоид.
После решения характеристического уравнения общее уравнение можно переписать в следующем виде:

Тогда полуоси эллипсоида будут



Поэтому каноническое уравнение эллипсоида имеет вид

Мнимый эллипсоид
Если числа λ 1 λ 2 , λ 3 и K 4 /I 3 одного знака, то общее уравнение поверхности второго порядка определяет мнимый эллипсоид.
После решения характеристического уравнения общее уравнение можно привести к каноническому уравнению мнимого эллипсоида:




Мнимый конус
Если числа λ 1 λ 2 , λ 3 , а K 4 = 0 , то общее уравнение поверхности второго порядка определяет мнимый конус.
После решения характеристического уравнения общее уравнение можно привести к каноническому уравнению мнимого конуса:




Однополостный гиперболоид
Если два корня характеристического уравнения имеют один знак, а третий корень и K 4 /I 3 имеют знак, им противоположный, то общее уравнение поверхности второго порядка определяет однополостный гиперболоид.
Обозначая в этом случае через λ 1 и λ 2 корни характеристического уравнения, имеющие один знак, общее уравнение можно переписать в виде:




то каноническое уравнение однополостного гиперболоида будет иметь вид

Двуполостный гиперболоид
Если два корня характеристического уравнения и K 4 /I 3 имеют один и тот же знак, а третий корень характеристического уравнения им противоположный, то общее уравнение поверхности второго порядка определяет двуполостный гиперболоид.
Обозначая в этом случае через λ 1 и λ 2 корни, имеющие один знак, общее уравнение можно переписать в виде:

Последняя запись и есть каноническое уравнение двуполостного гиперболоида.
Конус
Если два корня характеристического уравнения имеют один знак, третий корень имеет знак, им противоположный, а K 4 = 0 , то общее уравнение поверхности второго порядка определяет конус.
Считая, что одинаковый знак имеют корни λ 1 и λ 2 , общее уравнение можно переписать в виде:

известном как каноническое уравнение конуса.
II. Если I 3 = 0 , а K 4 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

где λ 1 и λ 2 — отличные от нуля корни характеристического уравнения.
Эллиптический параболоид
Если λ 1 и λ 2 имеют один знак, то общее уравнение поверхности второго порядка определяет эллиптический параболоид.
Общее уравнение можно переписать в виде:

Выбирая перед корнем знак, противоположный знаку λ 1 и λ 2 , и полагая


получим каноническое уравнение эллиптического параболоида:

Гиперболический параболоид
Если λ 1 и λ 2 имеют разные знаки, то общее уравнение поверхности второго порядка определяет гиперболический параболоид.
Обозначая через λ 1 положительный корень, а через λ 2 — отрицательный и беря перед корнем 



получим каноническое уравнение гиперболического параболоида:

III. Если I 3 = 0 , а K 4 = 0 , I 2 ≠ 0 то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

где λ 1 и λ 2 — отличные от нуля корни характеристического уравнения.
Эллиптический цилиндр
Если λ 1 и λ 2 одного знака, а K 3 /I 2 имеет знак, им противоположный, то общее уравнение поверхности второго порядка определяет эллиптический цилиндр.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:



получим каноническое уравнение эллиптического цилиндра:

Мнимый эллиптический цилиндр
Если λ 1 , λ 2 и K 3 /I 2 одного знака, то общее уравнение поверхности второго порядка определяет мнимый эллиптический цилиндр.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

Последняя запись — каноническое уравнение мнимого эллиптического цилиндра.
Мнимые пересекающиеся плоскости
Если λ 1 и λ 2 имеют один знак, а K 3 = 0 , то общее уравнение поверхности второго порядка определяет две мнимые пересекающиеся плоскости.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:



получим каноническое уравнение мнимых пересекающихся плоскостей:

Гиперболический цилиндр
Если λ 1 и λ 2 имеют разные знаки, а K 3 ≠ 0 , то общее уравнение поверхности второго порядка определяет гиперболический цилиндр.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:



Таким образом, каноническое уравнение гиперболического цилиндра:

Пересекающиеся плоскости
Если λ 1 и λ 2 имеют разные знаки, а K 3 = 0 , то общее уравнение поверхности второго порядка определяет две пересекающиеся плоскости.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:



Таким образом, пересекающихся плоскостей:

IV. Если I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

где λ 1 = I 1 — отличный от нуля корень характеристического уравнения.
Параболический цилиндр
Уравнение, получившееся после решения характеристического уравнения, можно переписать в виде:


Это уравнение параболического цилиндра, в каноническом виде оно записывается так:

V. Если I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 = 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:


Параллельные плоскости
Если K 2 , то общее уравнение поверхности второго порядка определяет две параллельные плоскости.

перепишем его в виде

Мнимые параллельные плоскости
Если K 2 > 0 , то общее уравнение поверхности второго порядка определяет две мнимые параллельные плоскости.

перепишем его в виде

Совпадающие плоскости
Если K 2 = 0 , то общее уравнение поверхности второго порядка определяет две совпадающие плоскости:

Видео:Видеоурок "Приведение к каноническому виду"Скачать

Решение примеров на определение вида поверхности второго порядка
Пример 1. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением
Решение. Найдём I 3 :

I 1 = 1 + 5 + 1 = 7 ,
Следовательно, данная поверхность — однополостный гиперболоид.

Составляем и решаем характеристическое уравнение:






Пример 2. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением
Решение. Найдём I 3 :


Следовательно, общее уравнение определяет эллиптический параболоид.

I 1 = 2 + 2 + 3 = 7 .
Решаем характеристическое уравнение:





Пример 3. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением



I 1 = 5 + 2 + 5 = 12 .
Так как I 3 = К 4 = 0 , I 2 > 0 , I 1 K 3 , то данное общее уравнение определяет эллиптический цилиндр.


Определить вид поверхности второго порядка самостоятельно, а затем посмотреть решение
Пример 4. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением
🎥 Видео
Приведение кривой второго порядка к каноническому виду. ПримерСкачать

Приводим уравнение кривой 2 порядка к каноническому видуСкачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать

Семинар №9 "Приведение уравнения второго порядка к каноническому виду"Скачать

53. Приведение общего уравнения кривой к каноническому видуСкачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Семинар 6. Приведение уравнения кривой II порядка к каноническому видуСкачать

§23 Приведение матрицы к каноническому видуСкачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Найти общее решение уравнения в частных производных первого порядка.Скачать

Кривые второго порядка. Парабола. Приведение к каноническому виду и чертежСкачать

Каноническое уравнение прямой в пространстве Преход от общего уравненияСкачать



















































































































