Назначение сервиса . Онлайн-калькулятор предназначен для решения СЛАУ методом простой итерации в онлайн режиме (см. пример решения). Для проверки решения генерируется шаблон в Excel .
- Шаг №1
- Шаг №2
- Видеоинструкция
Рассмотрим достаточные условия сходимости итерационной последовательности <xn>.
Практически, для применения метода итерации систему линейных уравнений удобно «погрузить» в одну из трёх следующих метрик:
(3.4)
Для того, чтобы отображение F, заданное в метрическом пространстве соотношениями (3.2), было сжимающим, достаточно выполнение одного из следующих условий:
а) в пространстве с метрикой ρ1: , т. е. максимальная из сумм модулей коэффициентов в правой части системы (3.2), взятых по строкам, должна быть меньше единицы.
б) в пространстве с метрикой ρ2: , т. е. максимальная из сумм модулей коэффициентов в правой части системы (3.2), взятых по столбцам, должна быть меньше единицы.
в) в пространстве с метрикой ρ3: , т. е. сумма квадратов при неизвестных в правой части системы (3.2) должна быть меньше единицы
Пример . Вычислить два приближения методом простой итерации. Оценить погрешность второго приближения. В качестве начального приближения выбрать x 0 =(0; 0; 0).
Так как диагональные элементы системы являются преобладающими, то приведем систему к нормальному виду:
Последовательные приближения будем искать по формулам:
Получаем:
x 1 =(-1.9022; 0.4889; 2.1456), x 2 =(-1.1720; 0.6315; 1.2389).
Для оценки погрешности в метрике ρ1 вычисляем коэффициент μ .
Вычисляем погрешность:
При большом числе неизвестных схема метода Гаусса, дающая точное решение, становится весьма сложной. В этом случае для решения СЛАУ иногда удобнее пользоваться методом простой итерации.
- Метод итераций для системы уравнений в Excel
- Итерационные методы решения системы линейных алгебраических уравнений
- Общие сведения об итерационных методах или методе простой итерации
- Метод Якоби
- Метод Зейделя
- Метод простой итерации
- Итерационные методы решения СЛАУ
- Сущность итерационных методов решения систем линейных уравнений
- Метод Якоби (метод простых итераций СЛАУ)
- Готовые работы на аналогичную тему
- Метод Гаусса-Зейделя
- 🌟 Видео
Видео:Как привести матрицу к ступенчатому виду - bezbotvyСкачать
Метод итераций для системы уравнений в Excel
Для вычисления точности epsilon .
Итерация №1: =ABS(B7)-ABS(B6);=ABS(C7)-ABS(C6);=ABS(D7)-ABS(D6)
Итерация №2: =ABS(B8)-ABS(B7);=ABS(C8)-ABS(C7);=ABS(D8)-ABS(D7)
Скачать шаблон решения.
Видео:Метод простых итераций пример решения нелинейных уравненийСкачать
Итерационные методы решения системы линейных алгебраических уравнений
В данной статье мы расскажем общие сведения об итерационных методах решения СЛАУ, познакомим с методом Зейделя и Якоби, а также приведем примеры решения систем линейных уравнений при помощи данных методов.
Видео:Метод простой итерации Пример РешенияСкачать
Общие сведения об итерационных методах или методе простой итерации
Метод итерации — это численный и приближенный метод решения СЛАУ.
Суть: нахождение по приближённому значению величины следующего приближения, которое является более точным. Метод позволяет получить значения корней системы с заданной точностью в виде предела последовательности некоторых векторов (итерационный процесс). Характер сходимости и сам факт сходимости метода зависит от выбора начального приближения корня x 0 .
Рассмотрим систему A x = b .
Чтобы применить итерационный метод, необходимо привести систему к эквивалентному виду x = B x + d . Затем выбираем начальное приближение к решению СЛАУ x ( 0 ) = ( x 1 0 , x 2 0 , . . . x m 0 ) и находим последовательность приближений к корню.
Для сходимости итерационного процесса является достаточным заданное условие В 1 . Окончание итерации зависит от того, какой итерационный метод применили.
Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать
Метод Якоби
Метод Якоби — один из наиболее простых методов приведения системы матрицы к виду, удобному для итерации: из 1-го уравнения матрицы выражаем неизвестное x 1 , из 2-го выражаем неизвестное x 2 и т.д.
Результатом служит матрица В , в которой на главной диагонали находятся нулевые элементы, а все остальные вычисляются по формуле:
b i j = — a i j / a i i , i , j = 1 , 2 . . . , n
Элементы (компоненты) вектора d вычисляются по следующей формуле:
d i = b i / a i i , i = 1 , 2 , . . . , n
Расчетная формула метода простой итерации:
x ( n + 1 ) = B x ( x ) + d
Матричная запись (координатная):
x i ( n + 1 ) = b i 1 x n 1 + b i 2 x ( n ) 2 + . . . + b
Критерий окончания в методе Якоби:
x ( n + 1 ) — x ( n ) ε 1 , где ε 1 = 1 — B B ε
В случае если B 1 / 2 , то можно применить более простой критерий окончания итераций:
x ( n + 1 ) — x ( n ) ε
Решить СЛАУ методом Якоби:
10 x 1 + x 2 — x 3 = 11 x 1 + 10 x 2 — x 3 = 10 — x 1 + x 2 + 10 x 3 = 10
Необходимо решить систему с показателем точности ε = 10 — 3 .
Приводим СЛАУ к удобному виду для итерации:
x 1 = — 0 , 1 x 2 + 0 , 1 x 3 + 1 , 1 x 2 = — 0 , 1 x 1 + 0 , 1 x 3 + 1 x 3 = 0 , 1 x 1 — 0 , 1 x 2 + 1
Выбираем начальное приближение, например: x ( 0 ) = 1 , 1 1 1 — вектор правой части.
В таком случае, первая итерация имеет следующий внешний вид:
x 1 ( 1 ) = — 0 , 1 × 1 + 0 , 1 × 1 + 1 , 1 = 1 , 1 x 2 ( 1 ) = — 0 , 1 × 1 , 1 + 0 , 1 + 1 = 0 , 99 x 3 ( 1 ) = 0 , 1 × 1 , 1 — 0 , 1 × 1 + 1 = 1 , 01
Аналогичным способом вычисляются приближения к решению:
x ( 2 ) = 1 , 102 0 , 991 1 , 011 , x ( 3 ) = 1 , 102 0 , 9909 1 , 0111 , x ( 4 ) = 1 , 10202 0 , 99091 1 , 01111
Находим норму матрицы В , для этого используем норму B ∞ .
Поскольку сумма модулей элементов в каждой строке равна 0,2, то B ∞ = 0 , 2 1 / 2 , поэтому можно вычислить критерий окончания итерации:
x ( n + 1 ) — x ( n ) ε
Далее вычисляем нормы разности векторов:
x ( 3 ) — x ( 2 ) ∞ = 0 , 002 , x ( 4 ) — x ( 3 ) ∞ = 0 , 00002 .
Поскольку x ( 4 ) — x ( 3 ) ∞ ε , то можно считать, что мы достигли заданной точности на 4-ой итерации.
x 1 = 1 , 102 ; x 2 = 0 , 991 ; x 3 = 1 ,01 1 .
Видео:Решение системы уравнений методом ГауссаСкачать
Метод Зейделя
Метод Зейделя — метод является модификацией метода Якоби.
Суть: при вычислении очередного ( n + 1 ) — г о приближения к неизвестному x i при i > 1 используют уже найденные ( n + 1 ) — е приближения к неизвестным x 1 , x 2 , . . . , x i — 1 , а не n — о е приближение, как в методе Якоби.
x i ( n + 1 ) = b i 1 x 1 ( n + 1 ) + b i 2 x 2 ( n + 1 ) + . . . + b i , i — 1 x i — 2 ( n + 1 ) + b i , i + 1 x i + 1 ( n ) +
+ . . . + b i m x m ( n ) + d i
За условия сходимости и критерий окончания итераций можно принять такие же значения, как и в методе Якоби.
Решить СЛАУ методом Зейделя. Пусть матрица системы уравнений А — симметричная и положительно определенная. Следовательно, если выбрать начальное приближение, метод Зейделя сойдется. Дополнительных условий на малость нормы некоторой матрицы не накладывается.
Решим 3 системы уравнений:
2 x 1 + x 2 = 3 x 1 — 2 x 2 = 1 , x 1 + 2 x 2 = 3 2 x 1 — x 2 = 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1
Приведем системы к удобному для итерации виду:
x 1 ( n + 1 ) = — 0 , 5 x 2 ( n ) + 1 , 5 x 2 ( n + 1 ) = 0 , 5 x 1 ( n + 1 ) + 0 , 5 , x 1 ( n + 1 ) = — 2 x 2 ( n ) + 3 x 2 ( n + 1 ) = 2 x 1 ( n + 1 ) — 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1 .
Отличительная особенность, условие сходимости выполнено только для первой системы:
Вычисляем 3 первых приближения к каждому решению:
1-ая система: x ( 0 ) = 1 , 5 — 0 , 5 , x ( 1 ) = 1 , 75 0 , 375 , x ( 2 ) = 1 , 3125 0 , 1563 , x ( 3 ) = 1 , 4219 0 , 2109
Решение: x 1 = 1 , 4 , x 2 = 0 , 2 . Итерационный процесс сходится.
2-ая система: x ( 0 ) = 3 — 1 , x ( 1 ) = 5 9 , x ( 2 ) = — 15 — 31 , x ( 3 ) = 65 129
Итерационный процесс разошелся.
Решение: x 1 = 1 , x 2 = 2
3-я система: x ( 0 ) = 1 , 5 2 , x ( 1 ) = 2 — 6 , x ( 2 ) = 0 2 , x ( 3 ) = 0 2
Итерационный процесс зациклился.
Решение: x 1 = 1 , x 1 = 2
Видео:Решение систем уравнений методом подстановкиСкачать
Метод простой итерации
Если А — симметричная и положительно определенная, то СЛАУ приводят к эквивалентному виду:
x = x — τ ( A x — b ) , τ — итерационный параметр.
Расчетная формула имеет следующий внешний вид:
x ( n + 1 ) = x ( n ) — τ ( A x n — b ) .
Здесь B = E — τ A и параметр τ > 0 выбирают таким образом, чтобы по возможности сделать максимальной величину B 2 .
Пусть λ m i n и λ m a x — максимальные и минимальные собственные значения матрицы А .
τ = 2 / ( λ m i n + λ m a x ) — оптимальный выбор параметра. В этом случае B 2 принимает минимальное значение, которое равняется ( λ m i n + λ m a x ) / ( λ m i n — λ m a x ) .
Видео:Метод итерацийСкачать
Итерационные методы решения СЛАУ
Вы будете перенаправлены на Автор24
Для решения систем линейных уравнений используется два основных метода решений, прямые методы, также называемые точными и итерационные методы, при использовании которых ответ в любом случае будет приближённым.
Особенность прямых методов состоит в том, что вычисления в них всегда проводятся точно, например, с использованием целых чисел, но при этом эти методы трудно применимы для вычисления решений для больших систем. К прямому методу относится, например, метод Крамера.
Ниже подробно рассмотрены итерационные методы решения СЛАУ.
Видео:2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)Скачать
Сущность итерационных методов решения систем линейных уравнений
Как уже отмечалось выше, итерационные методы в принципе являются приближёнными. Их сущность состоит в том, что сначала записывается некоторая последовательность столбцов матрицы, после чего производится поочередное вычисление каждого столбца. Каждый новый столбец вычисляется на основе вычисленных предыдущих, при этом с каждым вычислением получается всё более точное приближение искомого решения. Когда достигнута необходимая точность, процесс вычисления прерывают и в качестве решения используют последний вычисленный столбец.
Процесс вычисления одного столбца называется итерацией.
Различают несколько основных способов итерационного решения СЛАУ:
Видео:Решение нелинейного уравнения методом простых итераций (программа)Скачать
Метод Якоби (метод простых итераций СЛАУ)
Рассмотрим систему уравнений, с коэффициентами, которые можно записать в виде матрицы:
$A=left(begin a_ & a_ & … & a_ \ a_ & a_ & … & a_ \ … & … & … & … \ a_ & a_ & … & a_ \ endright)$
Саму же систему уравнений можно записать в виде равенства $A cdot X = F$, где $X$ — вектор-столбец собственных значений системы, а $F$ — вектор-столбец свободных членов.
Метод состоит в том, чтобы в каждом уравнении системы выразить соответственно $x_1, x_2,…, x_n$ и затем получить новую матрицу $B$, у которой элементы главной диагонали принимают нулевые значения.
В общем виде формула для вычисления корней уравнений записывается так: $overrightarrow= Boverrightarrow + overrightarrow$
Добиться такого вида от системы можно следующими способами:
Готовые работы на аналогичную тему
$B= E – D^A=D^(D-A), overrightarrow = D^overrightarrow;$
Здесь $D$ — матрица, у которой нулевые все элементы, кроме элементов на главной диагонали, а на главной диагонали находятся соответствующие элементы матрицы $A$. Матрицы $U$ и $L$ означают верхнетреугольную матрицу и нижнетреугольную соответственно; их значимые элементы соответствуют частям матрицы $A$. Буквой $Е$ же обозначается единичная матрица соответствующей размерности.
Процедура нахождения корней тогда запишется так:
$overrightarrow^= Boverrightarrow^ + overrightarrow$
Для конкретного элемента она будет выглядеть так:
$x_^=frac(b_i — sumlimits_ a_ijcdot x_j^(k)left(1right)$, где $i=1,2,…, n$
буквой $(k)$ во всех формулах выше обозначается номер итерации, сама же формула $(1)$ называется рекуррентной.
Окончание вычисления происходит в том случае, если разница между вычислениями в двух соседних итераций составляет не более чем $ε_1$:
В упрощённой форме условие окончания итераций выглядит как $||x^-x^||$
Порядок решения СЛАУ методом Якоби такой:
- Приведение системы уравнений к виду, в котором на каждой строчке выражено какое-либо неизвестное значение системы.
- Произвольный выбор нулевого решения, в качестве него можно взять вектор-столбец свободных членов.
- Производим подстановку произвольного нулевого решения в систему уравнений, полученную под пунктом 1.
- Осуществление дополнительных итераций, для каждой из которых используется решение, полученное на предыдущем этапе.
Видео:8 Метод простой итерации Ручной счет Решение системы линейных уравнений СЛАУСкачать
Метод Гаусса-Зейделя
Сущность этого метода состоит в том, что в нём переносятся в правые части все члены уравнений, индекс при которых больше индекса, выражаемого $x$. В краткой форме это можно записать так:
$(L + D) cdot overrightarrow = -Uoverrightarrow + overrightarrow$
Сами итерации в методе Гаусса-Зейделя производятся по формуле:
$(L +D)overrightarrow^=-Uoverrightarrow^ + overrightarrow$
Метод Гаусса-Зейделя похож на метод Якоби, но здесь полученные значения переменных используются не исключительно для следующей итерации, а сразу для следующего вычисления значения $x$.
Метод простых итераций: пример решения
Дана система уравнений:
$begin 10x_1 – x_2 + 2x_3 = 6 \ -x_1 + 11x_2 – x_3 + 3x_4 = 25 \ 2x_1- x_2 + 10x_3 -x_4 = -11 \ 3x_2 – x_3 + 8x_4 = 15 end$
Решите данную систему с помощью метода простых итераций.
Выберем в качестве нулевого приближения корни $(0; 0; 0; 0)$ и подставим их в преобразованную систему:
$begin x_1 = (6 + 0 – (2 cdot 0))/10 = 0,6 \ x_2 = (25 + 0 – 0 – (3 cdot 0))/11 = 25/11 = 2,2727 // x_3 = (-11 – (2 cdot 0) + 0 + 0) /10 = -1,1 \ x_4 = (15 – (3 cdot 0) + 0) / 8 = 1,875\ end$
Проведём 5 итераций, используя на каждой результат, полученный с предыдущей и для них получим следующую таблицу:
Рисунок 1. Таблица итераций для решения СЛАУ. Автор24 — интернет-биржа студенческих работ
Продолжать вычисление можно до достижения заданной требуемой точности. Точный ответ системы — $(1; 2; -1; 1)$.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 13 02 2022
🌟 Видео
Матричный метод решения систем уравненийСкачать
Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать
Метод Гаусса решения систем линейных уравненийСкачать
МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать
Cимплексный метод решения задачи линейного программирования (ЗЛП)Скачать
Графический метод решения задачи линейного программирования (ЗЛП)Скачать
Метод Зейделя Пример РешенияСкачать
Решение слау методом итераций. Метод простых итераций c++.Скачать
Решение систем линейных уравнений, урок 5/5. Итерационные методыСкачать