Приведите уравнение к виду а икс в квадрате плюс б икс плюс ц равно 0

Приведите уравнение к виду а икс в квадрате плюс б икс плюс ц равно 0

Формулы корней квадратных уравнений

Пусть дано квадратное уравнение ax 2 + bx + c = 0 . Преобразуем квадратный трехчлен ax 2 + bx + c методом выделения полного квадрата.

Приведите уравнение к виду а икс в квадрате плюс б икс плюс ц равно 0

Обычно выражение b 2 — 4ac обозначают буквой D и называют дискриминантом квадратного уравнения ax 2 + bx + c = 0 .

Любое квадратное уравнение можно преобразовать к этому виду, удобному для того, чтобы определять число корней квадратного уравнения и находить эти корни.

Решение: a = 2, b = 4, c = 7

D = 4 * 4 — 4 * 2 * 7 = 16 — 56 = — 40

Так как D , то действительных корней нет.

2. Если D = 0 , то квадратное уравнение имеет один корень, который находится п о формуле:

Приведите уравнение к виду а икс в квадрате плюс б икс плюс ц равно 0 и это единственный корень уравнения.

4x 2 — 20x + 25 = 0

Решение: a = 4, b = -20, c = 25

D = (-20)* (-20) — 4 * 4 * 25 = 400 — 400 = 0

Так как D = 0 , то данное уравнение имеет один корень:

3. Если D > 0 , то квадратное уравнение имеет два корня:

Приведите уравнение к виду а икс в квадрате плюс б икс плюс ц равно 0

3x 2 + 8x — 11 = 0

Решение: a = 3, b = 8, c = -11

D = (-8)* (-8) — 4 * 3 * (-11) = 64 + 132 = 196

Так как D > 0 , то имеются два корня уравнения:

Содержание
  1. Квадратное уравнение
  2. Примеры
  3. Пример 1
  4. Пример 2
  5. Как разложить квадратный трёхчлен на множители?
  6. Виды квадратных уравнений
  7. Полное и неполное квадратное уравнение
  8. Как решать неполное квадратное уравнение?
  9. Способ решения, когда b=0
  10. Первый способ решения, когда c=0 (это быстрый метод)
  11. Второй способ решения, когда c=0
  12. Способ решения, когда b=0 и c=0
  13. Приведённое квадратное уравнение
  14. Геометрический смысл решения корней квадратных уравнений
  15. Квадратные неравенства. Как решать квадратные неравенства?
  16. Квадратными неравенствами называют неравенства, которые можно привести к виду (ax^2+bx+c) (⋁) (0), где (a),(b) и (с) — любые числа (причем (a≠0)), (x) – неизвестная переменная, а (⋁) – любой из знаков сравнения ((>),( к вадратные уравнения , но со знаком сравнения вместо знака равно. Примеры:
  17. Как решать квадратные неравенства?
  18. Решить квадратное уравнение онлайн
  19. Через дискриминант
  20. 📸 Видео

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Квадратное уравнение

Квадратное уравнение — это уравнение вида ax² + bx + c, где a, b, c — некоторые числа (причём обязательно a ≠ 0),

В таком уравнении:

  • x — переменная, которая присутствует в таком уравнении во второй степени,
  • a — первый коэффициент,
  • b — второй коэффициент,
  • c — свободный член.

Ещё такое уравнение называется квадратный трёхчлен, т.к. самая большая степень в нём квадрат и он состоит из 3 одночленов.

Для решения таких уравнений сначала находится дискриминант по этой формуле:

  • D корней не существует,
  • D = 0 есть один корень,
  • D > 0 есть два корня.

Пример: x² – x – 3 = 0; a = 1, b = –1, c = –3, D = (–1)² – 4×1×(–3) = 1 + 12 = 13, D > 0 есть два корня.

Когда уже точно известно, что корни существуют, и известно количество этих корней, можно приступить к их поиску с помощью этой формулы:

Пример: x² – x – 3 = 0; a = 1, b = –1, c = –3, D = 13.

x1 = (1 + √13)/2 ≈ (1 + 3,60555)/2 ≈ 2,302775

x2 = (1 – √13)/2 ≈ (1 – 3,60555)/2 ≈ -1,302775

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Примеры

Пример 1

20x² – 15x – 10 = 0

Лучше сразу выписать так: a = 20, b = – 15, c = – 10.

1. Ищем дискриминант: формула D = b² – 4ac D = (– 15)² – 4 × 20 × (– 10) = 225 + 800 = 1025; D > 0 значит есть два корня.

2. Ищем эти корни: формула корней

Приведите уравнение к виду а икс в квадрате плюс б икс плюс ц равно 0

2.1. Разбиваем формулу на две части, первый корень:

Приведите уравнение к виду а икс в квадрате плюс б икс плюс ц равно 0

Уравнение 20x² – 15x – 10 = 0, где a = 20, b = – 15, c = – 10; D =1025.

x1 = ((–(–15)) + √ 1025)/(2×20) = (15 + 32,0156) / 40 ≈ 1,17539

2.2. Второй корень:

Приведите уравнение к виду а икс в квадрате плюс б икс плюс ц равно 0

Уравнение 20x² – 15x – 10 = 0, где a = 20, b = – 15, c = – 10; D =1025.

x2 = ((–(–15)) – √ 1025)/(2×20) ≈ (15 – 32,0156) / 40 ≈ -0,42539

Пример 2

a = –1, b = 6, c = 18

Дискриминант D = b² – 4ac

D = 6² – 4×(–1)×(18) = 36 + 72 = 108, D > 0 есть два корня

a = –1, b = 6, c = 18, D = 108

x1 = ((–6) +√108)/(–2) = ((–6) + 10,3923)/(–2) = – 2,19615

x2 = ((–6) –√108)/(–2) = ((–6) – 10,3923)/(–2) = 8,19615

Как разложить квадратный трёхчлен на множители?

Продолжим с примером уравнения 20x² – 15x – 10 = 0

Мы уже нашли корни

x1 ≈ 1,17539, x2 ≈ -0,42539

Выносим коэффициент x² за скобки, и оба корня ставятся с противоположными знаками таким образом:

20x² – 15x – 10 = 20 (x – 1,17539) (x+0,42539)

Хотите проверить? Открываем скобки и проверяем

20 (x – 1,17539) (x+0,42539) = 20 (x²–1,17539x + 0,42539x–0,42539×1,17539) = 20 (x²–0,75x – 0,4999991521) =

Погрешность в 0,000016958 должна быть из-за округления в предыдущих расчётах.

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Виды квадратных уравнений

Полное и неполное квадратное уравнение

В полном уравнении присутствуют все три его члена (ax² + bx + c = 0). В противном случае уравнение неполное, например:

–x² – 9 = 0 (отсутствует bx)

x² + 16x = 0 (отсутствует с)

–5x² = 0 (отсутствуют bx и с)

Т.е. это когда коэффициент с = 0 или b = 0 (или оба одновременно равны нулю). Внимание: о том, что «a» может быть равно нулю, не говорится, т.к. таким образом уравнение станет линейным (ax + b = 0).

Как решать неполное квадратное уравнение?

Способ решения, когда b=0

5x² = 5, делим всё на 5

x = ± √1 ⇔ x = 1 или x = –1

Первый способ решения, когда c=0 (это быстрый метод)

x² + 16x = 0 (выносим x за скобки)

x (x + 16) = 0, таким образом, либо x = 0, либо то, что в скобках, равно нулю,

x = 0 или (x + 16)= 0

(x + 16)= 0 ⇔ x = – 16

Второй способ решения, когда c=0

Неполное уравнение (c=0, b=0 или когда оба равны нулю) можно решить по той же системе, как и полное, правильно выписав коэффициенты (но это долго и нерационально).

a = 1, b = 16, c = 0 (здесь отсутствует c, значит он равен нулю)

Дискриминант: D = b² – 4ac = 16² – 4×1×0 = 16² = 256 >0, есть два корня.

Ищем корни X1,2 = ((–b) ±√D)/(2×(a)) =>

x1 = ((–16) + √256)/(2×(1)) = ((–16) + 16)/2 = 0

x2 = ((–16) – √256)/(2×(1)) = ((–16) – 16)/2 = –32/2 = – 16

Способ решения, когда b=0 и c=0

Приведённое квадратное уравнение

Чтобы получить приведённое квадратное уравнение, нужно лишь разделить обе части уравнения на a:

x² + px + q = 0, где:

3x² – 6x = 0 (делим всё на 3) ⇔ x² – (6/3)x = 0 ⇔ x² – 2x = 0 (неполное приведённое)

2x² – 4x – 2 = 0 (делим всё на 2) ⇔ x² – (4/2)x – (2/2) = 0 ⇔ x² – 2x – 1 = 0 (полное приведённое)

Видео:Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

Геометрический смысл решения корней квадратных уравнений

Корни квадратного уравнения ещё являются и нулями функции, т.е. если вы ищете нули функции (в каких точках функция пересекает ось Ox), то вы их найдёте именно через этот процесс: поймёте, если они существуют, рассчитав дискриминант, затем найдёте их, используя формулу корней.

Вспомним наш пример уравнения 20x² – 15x – 10 = 0.

Узнайте также, что такое Теорема Виета и Парабола.

Видео:Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

Квадратные неравенства. Как решать квадратные неравенства?

Квадратными неравенствами называют неравенства, которые можно привести к виду (ax^2+bx+c) (⋁) (0), где (a),(b) и (с) — любые числа (причем (a≠0)), (x) – неизвестная переменная, а (⋁) – любой из знаков сравнения ((>),( к вадратные уравнения , но со знаком сравнения вместо знака равно.
Примеры:

Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Как решать квадратные неравенства?

Квадратные неравенства обычно решают методом интервалов . Ниже приведен алгоритм, как решать квадратные неравенства с дискриминантом больше нуля. Решение квадратных неравенств с дискриминантом равным нулю или меньше нуля – разобраны отдельно.

Приведите неравенство к виду (ax^2+bx+c⋁0).
Примеры:

(x^2-6x-16 корни (x_1) и (x_2). Затем запишите исходное выражение в виде (a(x-x_1 ) (x-x_2 )) Подробнее об этом можно почитать здесь .

(x^2-6x-16=0) (-9x^2+x+8=0)
(D=36-4 cdot 1 cdot (-16)=100=10^2) (D=1-4 cdot (-9) cdot 8=289)
(x_1=frac=-2) (x_1=frac=frac=-frac) (x_2=frac=8) (x_2=frac=frac=1)
((x-8)(x+2) )) то точки должны быть выколоты, если неравенство нестрогое (со знаком (≤) или (≥)), то точки должны быть закрашены.

Приведите уравнение к виду а икс в квадрате плюс б икс плюс ц равно 0 Приведите уравнение к виду а икс в квадрате плюс б икс плюс ц равно 0

Нанесенные корни разбивают числовую ось на несколько интервалов.
В первом справа интервале поставьте:
(-) знак плюс если перед скобками ничего не стоит или стоит положительное число
(-) знак минус если перед скобками стоит знак минус.
В следующих за ним интервалах поставьте чередующиеся знаки.

Приведите уравнение к виду а икс в квадрате плюс б икс плюс ц равно 0 Приведите уравнение к виду а икс в квадрате плюс б икс плюс ц равно 0

Заштрихуйте подходящие интервалы, то есть числовые промежутки :
(-) со знаком «(+)», если в неравенстве стояло «(>0)» или «(≥0)»
(-) со знаком «(-)», если в неравенстве стояло «( )) границы интервала НЕ ВХОДЯТ в решение, при этом в ответе сам интервал записывается в виде ((x_1;x_2)) – скобки круглые. При нестрогих знаках неравенства ((≤) или (≥)) — границы интервала ВХОДЯТ в решение, и ответ записывается в виде ([x_1;x_2]), с квадратными скобками на точках.

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Решить квадратное уравнение онлайн

На данной странице калькулятор онлайн помоежет решить квадратное уравнение. При решении выводится описание.

Квадратное уравнение — это уравнение вида ax 2 +bx+c=0 , где a не равно 0 .

Через дискриминант

a x 2 + b x + c = 0

Что бы решить квадратное уравнение, нужно найти все x . При подстановке должно выполняться равенство
ax 2 + bx + c = 0 .

Для начала находится дискриминант по формуле D = b 2 — 4ac :

  • Если D > 0 , уравнение имеет два корня.
  • Если D = 0 , уравнение имеет один корень.
  • Если D > 0 , уравнение не имеет корней.

Корни квадратного уравнения находятся по формуле:

📸 Видео

Алгебра 8 класс (Урок№28 - Решение квадратных уравнений вида ax2 + bx + c = 0.Формула корней кв.ур.)Скачать

Алгебра 8 класс (Урок№28 - Решение квадратных уравнений вида ax2 + bx + c = 0.Формула корней кв.ур.)

Тема: Квадратные уравнения. Урок: Уравнения вида y=ax^2 + bx +cСкачать

Тема: Квадратные уравнения. Урок: Уравнения вида y=ax^2 + bx +c

Решение квадратных уравнений (урок второй)Скачать

Решение квадратных уравнений (урок второй)

8 класс. Квадратное уравнение и его корни. Алгебра.Скачать

8 класс. Квадратное уравнение и его корни. Алгебра.

№1 Квадратное уравнение х^2+x-6=0 Дискриминант, теорема ВиетаСкачать

№1 Квадратное уравнение х^2+x-6=0 Дискриминант, теорема Виета

§31.1 Приведение уравнения кривой к каноническому видуСкачать

§31.1 Приведение уравнения кривой к каноническому виду

Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

Как решать квадратные уравнения. 8 класс. Вебинар | Математика

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график Парабола

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертеж

Приводим уравнение кривой 2 порядка к каноническому видуСкачать

Приводим уравнение кривой 2 порядка  к каноническому виду

Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Свойства квадратного корня. Уравнение х2=а, 8 классСкачать

Свойства квадратного корня. Уравнение х2=а, 8 класс
Поделиться или сохранить к себе: