Любой матрице A порядка N соответствует линейный оператор j в пространстве R N, заданный формулой j(X) = AX. Справедлива теорема.
Теорема 1. Для любой симметрической матрицы A порядка N в пространстве R N имеется ортонормированный базис, состоящий из собственных векторов матрицы А.
Алгоритм построения ортонормированного базиса.
1. Составить характеристическое уравнение матрицы det(A— LE) = 0 и найти все собственные значения матрицы A.
2. Для каждого собственного значения составить систему однородных линейных уравнений (A— LE)X = 0 и найдем фундаментальную систему решений и ортогонализуем ее.
3. Объединяем все полученные ортогональные системы и нормируем полученный базис. Получим ортонормированный базис, состоящий из собственных векторов матрицы А.
Пример. Найти ортонормированный базис пространства, состоящий из собственных векторов матрицы .
1. Составить характеристическое уравнение матрицы и найдем все собственные значения матрицы A
.
2. Найдем собственные векторы, решая системы уравнений:
,,,
Общее решение первой системы (0, 0, X3 ), фундаментальное решение (0, 0, 1).
Общее решение второй системы (X2, X2, 0 ), фундаментальное решение (1, 1, 0).
Общее решение третьей системы (-X2, X2, 0 ), фундаментальное решение (-1, 1, 0).
Ортогонализовать в данном случае не нужно, так как каждая фундаментальная система решений состоит из одного вектора.
3. Объединяя и нормируя, полученные векторы получим ортонормированный базис пространства, состоящий из собственных векторов матрицы А: .
Отсюда получаем алгоритм приведения квадратичной формы к каноническому виду:
1. Составить матрицу квадратичной формы.
2. Составить характеристическое уравнение матрицы det(A— LE) = 0 и найти все собственные значения L1, L2, . LN матрицы A.
3. Составить квадратичную форму канонического вида F = (при необходимости методом, указанным выше, можно найти канонический базис, в котором квадратичная форма имеет канонический вид.
Пример. Квадратичная форма F(X1, X2, x3) = в силу предыдущего примера имеет канонический вид
F = канонический базис .
Рассмотрим преобразование общей поверхности s второго порядка, заданной уравнением (1) к частным случаям.
1. Выполним ортогональное преобразование поверхности s, при котором квадратичная форма перейдет в квадратичную форму канонического вида , где все собственные значения L1, L2, . LN матрицы A =(Aij). При этом поверхность s в новой системе координат OY1Y2Y3 будет иметь уравнение
. (22)
2. Если LI ≠ 0, то соответствующий линейный член A’i в уравнении (2) можно исключить, выполнив преобразование по формулам , если LI ≠ 0, и Zi = Yi, если LI = 0. Уравнение поверхности s примет вид:
. (23)
Теперь возможны случаи.
1) Все A‘I = 0 и B« = 0. Тогда уравнение (23) поверхности s представим в виде: . Это поверхность видов 2, 6, 10, 13, 17.
2) Все A‘I = 0 и B« ≠ 0. Тогда уравнение (23) поверхности s представим в виде: . Это поверхность видов 1, 3, 4, 5, 9, 11, 12, 15.
2) В (3) найдется A‘J ≠ 0. ви B« ≠ 0. Тогда выполнив преобразование (23) по формулам , Wi = Yi, если I ≠J. Уравнение поверхности s примет вид: .
Это поверхность видов 7, 8, 14.
Пример 2. Определим вид поверхности, определяемой уравнением
.
В силу примера в предыдущем параграфе квадратичная форма поверхности имеет канонический вид F = в каноническом базисе . Напишем преобразования координат
.
После этого уравнение поверхности примет вид:
Выделим полный квадрат , и выполним преобразование переменных по формулам: и получим
.
Разделим обе части на 9/8 получим уравнение
Пример 1. Определим вид кривой, определяемой уравнением .
Рассмотрим квадратичную форму кривой , и приведем ее к каноническому виду. Составим
Характеристическое уравнение кривой и найдем собственные значения и собственные векторы.
.
Составим векторные уравнения, для нахождения собственных векторов
.
Тогда квадратичная форма поверхности имеет канонический вид F = в каноническом базисе, . Напишем преобразования координат . После этого уравнение поверхности примет вид: Выделим полный квадрат , и выполним преобразование переменных по формулам:
И получим . Разделим обе части на 17/5 получим уравнение гиперболы.
.
- Приведение кривой второго порядка к каноническому виду
- Написать реферат
- Поверхности второго порядка: их виды, уравнения, примеры
- Общее уравнение поверхности второго порядка и инварианты поворота и переноса декартовой прямоугольной системы координат
- Виды поверхностей второго порядка и приведение общего уравнения поверхности второго порядка к каноническому
- Эллипсоид
- Мнимый эллипсоид
- Мнимый конус
- Однополостный гиперболоид
- Двуполостный гиперболоид
- Конус
- Эллиптический параболоид
- Гиперболический параболоид
- Эллиптический цилиндр
- Мнимый эллиптический цилиндр
- Мнимые пересекающиеся плоскости
- Гиперболический цилиндр
- Пересекающиеся плоскости
- Параболический цилиндр
- Параллельные плоскости
- Мнимые параллельные плоскости
- Совпадающие плоскости
- Решение примеров на определение вида поверхности второго порядка
- Определить вид поверхности второго порядка самостоятельно, а затем посмотреть решение
- 🎦 Видео
Видео:Семинар №9 "Приведение уравнения второго порядка к каноническому виду"Скачать
Приведение кривой второго порядка к каноническому виду
Пример . Дано уравнение кривой 3x 2 +10xy+3y 2 -2x-14y-13=0 в системе координат (0,i,j), где i =(1,0) и j =(0,1).
1. Определить тип кривой.
2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат.
3. Найти соответствующие преобразования координат.
Решение. Приводим квадратичную форму B=3x 2 +10xy+3y 2 к главным осям, то есть к каноническому виду. Матрица этой квадратичной формы . Находим собственные числа и собственные векторы этой матрицы:
Характеристическое уравнение:
; λ1=-2, λ2=8. Вид квадратичной формы: .
Исходное уравнение определяет гиперболу.
Заметим, что вид квадратичной формы неоднозначен. Можно записать 8x1 2 -2y1 2 , однако тип кривой остался тот же – гипербола.
Находим главные оси квадратичной формы, то есть собственные векторы матрицы B. .
Собственный вектор, отвечающий числу λ=-2 при x1=1: x 1=(1,-1).
В качестве единичного собственного вектора принимаем вектор , где – длина вектора x 1.
Координаты второго собственного вектора, соответствующего второму собственному числу λ=8, находим из системы
.
x 2=(1,1); .
Итак, имеем новый ортонормированный базис ( i 1, j 1).
По формулам (5) пункта 4.3.3. переходим к новому базису:
или
Задание. Привести к каноническому виду уравнение линии 17x 2 + 12xy + 8y 2 — 20 = 0.
Решение.Пример 2
Задание. Привести к каноническому виду уравнение линии второго порядка, используя теорию квадратичных форм и определить её вид. Уравнение кривой второго порядка путем выделения полного квадрата привести к каноническому виду. Решение
Задание. Привести уравнение к каноническому виду: 16x 2 — 9y 2 -64x — 8y +199 = 0.
Решение.Скачать решение
Задание. Установить, что каждое из следующих уравнений определяет гиперболу, и найти координаты ее центра С, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис. Изобразить гиперболу на чертеже, указав фокусы, асимптоты и директрисы.
Решение:Скачать решение
Задание. Установить, что каждое из следующих уравнений определяет эллипс, и найти координаты его центра С, полуоси, эксцентриситет, уравнения директрис. Изобразить эллипс на чертеже, указав оси симметрии, фокусы и директрисы.
Решение:Скачать решение
Видео:Приведение кривой второго порядка к каноническому виду. ПримерСкачать
Написать реферат
Пусть в пространстве задана прямоугольная декартова система координат . Рассмотрим общее уравнение поверхности второго порядка, коэффициенты в котором обозначены специальным образом
где — числа, причем хотя бы одно из чисел отлично от нуля.
Выделим квадратичную часть выражения, стоящего в уравнении слева,
Определить вид кривой . Примеры решения и оформления задач контрольной работы
Такое выражение называется квадратичной формой от трех переменных . Составим матрицу
Эта матрица называется матрицей квадратичной формы . Она является симметричной , то есть , или, другими словами, . Следует обратить внимание на то, как эта матрица составлена. На диагонали у нее стоят коэффициенты при квадратах переменных, а в остальных местах — половины коэффициентов при произведениях переменных.
Исходная система координат является прямоугольной, поэтому скалярное произведение векторов с координатными столбцами , задается формулой . Сформулируем две теоремы, позволяющие пользоваться приведенным ниже алгоритмом.
Пусть — матрица квадратичной формы . По сформулированной теореме у нее существует ортонормированный базис из собственных векторов. Обозначим их , , , и пусть эти векторы имеют координаты
Базис i , j , k назовем старым, а базис — новым. Тогда матрица перехода 19.1.4.а будет иметь вид
Выберем новую систему координат так, что начало координат не изменяется, а новые базисные векторы , , задают направления новых координатных осей , , (рис. 19.8).
Тогда координаты точки являются координатами ее радиус-вектора и, следовательно, при замене базиса меняются по формуле (18.1)
Если мы из равенства (19.8) выпишем выражение , , через новые переменные , , и подставим в уравнение (19.7), то обнаружим, что квадратичная его часть и линейная часть преобразуются независимо друг от друга. В результате уравнение в системе координат имеет вид
Хотя бы одно из чисел , , отлично от нуля, иначе матрица была бы нулевой.
Рассмотрим три случая.
Пусть все собственные числа , , отличны от нуля. В уравнении (19.9) выделим полные квадраты
Выполним параллельный перенос системы координат , взяв за новое начало системы координат точку (см. формулы (13.21)). Тогда в новой системе координат уравнение запишется в виде
Здесь возможны следующие варианты.
Пусть . Перенесем в правую часть и поделим обе части на , получим
- Если числа , , отрицательны, то ни одна точка пространства не удовлетворяет этому уравнению. Говорят, что оно определяет мнимый эллипсоид .
- Если числа , , положительны, то уравнение является каноническим уравнением эллипсоида.
- Если одно из чисел , , отрицательно, а остальные положительны, то (после переименования осей) получим каноническое уравнение однополостного гиперболоида.
- Если одно из чисел , , положительно, остальные отрицательны, то (после переименования осей) получим каноническое уравнение двуполостного гиперболоида.
- Если все числа , , положительны, то только начало координат удовлетворяет этому уравнению. Поверхность выродилась в точку.
- Если одно из чисел , , отрицательно, а два положительны, то (после переименования осей) получим каноническое уравнение конуса.
Если же два числа отрицательны или все три отрицательны, то, умножив обе части уравнения на , получим случай 2 или случай 1.
Пусть . Преобразуем уравнение к виду
Поделим обе части уравнения на и выполним параллельный перенос осей координат, взяв за новое начало координат точку . Получим уравнение
- Если числа и положительны, то это — каноническое уравнение эллиптического параболоида.
- Если 0>$» src=»http://sesia5.ru/vmat/gl/ris/img3079-1.png» 3079.png» width=51 align=middle border=0> , , получим каноническое уравнение гиперболического параболоида.
Если числа и отрицательны или , 0>$» src=»http://sesia5.ru/vmat/gl/ris/img3082-1.png» 3082.png» width=51 align=middle border=0> , то сменим направление у оси на противоположное и получим либо случай 1, либо случай 2.
Анализ поверхностей с таким уравнением предоставляем читателю.
Пусть только одно из чисел , , отлично от нуля. Допустим, что . Тогда в уравнении (19.9) выделим полный квадрат по переменному
Пусть хотя бы одно из чисел , отлично от нуля. Тогда на плоскости возьмем две перпендикулярные прямые и . Возьмем новую систему координат, у которой начало будет в точке , ось направлена по оси , ось направлена вдоль второй прямой, а ось направлена вдоль первой прямой. Тогда уравнение примет вид
Это — уравнение цилиндрической поверхности, образующие которой параллельны оси , а направляющей служит кривая на плоскости с уравнением
Анализ возможных поверхностей оставляем читателю.
Пусть . Тогда уравнение принимает вид
Если число справа положительно, то уравнение определяет две плоскости
Если число справа равно нулю, то уравнение определяет одну плоскость
Итак, получен алгоритм, позволяющий установить, какая поверхность задается уравнением второго порядка и каково ее положение в пространстве.
к каноническому виду.
Решение. Квадратичная форма имеет вид
Выписываем ее матрицу
Находим ее собственные числа. Для этого запишем характеристическое уравнение
После вычисления определителя получим
Подбором находим один корень . Преобразуем уравнение, выделяя множитель
Находим два других корня характеристического уравнения и .
Находим собственные векторы. Для собственного числа для координат собственного вектора получим систему уравнений
Решая ее находим, что фундаментальная система решений содержит только одно решение, и в качестве собственного вектора можно взять . Для собственного числа для координат собственного вектора получим систему уравнений
Отсюда находим собственный вектор . Для собственного числа для координат собственного вектора получим систему уравнений
Отсюда находим собственный вектор .
Легко проверить, что , то есть собственные векторы попарно ортогональны. Их длины равны соответственно , , . Поэтому векторы нового ортонормированного базиса будут иметь координаты
Матрица перехода имеет вид
Старые координаты связаны с новыми уравнением , то есть
( 19 .10) |
Подставим эти выражения в исходное уравнение. Квадратичная форма примет вид, в котором произведения переменных будут отсутствовать, а коэффициентами при квадратах будут служить собственные числа
Приводим подобные члены
Выделим полные квадраты
Выполняем параллельный перенос осей координат
Новое начало системы координат имеет координаты
В исходной системе координат точка в соответствии с формулами (19.10) имеет координаты
Рис. 19 . 9 .Система координат
В новой системе координат (рис. 19.9) уравнение принимает канонический вид
Это уравнение является каноническим уравнением однополостного гиперболоида. Его центр находится в точке , две вещественные оси параллельны векторам , , вещественные полуоси равны , . Мнимая ось параллельна вектору , мнимая полуось равна . Изображение гиперболоида приведено на рисунке 19.10.
Рис. 19 . 10 .Изображение гиперболоида
Задачи, приводящие к дифференциальным уравнениям. Обыкновенное дифференциальное уравнения (ОДУ). Интегрирование в квадратурах. Фазовое пространство. Изоклины. Интегральная кривая. Задача Коши для ОДУ. Теорема существования и единственности решения задачи Коши. Общее и частное решения. ОДУ высших порядков. Понижение порядка. Краевая задача. Однородное и неоднородное ОДУ, принцип суперпозиции решений. Фундаментальная система решений, определитель Вронского. Метод Лагранжа вариации произвольных постоянных. Построение фундаментальной системы решений по корням характеристического уравнения. Системы ОДУ.
Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать
Поверхности второго порядка: их виды, уравнения, примеры
Видео:Семинар 6. Приведение уравнения кривой II порядка к каноническому видуСкачать
Общее уравнение поверхности второго порядка и инварианты поворота и переноса декартовой прямоугольной системы координат
Общее уравнение поверхности второго порядка имеет вид
Для определения вида поверхности второго порядка по общему уравнению и приведения общего уравнения к каноническому, нам понадобятся выражения, которые называются инвариантами. Инварианты — это определители и суммы определителей, составленные из коэффициентов общего уравнения, которые не меняются при переносе и повороте системы координат. Эти инварианты следующие:
Следующие два выражения, называемые семиинвариантами, являются инвариантами поворота декартовой прямоугольной системы координат:
В случае, если I 3 = 0 , K 4 = 0 , семиинвариант K 3 будет также и инвариантом переноса; в случае же I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 = 0 семиинвариант K 2 = 0 будет также и инвариантом переноса.
Видео:2. Приведение уравнений второго порядка к каноническому видуСкачать
Виды поверхностей второго порядка и приведение общего уравнения поверхности второго порядка к каноническому
I. Если I 3 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:
,
где λ 1 , λ 2 , λ 3 — корни характеристического уравнения
.
В зависимости от того, какие знаки у чисел λ 1 , λ 2 , λ 3 и K 4 /I 3 , определяется вид поверхности второго порядка.
Эллипсоид
Если числа λ 1 λ 2 , λ 3 одного знака, а K 4 /I 3 имеет знак им противоположный, то общее уравнение поверхности второго порядка определяет эллипсоид.
После решения характеристического уравнения общее уравнение можно переписать в следующем виде:
.
Тогда полуоси эллипсоида будут
, , .
Поэтому каноническое уравнение эллипсоида имеет вид
.
Мнимый эллипсоид
Если числа λ 1 λ 2 , λ 3 и K 4 /I 3 одного знака, то общее уравнение поверхности второго порядка определяет мнимый эллипсоид.
После решения характеристического уравнения общее уравнение можно привести к каноническому уравнению мнимого эллипсоида:
,
, , .
Мнимый конус
Если числа λ 1 λ 2 , λ 3 , а K 4 = 0 , то общее уравнение поверхности второго порядка определяет мнимый конус.
После решения характеристического уравнения общее уравнение можно привести к каноническому уравнению мнимого конуса:
,
, , .
Однополостный гиперболоид
Если два корня характеристического уравнения имеют один знак, а третий корень и K 4 /I 3 имеют знак, им противоположный, то общее уравнение поверхности второго порядка определяет однополостный гиперболоид.
Обозначая в этом случае через λ 1 и λ 2 корни характеристического уравнения, имеющие один знак, общее уравнение можно переписать в виде:
.
, , ,
то каноническое уравнение однополостного гиперболоида будет иметь вид
.
Двуполостный гиперболоид
Если два корня характеристического уравнения и K 4 /I 3 имеют один и тот же знак, а третий корень характеристического уравнения им противоположный, то общее уравнение поверхности второго порядка определяет двуполостный гиперболоид.
Обозначая в этом случае через λ 1 и λ 2 корни, имеющие один знак, общее уравнение можно переписать в виде:
.
Последняя запись и есть каноническое уравнение двуполостного гиперболоида.
Конус
Если два корня характеристического уравнения имеют один знак, третий корень имеет знак, им противоположный, а K 4 = 0 , то общее уравнение поверхности второго порядка определяет конус.
Считая, что одинаковый знак имеют корни λ 1 и λ 2 , общее уравнение можно переписать в виде:
,
известном как каноническое уравнение конуса.
II. Если I 3 = 0 , а K 4 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:
,
где λ 1 и λ 2 — отличные от нуля корни характеристического уравнения.
Эллиптический параболоид
Если λ 1 и λ 2 имеют один знак, то общее уравнение поверхности второго порядка определяет эллиптический параболоид.
Общее уравнение можно переписать в виде:
.
Выбирая перед корнем знак, противоположный знаку λ 1 и λ 2 , и полагая
,
,
получим каноническое уравнение эллиптического параболоида:
.
Гиперболический параболоид
Если λ 1 и λ 2 имеют разные знаки, то общее уравнение поверхности второго порядка определяет гиперболический параболоид.
Обозначая через λ 1 положительный корень, а через λ 2 — отрицательный и беря перед корнем знак минус, переписываем уравнение в виде:
.
, ,
получим каноническое уравнение гиперболического параболоида:
.
III. Если I 3 = 0 , а K 4 = 0 , I 2 ≠ 0 то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:
,
где λ 1 и λ 2 — отличные от нуля корни характеристического уравнения.
Эллиптический цилиндр
Если λ 1 и λ 2 одного знака, а K 3 /I 2 имеет знак, им противоположный, то общее уравнение поверхности второго порядка определяет эллиптический цилиндр.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:
.
, ,
получим каноническое уравнение эллиптического цилиндра:
.
Мнимый эллиптический цилиндр
Если λ 1 , λ 2 и K 3 /I 2 одного знака, то общее уравнение поверхности второго порядка определяет мнимый эллиптический цилиндр.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:
.
Последняя запись — каноническое уравнение мнимого эллиптического цилиндра.
Мнимые пересекающиеся плоскости
Если λ 1 и λ 2 имеют один знак, а K 3 = 0 , то общее уравнение поверхности второго порядка определяет две мнимые пересекающиеся плоскости.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:
.
, ,
получим каноническое уравнение мнимых пересекающихся плоскостей:
.
Гиперболический цилиндр
Если λ 1 и λ 2 имеют разные знаки, а K 3 ≠ 0 , то общее уравнение поверхности второго порядка определяет гиперболический цилиндр.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:
,
, .
Таким образом, каноническое уравнение гиперболического цилиндра:
.
Пересекающиеся плоскости
Если λ 1 и λ 2 имеют разные знаки, а K 3 = 0 , то общее уравнение поверхности второго порядка определяет две пересекающиеся плоскости.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:
,
, .
Таким образом, пересекающихся плоскостей:
.
IV. Если I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:
,
где λ 1 = I 1 — отличный от нуля корень характеристического уравнения.
Параболический цилиндр
Уравнение, получившееся после решения характеристического уравнения, можно переписать в виде:
,
.
Это уравнение параболического цилиндра, в каноническом виде оно записывается так:
.
V. Если I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 = 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:
,
.
Параллельные плоскости
Если K 2 , то общее уравнение поверхности второго порядка определяет две параллельные плоскости.
,
перепишем его в виде
.
Мнимые параллельные плоскости
Если K 2 > 0 , то общее уравнение поверхности второго порядка определяет две мнимые параллельные плоскости.
,
перепишем его в виде
.
Совпадающие плоскости
Если K 2 = 0 , то общее уравнение поверхности второго порядка определяет две совпадающие плоскости:
.
Видео:Приведение поверхности второго порядка к каноническому виду ортогональным преобразованием.Скачать
Решение примеров на определение вида поверхности второго порядка
Пример 1. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением
Решение. Найдём I 3 :
(как вычислить определитель).
I 1 = 1 + 5 + 1 = 7 ,
Следовательно, данная поверхность — однополостный гиперболоид.
.
Составляем и решаем характеристическое уравнение:
;
.
,
, , .
Пример 2. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением
Решение. Найдём I 3 :
.
.
Следовательно, общее уравнение определяет эллиптический параболоид.
.
I 1 = 2 + 2 + 3 = 7 .
Решаем характеристическое уравнение:
.
.
,
, .
Пример 3. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением
,
,
,
I 1 = 5 + 2 + 5 = 12 .
Так как I 3 = К 4 = 0 , I 2 > 0 , I 1 K 3 , то данное общее уравнение определяет эллиптический цилиндр.
.
.
Определить вид поверхности второго порядка самостоятельно, а затем посмотреть решение
Пример 4. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением
🎦 Видео
Приведение ДУ 2 порядка в частных производных к каноническому видуСкачать
Привести квадратичную форму к каноническому видуСкачать
Приводим уравнение кривой 2 порядка к каноническому видуСкачать
Приведение кривой второго порядка к каноническому виду. ТемаСкачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать
53. Приведение общего уравнения кривой к каноническому видуСкачать
13. Общие уравнения прямой в пространстве / приведение к каноническому видуСкачать
Видеоурок "Приведение к каноническому виду"Скачать
Лекция 7. Приведение общего уравнения кривой второго порядка к каноническому видуСкачать
Поворот и параллельный перенос координатных осей. ЭллипсСкачать
Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать
Поверхности второго порядкаСкачать
Приведение линейного уравнения в частных производных c постоянными коэфф--ми к каноническому виду.Скачать