Приведение системы уравнений к нормальному виду

Итерационные методы решения системы линейных алгебраических уравнений

В данной статье мы расскажем общие сведения об итерационных методах решения СЛАУ, познакомим с методом Зейделя и Якоби, а также приведем примеры решения систем линейных уравнений при помощи данных методов.

Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать

§31.1 Приведение уравнения кривой к каноническому виду

Общие сведения об итерационных методах или методе простой итерации

Метод итерации — это численный и приближенный метод решения СЛАУ.

Суть: нахождение по приближённому значению величины следующего приближения, которое является более точным. Метод позволяет получить значения корней системы с заданной точностью в виде предела последовательности некоторых векторов (итерационный процесс). Характер сходимости и сам факт сходимости метода зависит от выбора начального приближения корня x 0 .

Рассмотрим систему A x = b .

Чтобы применить итерационный метод, необходимо привести систему к эквивалентному виду x = B x + d . Затем выбираем начальное приближение к решению СЛАУ x ( 0 ) = ( x 1 0 , x 2 0 , . . . x m 0 ) и находим последовательность приближений к корню.

Для сходимости итерационного процесса является достаточным заданное условие В 1 . Окончание итерации зависит от того, какой итерационный метод применили.

Видео:§43 Приведение уравнения плоскости к нормальному видуСкачать

§43 Приведение уравнения плоскости к нормальному виду

Метод Якоби

Метод Якоби — один из наиболее простых методов приведения системы матрицы к виду, удобному для итерации: из 1-го уравнения матрицы выражаем неизвестное x 1 , из 2-го выражаем неизвестное x 2 и т.д.

Результатом служит матрица В , в которой на главной диагонали находятся нулевые элементы, а все остальные вычисляются по формуле:

b i j = — a i j / a i i , i , j = 1 , 2 . . . , n

Элементы (компоненты) вектора d вычисляются по следующей формуле:

d i = b i / a i i , i = 1 , 2 , . . . , n

Расчетная формула метода простой итерации:

x ( n + 1 ) = B x ( x ) + d

Матричная запись (координатная):

x i ( n + 1 ) = b i 1 x n 1 + b i 2 x ( n ) 2 + . . . + b

Критерий окончания в методе Якоби:

x ( n + 1 ) — x ( n ) ε 1 , где ε 1 = 1 — B B ε

В случае если B 1 / 2 , то можно применить более простой критерий окончания итераций:

x ( n + 1 ) — x ( n ) ε

Решить СЛАУ методом Якоби:

10 x 1 + x 2 — x 3 = 11 x 1 + 10 x 2 — x 3 = 10 — x 1 + x 2 + 10 x 3 = 10

Необходимо решить систему с показателем точности ε = 10 — 3 .

Приводим СЛАУ к удобному виду для итерации:

x 1 = — 0 , 1 x 2 + 0 , 1 x 3 + 1 , 1 x 2 = — 0 , 1 x 1 + 0 , 1 x 3 + 1 x 3 = 0 , 1 x 1 — 0 , 1 x 2 + 1

Выбираем начальное приближение, например: x ( 0 ) = 1 , 1 1 1 — вектор правой части.

В таком случае, первая итерация имеет следующий внешний вид:

x 1 ( 1 ) = — 0 , 1 × 1 + 0 , 1 × 1 + 1 , 1 = 1 , 1 x 2 ( 1 ) = — 0 , 1 × 1 , 1 + 0 , 1 + 1 = 0 , 99 x 3 ( 1 ) = 0 , 1 × 1 , 1 — 0 , 1 × 1 + 1 = 1 , 01

Аналогичным способом вычисляются приближения к решению:

x ( 2 ) = 1 , 102 0 , 991 1 , 011 , x ( 3 ) = 1 , 102 0 , 9909 1 , 0111 , x ( 4 ) = 1 , 10202 0 , 99091 1 , 01111

Находим норму матрицы В , для этого используем норму B ∞ .

Поскольку сумма модулей элементов в каждой строке равна 0,2, то B ∞ = 0 , 2 1 / 2 , поэтому можно вычислить критерий окончания итерации:

x ( n + 1 ) — x ( n ) ε

Далее вычисляем нормы разности векторов:

x ( 3 ) — x ( 2 ) ∞ = 0 , 002 , x ( 4 ) — x ( 3 ) ∞ = 0 , 00002 .

Поскольку x ( 4 ) — x ( 3 ) ∞ ε , то можно считать, что мы достигли заданной точности на 4-ой итерации.

x 1 = 1 , 102 ; x 2 = 0 , 991 ; x 3 = 1 ,01 1 .

Видео:§14 Приведение уравнения прямой к нормальному видуСкачать

§14 Приведение уравнения прямой к нормальному виду

Метод Зейделя

Метод Зейделя — метод является модификацией метода Якоби.

Суть: при вычислении очередного ( n + 1 ) — г о приближения к неизвестному x i при i > 1 используют уже найденные ( n + 1 ) — е приближения к неизвестным x 1 , x 2 , . . . , x i — 1 , а не n — о е приближение, как в методе Якоби.

x i ( n + 1 ) = b i 1 x 1 ( n + 1 ) + b i 2 x 2 ( n + 1 ) + . . . + b i , i — 1 x i — 2 ( n + 1 ) + b i , i + 1 x i + 1 ( n ) +

+ . . . + b i m x m ( n ) + d i

За условия сходимости и критерий окончания итераций можно принять такие же значения, как и в методе Якоби.

Решить СЛАУ методом Зейделя. Пусть матрица системы уравнений А — симметричная и положительно определенная. Следовательно, если выбрать начальное приближение, метод Зейделя сойдется. Дополнительных условий на малость нормы некоторой матрицы не накладывается.

Решим 3 системы уравнений:

2 x 1 + x 2 = 3 x 1 — 2 x 2 = 1 , x 1 + 2 x 2 = 3 2 x 1 — x 2 = 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1

Приведем системы к удобному для итерации виду:

x 1 ( n + 1 ) = — 0 , 5 x 2 ( n ) + 1 , 5 x 2 ( n + 1 ) = 0 , 5 x 1 ( n + 1 ) + 0 , 5 , x 1 ( n + 1 ) = — 2 x 2 ( n ) + 3 x 2 ( n + 1 ) = 2 x 1 ( n + 1 ) — 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1 .

Отличительная особенность, условие сходимости выполнено только для первой системы:

Вычисляем 3 первых приближения к каждому решению:

1-ая система: x ( 0 ) = 1 , 5 — 0 , 5 , x ( 1 ) = 1 , 75 0 , 375 , x ( 2 ) = 1 , 3125 0 , 1563 , x ( 3 ) = 1 , 4219 0 , 2109

Решение: x 1 = 1 , 4 , x 2 = 0 , 2 . Итерационный процесс сходится.

2-ая система: x ( 0 ) = 3 — 1 , x ( 1 ) = 5 9 , x ( 2 ) = — 15 — 31 , x ( 3 ) = 65 129

Итерационный процесс разошелся.

Решение: x 1 = 1 , x 2 = 2

3-я система: x ( 0 ) = 1 , 5 2 , x ( 1 ) = 2 — 6 , x ( 2 ) = 0 2 , x ( 3 ) = 0 2

Итерационный процесс зациклился.

Решение: x 1 = 1 , x 1 = 2

Видео:Видеоурок "Приведение к каноническому виду"Скачать

Видеоурок "Приведение к каноническому виду"

Метод простой итерации

Если А — симметричная и положительно определенная, то СЛАУ приводят к эквивалентному виду:

x = x — τ ( A x — b ) , τ — итерационный параметр.

Расчетная формула имеет следующий внешний вид:

x ( n + 1 ) = x ( n ) — τ ( A x n — b ) .

Здесь B = E — τ A и параметр τ > 0 выбирают таким образом, чтобы по возможности сделать максимальной величину B 2 .

Пусть λ m i n и λ m a x — максимальные и минимальные собственные значения матрицы А .

τ = 2 / ( λ m i n + λ m a x ) — оптимальный выбор параметра. В этом случае B 2 принимает минимальное значение, которое равняется ( λ m i n + λ m a x ) / ( λ m i n — λ m a x ) .

Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Отчет по лабораторной работе №2 на тему «Решение систем линейных алгебраических уравнений итерационными методами»

Приведение системы уравнений к нормальному виду

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение

«Ижевский государственный технический университет»

на тему «Решение систем линейных алгебраических уравнений итерационными методами»

по дисциплине «Вычислительная математика»

ст. преподаватель кафедры АСОИУ

1 ПОСТАНОВКА ЗАДАЧИ

Написать программу, реализующую алгоритмы:

а) метода простых итераций;

б) метода Зейделя.

с точностью e = 10-12.

В программе требуется:

1) предусмотреть приведение СЛАУ к виду, пригодному для итераций;

2) организовать проверку условия сходимости методов;

3) выбрать начальное приближение;

4) сделать априорную оценку количества шагов и подсчитать реальное количество шагов для достижения заданной точности указанных методов;

5) подсчитать апостериорные оценки методов.

Провести сравнительный анализ метода простых итераций и метода Зейделя.

2 МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

2.1 Итерационные методы решения СЛАУ

Пусть дана система n линейных уравнений с n неизвестными:

Видео:13. Общие уравнения прямой в пространстве / приведение к каноническому видуСкачать

13. Общие уравнения прямой в пространстве / приведение к каноническому виду

Приведение системы уравнений к нормальному виду(1)

Видео:Приведение ДУ 2 порядка в частных производных к каноническому видуСкачать

Приведение ДУ 2 порядка в частных производных к каноническому виду

Запишем систему (1) в матричном виде:

Преобразуем систему (2) тем или иным способом (таких способов существует множество; некоторые из них будут рассмотрены ниже) к эквивалентной ей системе вида:

где x – тот же вектор неизвестных, a, b — некоторые новые матрица и вектор соответственно.

Эта система называется приведенной к нормальному виду. Она пригодна для итерационного процесса.

2.2 Методы простых итераций (МПИ) решения СЛАУ

Пусть система линейных алгебраических уравнений (2) приведена к нормальному виду (3) тем или иным способом. Решим ее методом простых итераций. Используя систему (3), можно определить последовательность приближений x(k) к неподвижной точке x* рекуррентным равенством

Итерационный процесс (4), начинающийся с некоторого вектора

x(0) =( x Приведение системы уравнений к нормальному виду,…, xПриведение системы уравнений к нормальному видуПриведение системы уравнений к нормальному виду)Т, будем называть методом простых итераций (МПИ).

Приближения к решению СЛАУ методом простых итераций могут быть записаны в виде следующей системы равенств:

Приведение системы уравнений к нормальному виду(5)

Выбор начального приближения

Сходимость МПИ гарантирована при любом начальном векторе x(0). Очевидно, что итераций потребуется меньше, если x(0) ближе к решению x*. Если нет никакой информации о грубом решении задачи (3) или решении близкой задачи, то за x (0) обычно принимают вектор b свободных членов системы (3).

Способы приведения СЛАУ к нормальному виду

Для решения СЛАУ итерационными методами систему (2) нужно привести к эквивалентной ей системе (3), которая называется системой, приведенной к нормальному виду каким-либо способом. Рассмотрим их.

1. Если в матрице коэффициентов A наблюдается диагональное преобладание, т. е.

Приведение системы уравнений к нормальному виду, j#i, i =1,2,…n,

то систему (3) можно получить, разделив уравнения системы на соответствующие диагональные элементы и выразив x1 через первое уравнение системы, x2 – через второе и т. д. В результате получим:

Приведение системы уравнений к нормальному виду— новая матрица коэффициентов

Приведение системы уравнений к нормальному виду— новый вектор свободных членов

2. Иногда выгоднее приводить систему (2) к виду (3) так, чтобы коэффициенты aii не были равны нулю.

Вообще, имея систему

Приведение системы уравнений к нормальному виду, i = 1, 2, … n,

Приведение системы уравнений к нормальному виду,

где Приведение системы уравнений к нормальному виду# 0. Тогда исходная система эквивалентна нормальной системе:

Приведение системы уравнений к нормальному виду, i =1, 2, … n,

где Приведение системы уравнений к нормальному видуПриведение системы уравнений к нормальному виду; Приведение системы уравнений к нормальному видупри i # j

Приведение системы уравнений к нормальному видуВычисление
это получение из входных данных нового знания
  • Как люди считали в старину и как считали цифры — часть 1
  • Математическое моделирование, численные методы
  • Хорошо ли вы считаете? — считать приходится везде
  • Необыкновенная арифметика — часть 1
  • Когда не следует пользоваться шаблонными приемами вычислений

Видео:2. Приведение уравнений второго порядка к каноническому видуСкачать

2. Приведение уравнений второго порядка к каноническому виду

Алгебра

Видео:Семинар №9 "Приведение уравнения второго порядка к каноническому виду"Скачать

Семинар №9 "Приведение уравнения второго порядка к каноническому виду"

Приведение системы уравнений к нормальному видуПротоколы

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Методы Зейделя и простой итерации

Вы будете перенаправлены на Автор24

Методы Зейделя и простой итерации — это методы решения систем линейных алгебраических уравнений при помощи итераций.

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Методы решения систем линейных алгебраических уравнений

Методы решения систем линейных алгебраических уравнений подразделяются на прямые, являющиеся точными, и итерационные, которые являются приближёнными. Прямые методы базируются на исполнении не бесконечного количества арифметических действий. В качестве примера таких методов можно привести метод обратной матрицы, метод Гаусса, метод Гаусса-Жордана, метод прогонки для трех диагональных матриц и так далее. Сущность итерационных методов состоит в том, чтобы путём последовательных приближений найти решение системы с требуемой точностью. Наиболее распространёнными итерационными методами считаются метод простых итераций и метод Зейделя. Они фактически являются эквивалентными, но конечно имеют и отличия.

Данные предполагают наличие больших расчетных объемов, однако это не мешает им обладать достаточно простой структурой. Как отмечалось выше, в итерационных методах за счет предыдущих приближений могут быть получены новые приближения, и, в случае удовлетворения системой условию сходимости, эти приближения имеют всё меньше отличий от аналитического решения.

В итерационных методах обычно присутствуют следующие основные этапы:

  1. Приведение исходной системы вида $ ¯A * ¯x = ¯b $ к итерационной форме.
  2. Осуществление проверки условия сходимости.
  3. Реализация решения системы выбранным методом.

Видео:Метод Лагранжа. Приведение квадратичной формы к каноническому и нормальному видамСкачать

Метод Лагранжа. Приведение квадратичной формы к каноническому и нормальному видам

Метод простых итераций

Для систем общего вида должно выполняться тождество m = n, где m — это число уравнений в системе, а n — это количество неизвестных.

То есть, нет смысла в решении не доопределенных (m меньше n) и переопределенных (m больше n) систем уравнений, так как их можно свести за счёт элементарных алгебраических преобразований к нормальным (m=n) системам линейных уравнений. Иначе говоря, когда присутствует «ненормальная» система уравнений, то перед началом использования метода простых итераций, следует преобразовать её в нормальную.

Готовые работы на аналогичную тему

Систему линейных уравнений можно записать в матричной форме, где:

  • A является матрицей коэффициентов.
  • b является вектором свободных членов.
  • x является вектором неизвестных.

В качестве примера рассмотрим следующую систему:

Приведение системы уравнений к нормальному виду

Рисунок 1. Система уравнений. Автор24 — интернет-биржа студенческих работ

Представим её в матричной форме:

Приведение системы уравнений к нормальному виду

Рисунок 2. Система уравнений в матричной форме. Автор24 — интернет-биржа студенческих работ

Первый этап итерационного метода заключается в преобразовании исходной системы, то есть матрицы А и вектора b в итерационную форму, где С и d являются итерационными формами исходных данных.

Преобразование в итерационный вид может быть реализована по следующим формулам:

$c_ = -a_ / a_$ $D_i = b_i / a_$ где i, j = 1,2,3…

Необходимо заметить, что диагональные компоненты новой матрицы обнуляются, хотя должны быть равны -1. В результате для рассматриваемой системы получается:

Приведение системы уравнений к нормальному виду

Рисунок 3. Матрица. Автор24 — интернет-биржа студенческих работ

Если выполнять преобразование исходной системы к итерационной форме, то она не удовлетворит условию сходимости:

Приведение системы уравнений к нормальному виду

Рисунок 4. Формула. Автор24 — интернет-биржа студенческих работ

То есть отдельные элементы матрицы C оказываются больше единицы. А по условию сходимости, приведённому выше, очевидно, что, если хотя бы один элемент будет больше единицы, то условие не выполнится, и решение системы путем простых итераций найти невозможно. Прежде чем осуществлять этапы итерационных методов, следует привести исходную систему к виду, в котором все диагональные компоненты будут максимальными по модулю в своих строках. Лишь при этом виде матрицы коэффициентов будет выполняться условие сходимости.

Очевидно, что в рассматриваемом примере третий элемент третьей строки по модулю больше других. Его следует оставить неизменным. Необходимо поменять местами первую и вторую строки, а далее умножить строку, ставшую первой, на минус единицу и сложить её с новой второй строкой. В результате получится:

Приведение системы уравнений к нормальному виду

Рисунок 5. Матрица. Автор24 — интернет-биржа студенческих работ

Теперь при подстановке в формулы итерационная форма получится верной и второй этап, то есть проверка условия сходимости, может быть успешно пройден. Если же система не проходит эту проверку, то приближения не будут сходиться к реальному решению, и ответ получен не будет. Если же условие сходимости исполняется, то стратегия метода простых итераций может быть применена и можно переходить к третьему этапу. В конечном счете будет получена система линейных алгебраических уравнений в итерационной форме:

Приведение системы уравнений к нормальному виду

Рисунок 6. Система линейных уравнений. Автор24 — интернет-биржа студенческих работ

Здесь $x_1, x_2, x_3$ являются приближениями, которые получаются на текущем шаге итерации за счет приближений, найденных на предыдущей итерации — $x^0_1, x^0_2, x^0_3$.

Итерационный процесс по методу простых итераций продолжается до тех пор, пока вектор приближений не придёт к необходимой точности, то есть, пока не исполнится условие выхода:

$Max|x_i – x^0_i|$ ∠ $ε$

Здесь ε является требуемой точностью.

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Метод Зейделя

Как уже отмечалось выше, метод простых итераций и метод Зейделя, по своей сути, являются идентичными. Разница заключается в том, что в методе Зейделя вычисление вектора приближений на текущей итерации выполняется с применением данных, которые были получены ни только на предыдущей, но и на исполняемой итерации. Это означает, что элемент x1 определяется через x2 и x3, величины которых были рассчитаны на предыдущей итерации, а последующий элемент x2 уже рассчитывается на основании x1, найденного именно на текущей итерации, и x3, вычисленного на предыдущей. Иначе говоря, данные в методе Зейделя для определения вектора X используются в процессе расчётов по мере их вычисления. А в методе простых итераций применяются данные, которые были получены именно на предыдущей итерации.

На основании этого отличия можно сделать вывод о том, что метод Зейделя имеет лучшую сходимость в сравнении с методом простых итераций, поскольку для него характерна тенденция применения приближений, которые получаются по ходу процесса и являются наиболее близкими к конечному результату.

Ниже представлена программная реализация метода Зейделя:

Procedure Zeidel(C:array of array of real;d:array of real;n:integer);

📹 Видео

53. Приведение общего уравнения кривой к каноническому видуСкачать

53. Приведение общего уравнения кривой к каноническому виду

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

5. Нормальное уравнение плоскости выводСкачать

5. Нормальное уравнение плоскости вывод

Семинар 6. Приведение уравнения кривой II порядка к каноническому видуСкачать

Семинар 6. Приведение уравнения кривой II порядка к каноническому виду

Курс по ОДУ: Системы ДУ, не приведённые к нормальному виду | Занятие 20Скачать

Курс по ОДУ: Системы ДУ, не приведённые к нормальному виду | Занятие 20

Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Приведение кривой второго порядка к каноническому виду. ПримерСкачать

Приведение кривой второго порядка к каноническому виду. Пример
Поделиться или сохранить к себе: