Вместе с этим калькулятором также используют следующие:
Уравнение множественной регрессии
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Виды нелинейной регрессии
Вид | Класс нелинейных моделей |
| Нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам |
| Нелинейные по оцениваемым параметрам |
Здесь ε — случайная ошибка (отклонение, возмущение), отражающая влияние всех неучтенных факторов.
Уравнению регрессии первого порядка — это уравнение парной линейной регрессии.
Уравнение регрессии второго порядка это полиномальное уравнение регрессии второго порядка: y = a + bx + cx 2 .
Уравнение регрессии третьего порядка соответственно полиномальное уравнение регрессии третьего порядка: y = a + bx + cx 2 + dx 3 .
Чтобы привести нелинейные зависимости к линейной используют методы линеаризации (см. метод выравнивания):
- Замена переменных.
- Логарифмирование обеих частей уравнения.
- Комбинированный.
y = f(x) | Преобразование | Метод линеаризации |
y = b x a | Y = ln(y); X = ln(x) | Логарифмирование |
y = b e ax | Y = ln(y); X = x | Комбинированный |
y = 1/(ax+b) | Y = 1/y; X = x | Замена переменных |
y = x/(ax+b) | Y = x/y; X = x | Замена переменных. Пример |
y = aln(x)+b | Y = y; X = ln(x) | Комбинированный |
y = a + bx + cx 2 | x1 = x; x2 = x 2 | Замена переменных |
y = a + bx + cx 2 + dx 3 | x1 = x; x2 = x 2 ; x3 = x 3 | Замена переменных |
y = a + b/x | x1 = 1/x | Замена переменных |
y = a + sqrt(x)b | x1 = sqrt(x) | Замена переменных |
Пример . По данным, взятым из соответствующей таблицы, выполнить следующие действия:
- Построить поле корреляции и сформулировать гипотезу о форме связи.
- Рассчитать параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии.
- Оценить тесноту связи с помощью показателей корреляции и детерминации.
- Дать с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.
- Оценить с помощью средней ошибки аппроксимации качество уравнений.
- Оценить с помощью F-критерия Фишера статистическую надежность результатов регрессионного моделирования. По значениям характеристик, рассчитанных в пп. 4, 5 и данном пункте, выбрать лучшее уравнение регрессии и дать его обоснование.
- Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 15% от его среднего уровня. Определить доверительный интервал прогноза для уровня значимости α=0,05 .
- Оценить полученные результаты, выводы оформить в аналитической записке.
Год | Фактическое конечное потребление домашних хозяйств (в текущих ценах), млрд. руб. (1995 г. — трлн. руб.), y | Среднедушевые денежные доходы населения (в месяц), руб. (1995 г. — тыс. руб.), х |
1995 | 872 | 515,9 |
2000 | 3813 | 2281,1 |
2001 | 5014 | 3062 |
2002 | 6400 | 3947,2 |
2003 | 7708 | 5170,4 |
2004 | 9848 | 6410,3 |
2005 | 12455 | 8111,9 |
2006 | 15284 | 10196 |
2007 | 18928 | 12602,7 |
2008 | 23695 | 14940,6 |
2009 | 25151 | 16856,9 |
Решение. В калькуляторе последовательно выбираем виды нелинейной регрессии. Получим таблицу следующего вида.
Экспоненциальное уравнение регрессии имеет вид y = a e bx
После линеаризации получим: ln(y) = ln(a) + bx
Получаем эмпирические коэффициенты регрессии: b = 0.000162, a = 7.8132
Уравнение регрессии: y = e 7.81321500 e 0.000162x = 2473.06858e 0.000162x
Степенное уравнение регрессии имеет вид y = a x b
После линеаризации получим: ln(y) = ln(a) + b ln(x)
Эмпирические коэффициенты регрессии: b = 0.9626, a = 0.7714
Уравнение регрессии: y = e 0.77143204 x 0.9626 = 2.16286x 0.9626
Гиперболическое уравнение регрессии имеет вид y = b/x + a + ε
После линеаризации получим: y=bx + a
Эмпирические коэффициенты регрессии: b = 21089190.1984, a = 4585.5706
Эмпирическое уравнение регрессии: y = 21089190.1984 / x + 4585.5706
Логарифмическое уравнение регрессии имеет вид y = b ln(x) + a + ε
Эмпирические коэффициенты регрессии: b = 7142.4505, a = -49694.9535
Уравнение регрессии: y = 7142.4505 ln(x) — 49694.9535
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
ПРИВЕДЕНИЕ ИСХОДНОГО НЕЛИНЕЙНОГО УРАВНЕНИЯ РЕГРЕССИИ К ЛИНЕЙНОМУ
О лабораторной работе № 2
на тему:
«Определение параметров нестационарного нелинейного уравнения регрессии»
2 курса 221 группы
Содержание
2.ПРИВЕДЕНИЕ ИСХОДНОГО НЕЛИНЕЙНОГО УРАВНЕНИЯ РЕГРЕССИИ К ЛИНЕЙНОМУ………………………………………………………………………………………7 3.ПРОВЕРКА НАЛИЧИЯ МУЛЬТИКОЛЛИНЕАРНОСТИ МЕЖДУ ФАКТОРАМИ МОДЕЛИ……………………………………………………………………………………………8
4.ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ УРАВНЕНИЯ РЕГРЕССИИ. ПОСТРОЕНИЕ УРАВНЕНИЯ РЕГРЕССИИ………………………………………………………………………11
5.ПРОВЕРКА СТАТИСТИЧЕСКОЙ ЗНАЧИМОСТИ УРАВНЕНИЯ РЕГРЕССИИ ………. 13
5.1.Проверка случайности колебаний уровней статочной последовательности………. 13
5.2. Проверка соответствия распределения случайной компоненты нормальному закону распределения……………………………………………………………………………………15
5.3.Проверка равенства математического ожидания случайной компоненты нулю………..16
5.4.Проверка независимости значений уровней случайной компоненты……………………17
5.5.Определение точности модели………………………………………………………………18
5.6. Тест ранговой корреляции Спирмена ……………………………………………………….19
6. ПРОВЕРКА НАЛИЧИЯ АНОМАЛЬНЫХ КОЛЕБАНИЙ ИССЛЕДУЕМОЙ МОДЕЛИ..21
7.ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОГО ВИДА ЛИНИИ ТРЕНДА. ПРОГНОЗ ПОКАЗАТЕЛЕЙ…………………………………………………………………………………..22
Список использованной литературы………………………………………………25
ВВЕДЕНИЕ
Специфической особенностью деятельности экономиста является работа в условиях недостатка информации и неполноты исходных данных. Анализ такой информации требует специальных методов, которые составляют один из аспектов эконометрики. Центральной проблемой эконометрики является построение эконометрической модели и определение возможностей ее использования для описания, анализа и прогнозирования реальных экономических процессов.
Становление и развитие эконометрического метода происходили на основе так называемой высшей статистики — на методах парной и множественной регрессии, парной, частной и множественной корреляции, выделения тренда и других компонент временного ряда, на статистическом основании.
Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целого ряда других вопросов эконометрики. В настоящее время множественная регрессия — один из наиболее распространенных методов в эконометрике. Основная цель множественной регрессии — построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.
Задачей данной работы является оценка адекватности и точности нелинейной нестационарной модели уравнения регрессии с использованием персональных компьютеров.
Данная работа состоит из семи глав и трех приложении. Первая глава – постановка задачи.
Во второй главе осуществляется приведение исходного нелинейного уравнения регрессии к линейному по средствам замены переменных.
В третьей главе проверяется наличие мультиколлинеарности между факторами модели.
В главе 4 определяются параметры уравнения регрессии и строится искомое уравнение регрессии.
В пятой главе проверяется статистическая значимость уравнения регрессии. В пункте 5.1. осуществляется проверка колебаний уровней остаточной последовательности при помощи критерия серий, основанного на медиане выборки. В пункте 5.2. проводится проверка соответствия распределения случайной компоненты нормальному закону распределения при помощи показателей ассиметрии и эксцесса. В пункте 5.3. показана проверка равенства математического ожидания случайной компоненты нулю с использованием t-критерия Стьюдента. В пункте 5.4. проверяется независимость значений уровней случайной компоненты с целью выявления существующей автокорреляции остаточной последовательности. В данной работе эта проверка производится при помощи d-критерия Дарбина — Уотсона. В пункте 5.5. определяется точность модели. В качестве статистических показателей точности в данной работе используются следующие: среднеквадратичное отклонение, средняя относительная ошибка аппроксимации, коэффициент сходимости, коэффициент детерминации. В пункте 5.6 проверяется наличие или отсутствие гетероскедастичности исследуемой модели при помощи теста ранговой корреляции Спирмена.
В шестой главе осуществляется проверка на наличие аномальных колебании исследуемой модели с помощью метода Ирвина.
В восьмой главе определяется оптимальный вид линии тренда, которые отражены в приложениях, и прогнозируются показатели.
ПОСТАНОВКА ЗАДАЧИ
В данной работе необходимо рассмотреть нелинейную нестационарную модель изучаемого экономического объекта. В качестве объекта исследования представлен экономический процесс, о котором известны следующие статистические данные:
1. Y(t) — ставка % рефинансирования Центробанка;
2. X1(t) — уровень безработицы, %
3. X2(t) — уровень инфляции, %
Требуется найти коэффициенты нелинейной нестационарной модели уравнения множественной регрессии вида:
Y(t) — ставка % рефинансирования Центробанка;
X1(t) — уровень безработицы, %
X2(t) — уровень инфляции, %
Значения величин Y(t), X1(t), Х2(t) даны в Таблице №1 «Исходные данные». Данное нелинейное уравнение требуется привести к линейному уравнению вида:
(2)
Ø определить параметры уравнения регрессии, используя замену переменной;
Ø проверить наличие мультиколлинеарности между факторами;
Ø проверить статистическую значимость уравнения в целом и отдельных коэффициентов уравнения. Это позволит оценить адекватность полученной модели исследуемому процессу и возможность её использования для осуществления анализа и проектирования;
Ø проверить отсутствие гетероскедастичности и автокорреляции остатков исследуемой модели, установить адекватность и точность уравнения регрессии;
Ø проверить наличие аномальных наблюдений, используя метод Ирвина.
Таблица №1
ИСХОДНЫЕ ДАННЫЕ
T | X1 | X2 | Y |
25,22 | |||
21,52 | |||
22,32 | |||
21,77 | |||
20,66 | |||
20,14 | |||
17,66 | |||
17,08 | |||
16,87 | |||
18,63 | |||
16,51 | |||
16,95 | |||
19,38 | |||
18,14 | |||
17,94 | |||
19,69 | |||
19,38 | |||
15,88 | |||
16,58 | |||
14,64 |
ПРИВЕДЕНИЕ ИСХОДНОГО НЕЛИНЕЙНОГО УРАВНЕНИЯ РЕГРЕССИИ К ЛИНЕЙНОМУ
Многие экономические процессы наилучшим образом описываются нелинейными уравнениями регрессии. Например, функции спроса и производственные функции. И в этом случае мы не можем применить к ним обычный метод наименьших квадратов и использовать стандартные подходы к оценке статистической надежности.
В связи с этим встает задача о возможности привести нелинейное уравнение к линейному виду.
В тех случаях, когда нелинейность касается факториальных переменных, но не связано с коэффициентами уравнения регрессии, нелинейность обычно устраняется путем замены переменной.
Рассмотрим нелинейное нестационарное уравнение:
Y(t) — ставка % рефинансирования Центробанка;
X1(t) — уровень безработицы, %
X2(t) — уровень инфляции, %
В данном случае нелинейность касается факторных переменных, но не связано с коэффициентами уравнения.
Вводим новые переменные:
Полученное уравнение является линейным как по переменным, так и по параметрам.
Видео:Нелинейные уравнения с двумя переменными и их геометрический смысл. 9 класс.Скачать
Эконометрика
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ
Кафедра экономико-метематических моделей
Тема 4. Множественная регрессия.
Вопросы
1. Нелинейная регрессия. Нелинейные модели и их линеаризация.
Нелинейная регрессия
При рассмотрении зависимости экономических показателей на основе реальных статистических данных с использованием аппарата теории вероятности и математической статистики можно сделать выводы, что линейные зависимости встречаются не так часто. Линейные зависимости рассматриваются лишь как частный случай для удобства и наглядности рассмотрения протекаемого экономического процесса. Чаще встречаются модели которые отражают экономические процессы в виде нелинейной зависимости.
Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций.
Различают два класса нелинейных регрессий:
- регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам: регрессии, нелинейные по оцениваемым параметрам.
Нелинейные регрессии по включаемым в нее объясняющим переменным, но линейные по оцениваемым параметрам
Данный класс нелинейных регрессий включает уравнения, в которых зависимая переменная линейно связана с параметрами. Примером могут служить:
полиномы разных степеней
(полином k-й степени)
и равносторонняя гипербола
.
При оценке параметров регрессий нелинейных по объясняющим переменным используется подход, именуемый «замена переменных». Суть его состоит в замене «нелинейных» объясняющих переменных новыми «линейными» переменными и сведение нелинейной регрессии к линейной регрессии. К новой «преобразованной» регрессии может быть применен обычный метод наименьших квадратов (МНК).
Полином любого порядка сводится к линейной регрессии с ее методами оценивания параметров и проверки гипотез.
Среди нелинейной полиноминальной регрессии чаще всего используется парабола второй степени; в отдельных случаях — полином третьего порядка. Ограничение в использовании полиномов более высоких степеней связаны с требованием однородности исследуемой совокупности: чем выше порядок полинома, тем больше изгибов имеет кривая и, соответственно, менее однородна совокупность по результативному признаку.
Равносторонняя гипербола, для оценки параметров которой используется тот же подход «замены переменных» (1/x заменяют на переменную z) хорошо известна в эконометрике.
Она может быть использована, например, для характеристики связи удельных расходов сырья, материалов и топлива с объемом выпускаемой продукции. Также примером использования равносторонней гиперболы являются кривые Филлипса и Энгеля..
Регрессии нелинейные по оцениваемым параметрам
К данному классу регрессий относятся уравнения, в которых зависимая переменная нелинейно связана с параметрами. Примером таких нелинейных регрессий являются функции:
• степенная — ;
• показательная — ;
• экспоненциальная —
Если нелинейная модель внутренне линейна, то она с помощью соответствующих преобразований может быть приведена к линейному виду (например, логарифмированием и заменой переменных). Если же нелинейная модель внутренне нелинейна, то она не может быть сведена к линейной функции и для оценки её параметров используются итеративные процедуры, успешность которых зависит от вида уравнений и особенностей применяемого итеративного подхода.
Примером нелинейной по параметрам регрессии внутренне линейной является степенная функция, которая широко используется в эконометрических исследованиях при изучении спроса от цен: , где у — спрашиваемое количество; х — цена;
Данная модель нелинейна относительно оцениваемых параметров, т. к. включает параметры а и b неаддитивно. Однако ее можно считать внутренне линейной, ибо логарифмирование данного уравнения по основанию е приводит его к линейному виду . Заменив переменные и параметры, получим линейную регрессию, оценки параметров которой а и b могут быть найдены МНК.
Широкое использование степенной функции связано это с тем, что параметр b в ней имеет четкое экономическое истолкование, т. е. он является коэффициентом эластичности. Это значит, что величина коэффициента b показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1 %.
Коэффициент эластичности можно определять и при наличии других форм связи, но только для степенной функции он представляет собой постоянную величину, равную параметру b.
По семи предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений ( Х, млн. руб. ).
📸 Видео
Метод половинного деления решение нелинейного уравненияСкачать
Графический метод решения задачи линейного программирования (ЗЛП)Скачать
Cимплексный метод решения задачи линейного программирования (ЗЛП)Скачать
Линейное уравнение. Что это?Скачать
После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных УравненийСкачать
Нелинейные уравнения. Практическая часть. 9 класс.Скачать
7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
Математика без Ху!ни. Метод Гаусса.Скачать
Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Нелинейные уравнения. Практическая часть. 9 класс.Скачать
Линейное уравнение с одной переменной. 6 класс.Скачать
Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать
10 Численные методы решения нелинейных уравненийСкачать
Метод Ньютона (метод касательных) Пример РешенияСкачать
Как решать линейные уравнения #математика #математика7классСкачать
Алгебра 7 Линейное уравнение с одной переменнойСкачать
Способы решения систем нелинейных уравнений. 9 класс.Скачать